

October 20-23, 2023

Antalya, TURKEY

Lifelong Learning for Engineers: A Literature Review

Omar K. Sabri

Associate professor, Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Norway

Abstract: Lifelong learning has become an integral part of educational approaches, aiming to promote continuous learning throughout an individual's life. The purpose of the current literature review is to assess the trends, themes and gaps in lifelong learning for engineers. A comprehensive search was conducted in Google Scholar, ScienceDirect, and Scopus for aticles published from 1990. Specific search terms were used to retrieve relevant articles and were determined based on a combination of keywords. The abstracts and titles of the retrieved articles were screened to determine their eligibility for inclusion in this study. A total of 5,342 studies were initially identified. After removing duplicates, the number of studies was reduced to 2,217. Subsequently, the studies were further filtered based on the predefined qualification criteria, resulting in 1,779 studies that underwent abstract and title screening. Ultimately, a total of 28 articles were identified as meeting the predefined eligibility criteria and were considered for the research. These selected articles formed the basis for the thematic analysis and further exploration of the research topic. The studies emphasized the significance of both formal and informal learning and training. Problem-based learning is a crucial component of lifelong learning. This approach encourages deeper understanding, independent thinking, and the development of teamwork and essential skills. Self-directed learning is a prominent competency for lifelong learning. It involves self-reflection, self-regulation, and proactively identifying areas for improvement. A group-based approach is suggested to complement technical knowledge with personal skills and non-technical competencies. Five themes including self-directed learning, coaching and mentoring, problem-based learning, formal and informal learning, and group-based approaches were identified. These concepts should be integrated into the education system and the workplace to support lifelong learning for engineers.

Keywords: literature review, engineering, lifelong learning

Citation: Sabri, O.K. (2023). Lifelong Learning for Engineers: A Literature Review. In M. Demirbilek, M. S. Ozturk, & M. Unal (Eds.), Proceedings of ICSES 2023-- International Conference on Studies in Education and Social Sciences (pp. 99-131), Antalya, Turkiye. ISTES Organization.

Introduction

According to the Oxford English Dictionary, lifelong learning can be described as an educational approach designed to promote continuous learning throughout the life of an individual. (Naimpally, Ramachandran & Smith, 2011). Before formally receiving instruction, a person's competence, abilities, comprehension, and awareness were evaluated based on that person's regular training and education (Guest, 2006). This paradigm

has evolved in the global society with the metrics of measuring a person's skills and general competence that encompasses knowledge-based lifelong learning, which is a necessity and not an option, especially in the field of engineering (Guest, 2006). By allowing the individual to build their knowledge and skills in their specialized field in a personal or professional capacity (Guest, 2006), According to Naimpally, Ramachandran, and Smith (2011), the continuous learning method guarantees that the individual has the expertise and abilities required to continue their learning journey after completing their higher education.

When contrasted to other academic disciplines, the usefulness of information acquired in the sciences and technologies, notably in the field, is greatly reduced, A lot of money needs to be put into the development of people through lifelong learning to avoid obsolescence (De Grip, & Smits, 2012). The investment in human capital in question does not only include formal training programs but also informal learning in the work environment (De Grip, & Smits, 2012). Since the engineering field is based on skills and knowledge that are conventionally tacit, the need for lifelong learning, which is ineffective in its current state, is quite significant for engineers. Considering the revolutionary nature of the engineering field, especially concerning technology (Naimpally, Ramachandran & Smith, 2011).

In precisely the same way as they require initial instruction and licensing, engineering workers also need to keep up their education (Bowman, 1997). To preserve safety for everyone, a safe environment, an efficient national economy, a highly regarded profession, an effective employer, and a happy career, ongoing growth in one's profession is essential (Bowman, 1997). Engineers have a common difficulty, but different disciplines have different strategies for maintaining individual and collective skills (Bowman, 1997). Maintaining expertise is crucial for advancement in your career, and engineers who work for large corporations frequently have access to internal training and professional development programs (Bowman, 1997).

Since numerous problems hinder the development and implementation of lifelong learning (Table 1), the objective of our study was to review qualitative research examining lifelong learning for engineers that focused on specific themes and analyze the trends, gaps, and significance of the practice.

Author	Problem with Lifelong Learning	Resolution
(Martinez-Mediano	Although the education system plays a	Lifelong learning competencies must
& Lord, 2012)	significant role in the promotion of lifelong	be sufficiently understood and
	learning for engineers, it has failed to	implemented in learning institutions
	integrate lifelong learning competencies.	through formal and informal training
		as well as self-directed learning.
Uden & Dix (2004)	Unfortunately, engineers are not properly	Problem-based learning can be
	equipped with the problem-solving skills	integrated into lifelong learning to
	required for their careers.	better equip engineers with the

Table 1. Problems associated with lifelong learning for engineers and proposed resolutions

www.icses.net

October 20-23, 2023 Antalya, TURKEY

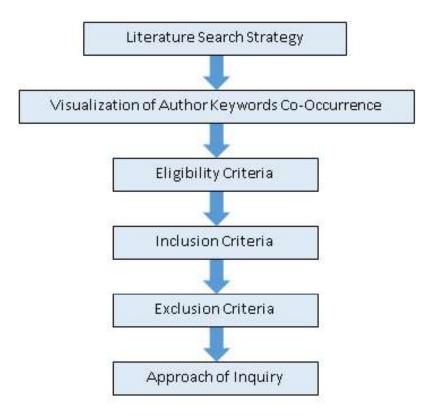
RKEY W

Author	Problem with Lifelong Learning	Resolution
		required skills.
Skrentny & Lewis	There is an assumption that the STEM	Training is an important aspect of
(2022)	pipeline that includes engineers begins and	lifelong career growth and
	stops at specific stages.	development that can go on for years.
Latinopoulos (2005)	There are basic issues associated with the	Formal and informal learning should
	participation of engineers in lifelong	integrate self-sufficient learning
	learning activities.	skills.
Lenschow (1998)	Teaching is evaluated by learning	Lecturing should be reduced in
	institutions, which is different from the	formal learning and project-based
	evaluation of the competence of engineers in	learning should be increased to
	the global market.	promote teamwork and learning
		critical engineering skills.
Peat, Taylor &	Engineering classroom instruction prepares	Comprehensive online resources
Franklin, (2005)	students for the organizations they will work	should be developed to promote
	for.	independent learning and self-
		directed learning, asynchronous and
		synchronous communication, and the
		content learned should be delivered
		to the real-world environment.
		Learning should promote teamwork
		and independent thinking.
Saxe, Mahmoud &	The formal education system fails at some	The course design should align with
Razavinia, (2022)	level to integrate lifelong learning in the	the outcomes of lifelong learning.
	fast-changing technological world.	

Research Question

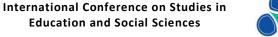
The existing research works based on lifelong learning in engineering education reveal a significant research gap that calls for further research studies. While these discussed research works have explained several fundamental issues surrounding the integration of lifelong learning principles in engineering, there is a requirement for a comprehensive investigation that extends these visions.

Table 1 highlights some key issues associated with lifelong learning for engineers, including the failure of education systems to integrate lifelong learning competencies, lack of problem-solving skills, basic issues associated with participation, and the need for evaluation of competence etc. Moreover, the discussed existing research works suggest resolutions, including integrating lifelong learning competencies in formal and informal training, using problem-based learning to equip engineers with necessary skills, reducing lecturing in formal



learning, increasing project-based learning to promote teamwork and critical thinking, developing comprehensive online resources to promote independent and self-directed learning, and aligning course design with lifelong learning outcomes. However, there is still a lack of a holistic framework that integrates these facets cohesively and it highlights a significant research gap in this lifelong learning for engineers. Thus, a new research endeavor should aim to bridge this research gap by developing a unified model or strategy for embedding lifelong learning seamlessly into engineering curricula, addressing the multifaceted challenges identified by previous studies, and providing actionable recommendations for educators and institutions to enhance the lifelong learning experiences of engineering students.

Methodology


Study Design

The research methodology is a systematic framework that leads the overall research study. This research has several key steps in its methodology, including the literature search strategy, visualization of author keywords co-occurrence, eligibility criteria, inclusion criteria, exclusion criteria, and the approach of inquiry. Figure 1 illustrates the research methodology flowchart, and collectively, these components specify how the research issue will be investigated, what sources will be taken into account, and how data will be gathered and analyzed.

Antalya, TURKEY

www.istes.org

Search Strategy

A literature search in various engineering literature domains within numerous online databases published between 1st October 1990 and 31 October 2022 was performed. Published articles available in Google Scholar, ScienceDirect, and Scopus online databases were queried using search terms with a combination of keywords listed in Table 3. Implementing a search using the databases resulted in hits listed in Table 3 that were subjected to a process of elimination by screening abstracts and titles to determine whether the studies were eligible for inclusion in the current research. The remainder of the papers' entire contents were perused, and any articles that did not pertain to the subject of the study were excluded. The MORISE structured literature review framework was employed in this article as explained in Figure 3 (Sabri, Lædre and Bruland, 2022).

Visualization of Author Keywords Co-Occurrence

The keywords listed in Table 3 were used in the search string for Scopus (Figure 2) and ScienceDirect (Figure 3) databases.

Figures 2 and 3 show the most common keywords for the articles included in the analysis. Engineering education, lifelong learning, continuing education, and practical characteristics were the most often used words for ScienceDirect. Engineering education, lifelong learning, engineering graduates, employee education, and development for professionals are among the most popular search terms on Scopus.

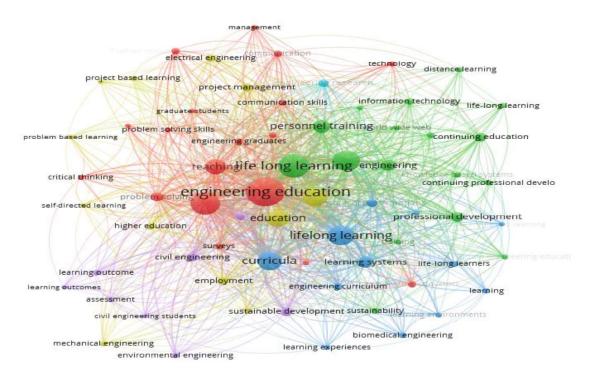


Figure 2. Retrieved Keywords (Scopus)

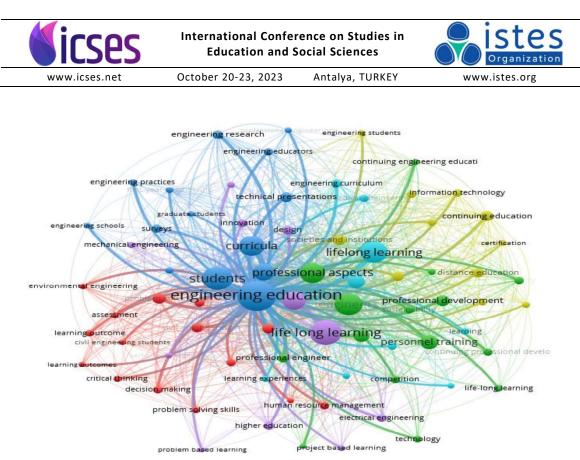


Figure 3. Retrieved Keywords (ScienceDirect)

SEARCH	ADDITION to SEARCH STRING	Science	SCOPUS	Google
NUMBER		Direct		Scholar
1	TITLE-ABS-KEY ("LIFELONG" AND "LEARNING"	3897	342	35,100
	AND "ENGINEERS")			
2	TITLE-ABS-KEY ("LIFELONG" AND "LEARNING"	3897	32	7620
	AND "ENGINEERS" AND "FORMAL" OR "NON-			
	FORMAL")			
3	TITLE-ABS-KEY ("LIFELONG" AND "LEARNING"	110	10	5750
	AND "ENGINEERS" AND "SELF-DIRECTED			
	LEARNING")			
4	TITLE-ABS-KEY ("LIFELONG" AND "LEARNING"	468	29	21700
	AND "ENGINEERS" AND "TEAMWORK")			
5	TITLE-ABS-KEY ("LIFELONG" AND "LEARNING"	247	12	9360
	AND "ENGINEERS" AND "PROBLEM-BASED")			
6	TITLE-ABS-KEY ("LIFELONG" AND "LEARNING"	166	1	2450
	AND "ENGINEERS" AND "GROUP-BASED")			

Table 2. Search	strings	and keywords
-----------------	---------	--------------

Table 3 provides a summary of the search strings and keywords used to gather relevant literature on lifelong learning for engineers from ScienceDirect, Scopus, and Google Scholar, that is in all search strings,

ScienceDirect produced the most hits, with Google Scholar generating the most results for search string 2. Search strings that included terms like "self-directed learning," "teamwork," and "problem-based" yielded fewer results but were more specific to the research question.

Eligibility Criteria

Eligibility criteria were applied to assess whether articles fulfilled the requirements for admission or rejection.

Inclusion criteria

Learning issued between 1990 and 2022; authored in English; included primary and secondary sources; peerreviewed; published through proper channels; focused exclusively on lifelong learning for engineers; online availability.

Exclusion criteria

Publications that were distributed using unorthodox or grey means; articles that are not peer-reviewed; studies irrelevant to the research topic; evidence syntheses, editorials, and commentaries; sources authored before 1990; articles with abstracts only.

Approach of Inquiry

An inductive approach of inquiry was applied as opposed to a deductive one and, especially in the case of primary literature sources, was mostly rooted in grounded theory. Based on the collected data related to the topic of lifelong learning for engineers, theories were developed inductively. The thematic analysis was carried out in phases —the familiarization phase comprised an overview of general information related to the research topic; the selection phase comprised identifying themes after coding data from the 15 selected sources based on trends, research gaps, and patterns; and review phase comprising a review of selected articles and proper definition of selected themes.

Results

Literature Search

The Database search identified 5342 hits. Removal of duplicates resulted in 2217 studies and applying the qualification criteria resulted in 1779 studies, whose abstracts and names were looked over to see if they had any relevance to the thematic analysis. After 21 articles had been eliminated, they were reviewed for eligibility using the time-span criterion, and seven articles were added after the timespan restriction was lifted. Finally, 28 articles were found to successfully satisfy the predetermined qualifying requirements (see Figure 4).

Morise flowchart for researching databases and choosing literature

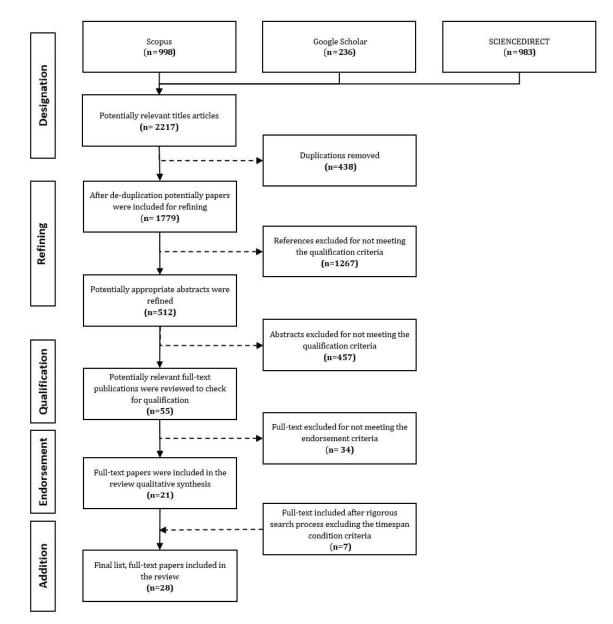


Figure 4. Morise flow chart

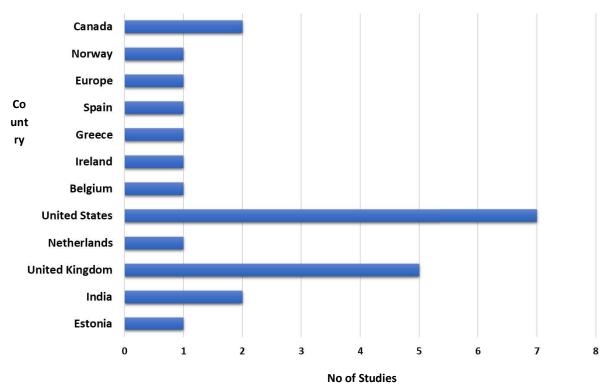


Table A1 contains data and conclusions from 28 research that satisfied the qualifying requirements, including the writer's name, year of publication, results, nation, technique, and objective. The findings in all the featured research emphasized the suggested remedies for professionals' continuous education. There was no unclear information, and no assumptions were made. Detailed data extraction information is attached to the appendix (Refer Table A1).

Research on continuous development in architecture is included in the table of contents, along with a few research studies on education and career advancement. It includes information such as the author, year of publication, purpose of the study, methodology used, country of origin, and outcomes. The studies were conducted using a variety of methodologies, including content analysis, Tobit analysis of survey data, thematic analysis of interview transcripts, qualitative analysis, module analysis, group-based project analysis, survey analysis, program analysis, review, and systems theory framework.

The countries of origin for the studies varied and included the United Kingdom, the Netherlands, the United States, Belgium, Greece, Spain, and Norway. The outcomes of the studies suggested a variety of approaches to lifelong learning and professional growth, including the use of coaching and mentoring, the numerous advantages of instruction based on problems, the significance of autonomous learning, and the need for continual updating of knowledge and skills. The studies also highlighted factors that can influence training participation, such as the use of innovative production methods in companies, industry competitiveness, and the characteristics of employees and their jobs.

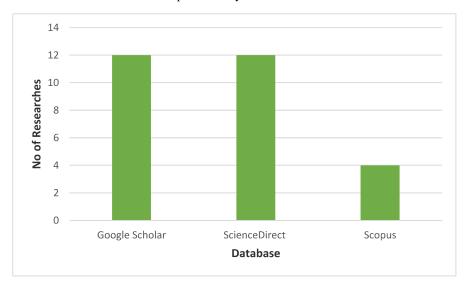

Articles published by location

Figure 5. Articles Published by Country

Most articles were published in the United States followed by the United Kingdom. There is limited research on the topic in developing countries such as those in Africa. Additionally, there may be an immediate connection connecting the quantity of publications released by a nation and the amount of money spent on engineers'

ongoing education.

Articles published by Database Sources

As shown in Figure 6, more articles on lifelong learning were retrieved from Google Scholar and ScienceDirect than Scopus. Google Scholar and ScienceDirect had a wider scope and index a larger number of academic journals than Scopus, which specializes in scientific, technical, medical, and social sciences literature.

Methods used for procurement in the project environment

As shown in Figure 7 and Table 5, more articles on statistical and descriptive analyses were retrieved than other methods.

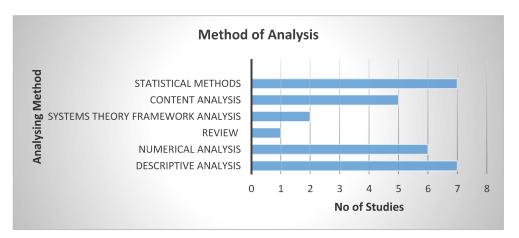


Figure 7. Count of Authors by Method of Analysis

Figure 6. Count of Sources by Databases

Martinez-Mediano & Lord (2012), Uden & Dix (2000), Guest (2006),
Uden & Dix, (2004), Parkinson, (1999), Porter, Patil, & Dutta (2012),
Evans (2018)
Skrentny & Lewis (2022), Vardiambasis et al. (2007), Patterson, Labun,
& Eikenaar, (2016), Marra, Camplese, & Litzinger (1999), El Mawas et
al. (2017), Nimmi, Zakkariya, & Rahul (2021)
Latinopoulos (2005)
Saxe, Mahmoud & Razavinia (2022), Berzina et al. (2019)
Andries de Grip (2012), Franklin, S., Taylor, C. E., and Peat, M. (2005)
Lenschow (1998), Patterson, L., Labun, C., & Eikenaar, J. (2016),
Deveci & Nunn (2018)
Froehle, et al. (2022), Aerts, (2020), Stolk & Martello (2015), Litzinger
et al. (2001), Witt, E., & Lill (2012), Das (2011), Williams, Blowers &
Goldberg (2004)

Table 5. Methods of analysis of data used for each study included.

Table 5 and Figure 6 show the analysis method utilized for qualitative research. Descriptive analysis and statistical methods were the most used methods, with several authors utilizing this approach. Review, systems theory framework analysis, and other methods were used less frequently.

Analysis of Themes

Specifically, there are five main areas: learning on your own, coaching and mentorship, formal and informal learning, and group-based approaches) (Table 6) were identified from 28 articles that were fully derived inductively.

Theme	Articles
Formal and Informal	Saxe, Mahmoud & Razavinia, (2022), Lenschow (1998),
Learning and Training	Latinopoulos (2005), Graham Guest (2006), Martinez-Mediano &
	Lord (2012), Skrentny & Lewis (2022), Martinez-Mediano & Lord
	(2012), Andries de Grip (2012), Aerts et al. (2020), Porter, Patil, &
	Dutta (2012), Parkinson, (1999), Marra, Camplese, & Litzinger
	(1999), Deveci & Nunn (2018), Berzina et al. (2019), Litzinger et
	al. (2001), Witt, & Lill (2012), Das (2011), Williams, Blowers &
	Goldberg (2004), Nimmi, Zakkariya, & Rahul (2021)

Table	6.	Themes	analy	vsis
raute	υ.	Themes	anar	y 313

V icses	International Conference on Studies in Education and Social Sciences				
www.icses.net	October 20-23, 2023 Antalya, TURKEY www.istes.org				
Problem-based Learning	Lorna Uden & Alan Dix (2014), Peat, Taylor & Franklin (2005), Ioannis Andries et al. (2007), Patterson, Labun, and Eikenaar (2016), Uden & Dix (2004), Litzinger et al. (2001)				
Self-directed Learning	Aerts et al. (2020), Froehle et al. (2022), Andries de Grip (2012), Graham Guest (2006), (Uden & Dix, 2004), Marra, Camplese, & Litzinger (1999), El Mawas et al. (2017), Litzinger et al. (2001), Evans (2018), Bowman (1997).				
Group-based Approach Gavin Duffy & Brian Bowe (2010), Patterson, Labun, and Eikenaar (2016)					
Coaching and Mentoring	Froehle et al. (2022), Graham Guest (2006), Stolk & Martello (2015)				

Table 6 provides a comprehensive analysis of the themes identified in the studies reviewed for the research question on the trends, themes, and gaps in lifelong learning for engineers. The table presents five main themes, namely Formal and Informal Learning and Training, Problem-based Learning, Self-directed Learning, Group-based Approach, and Coaching and Mentoring, alongside the studies that discussed each theme. Formal and Informal Learning and Training is the most frequently discussed theme in the table, with 18 studies mentioning it. This indicates that the concept of lifelong learning for engineers is being considered in both formal and informal contexts. Several studies, including Nimmi, Aerts et al. (2020), & Martinez-Mediano & Lord (2012) Zakkariya, & Rahul (2021), focused on the importance of continuous learning through formal training programs, workshops, and courses. In contrast, other studies, such as Graham Guest (2006) and Lenschow (1998), emphasized informal learning through on-the-job training and learning from colleagues.

Uden & Dix (2014) and Peat, Taylor & Franklin (2005) identified that professionals' ability to solve problems is improved by training based on problems, leading to lifelong learning in practice. Aerts et al. (2020) and Andries de Grip (2012) found that self-directed learning is necessary to bridge the gap between formal education and the rapidly changing demands of industry. Three studies discussed group-based learning, indicating that group-based learning facilitates teamwork and collaboration among engineers, leading to lifelong learning. On the other hand, two studies discussed the importance of coaching and mentoring, indicating that mentoring programs help to transfer knowledge and skills from experienced engineers to the younger generation.

The table shows that various approaches can be used to facilitate lifelong learning for engineers, with formal and informal learning and training being the most frequently discussed theme. The studies reveal the importance of engineers being proactive in their learning through self-directed learning and taking charge of their learning to bridge the gap between formal education and the rapidly changing demands of industry. The table highlights the need for organizations to consider different learning approaches, to support scientists' continuous education, tutoring, and mentorship programs as well as problem-oriented instruction, collaborative instruction, and mentoring are included.

www.icses.net

October 20-23, 2023 Antalya, TURKEY

Themes

Theme 1: Formal and Informal Learning and Training

Initially, competence, knowledge, and skills were measured based on educational background mostly depending on formal learning and training history. According to Andries de Grip (2012), "Academic scholarship on the establishment of outstanding durability organizations is also centered on unstructured education." According to the author, informal learning is very significant especially for engineers because the accumulation of technology takes place through diverse learning processes and may depreciate if the processes are absent leading to stagnation. Graham Guest (2006) cited provision as one of the facets associated with the continuous professional development of informal learning in the workplace. Organizations should assess to what extent they offer lifelong learning opportunities to their employees and consider collaborating with other bodies to promote the process. Universities have a responsibility to promote lifelong learning through education programs and online learning (Latinopoulos, 2005). Training is an important aspect of lifelong career growth and development that can go on for years (Skrentny & Lewis, 2022).

According to Andries de Grip (2012), one's level of education is not complementary to their history of participation in formal training. The research identified certain behavioral patterns among engineers with bachelor's degrees wherein they take part less often in formal or informal training from which they can learn, and female engineers have a different informal learning pattern compared to men; they spend a limited amount of time self-teaching (Andries de Grip, 2012). The gap in formal or informal learning and training based on educational background is a major issue.

Aerts et al. (2020) highlighted the evolution of lifelong learning in terms of technology to meet current needs. According to the authors, formal and informal training should remain practice-oriented and remain specific and relevant to the field of profession. Aerts et al. (2020) suggested that learning from peers through platforms such as LinkedIn and podcasts should be encouraged. The existence of alternative strategies such as online platforms eases access to the process of lifelong learning. There is a shift of focus towards more informal learning owing to the development of technology and the fact that in many cases formal learning is not sufficiently tailored toward existing practical needs. Both formal and informal learning and training are significant and should be promoted, especially in workplaces.

Theme 2: Problem-based Learning

According defined by Uden & Dix (2014), problem-centered education is "...the knowledge that emerges from striving for the comprehension of, or settlement of, an issue." and is a significant component of lifelong learning for engineers. Uden & Dix (2014) created and executed an end-of-course information technology module to help students appreciate the value of problem-based instruction. According to the findings, problem-based learning encouraged deeper and independent comprehension of the learning material as opposed to the conventional superficial understanding of course material. In their research, students were placed in small

groups to encourage teamwork and appreciation for diversity. Students gained significant skills such as selfmanagement, information retrieval, proper communication, and time management. Engineers need to learn continuously throughout their work life both as part of learning teams and independently, the requirement for the incorporation of problem-based instruction into educational programs. A growing trend in education is the use of projects in education, which is related to problem-centered education in the engineering industry faster compared to the slower rate in educational institutions (Peat, Taylor & Franklin, 2005).

Vardiambasis et al. (2007) reported the results of the Technical Educational Institute of Crete (TEIoC) student survey, which demonstrated that the introduction of problem-based learning benefited the students who became more academically and adequately trained to meet the needs of the engineering job market. Patterson, Labun, and Eikenaar (2016) reported the significance of problem-solving processes in lifelong learning, which help learners in the identification of information gaps, fill the gaps efficiently to develop a full perspective of the problem, and come up with an effective solution. Therefore, educational institutions, as well as workplaces, should consider integrating more problem-based approaches and processes to promote lifelong learning.

Theme 3: Self-directed Learning

The most significant and prominent competencies for lifelong learning are self-reflection and self-regulation, both of which, according to Aerts et al. (2020), allow students to identify aspects that require improvement and acquire the discipline to act. The importance of self-directed education through experiences and one-on-one contacts like mentoring and coaching was emphasized by Froehle et al. in their study from the year 2022. Independent education has become a crucial part of continuing education since it encourages freedom and originality in personal development.

Andries de Grip (2012) identified a pattern of self-directed teaching based on gender and the type of employment, according to which, female engineers generally spend less time on self-teaching compared to their male counterparts. Additionally, engineers who identify a gap in their skills have a significant chance of investing in self-directed learning. There is a correlation between the types of employment and self-directed learning; those who work in positions that demand advanced skills in leadership are more inclined to engage in independent education. Andries de Grip (2012) also reported that certain categories of engineers do not sufficiently invest their time in self-directed learning.

It is important for engineers to document their major achievements in engineering, such as successful technical projects and significant contributions to management and administration. This can help them recognize their strengths and demonstrate their capabilities to others. Engineers should aggressively pursue self-directed lifelong learning activities, such as attending formal credit and non-credit courses, workshops, seminars, and other learning experiences (Bowman, 1997). They should maintain comprehensive records of their successful completion of these activities to ensure Professionals keep apprised of the most recent developments in their specific field and learn fresh abilities to increase their general competency (Bowman, 1997).

According to Graham Guest (2006), in the future, all lifelong learning will be characterized by self-directed learning to promote individuality and independence during the continuous professional development process. Therefore, self-directed learning is inevitable and should be integrated into learning institutions as well as in employment training to promote lifelong learning for engineers (Uden & Dix, 2004).

Theme 4: Group-based Approach

Currently, greater significance is placed on the comprehension of engineering knowledge and possession of the necessary abilities at the cost of elements like initiative, collaboration, interaction, and learning by yourself. Standards for accreditation have changed and are now characterized by increasing abilities in the required skills for undergraduate engineering students. Duffy and Bowe (2010) argued for the necessity of a shift from the conventional approach to a more group-based approach, which is quite compatible with simultaneous technical as well as non-technical learning outcomes' development.

Practical and personal skills are equally significant for lifelong learning for engineers; the latter is often ignored. According to Duffy & Bowe (2010), technical skills, personal skills should also be developed in a progressive and structured manner. In their research, the authors found that a group-based approach helped the student become an independent individual, well-equipped with the personal and technical skills required in the market.

Duffy & Bowe (2010) proposed the implementation of an approach where students learn to work Extremely difficult, flexible assignments that depend on subject-specific content are worked on both in groups and individually. An integrative understanding of learning, which encourages students to create their autonomous understanding of the material being learned, is the foundation of the approach that puts the student first. Patterson, Labun, and Eikenaar (2016) proposed the use of peer assessment of learners' group participation to promote the development of personal skills through structured activities. Personal skills are significant lifelong learning for engineers and can be developed through implementing a group-based learning approach.

Theme 5: Coaching and Mentoring

Providing coaching and mentoring are underutilized forces in continuing education. According to the findings of the investigation conducted by Froehle et al. (2022), approximately 86% of the participants recognized learning from a second party as a significant component of their development. Additionally, some participants in the study reported that formal programs involving the placement of new hires with mentors contributed to their growth. Froehle et al. (2022) highlighted peer mentorship and experience as primary learning methods; they emphasize team learning and general teamwork. According to Graham Guest (2006), the trends show that conventional management, training, and other mechanistic techniques are being replaced by mentoring and coaching that is based on dialogue as opposed to instruction. The individualistic nature of the strategy is among the most significant merits of coaching and mentoring.

October 20-23, 2023

Discussion

Lifelong learning is a never-ending process of continuous learning of skills and knowledge throughout one's life. The emphasis has evolved to continuous education as opposed to the use of educational background as a metric of measuring the capacity of an individual in terms of their proficiency. Many elements of lifelong learning highlight the significance of continuous professional development in a knowledge economy through vocational and educational organizations (Naimpally, Ramachandran & Smith, 2011).

the paradigm changes in learning about engineering from conventional educational methods to more practical methods are necessary to prepare learners for the changing demands of the engineering profession (Lenschow, 1998). Unfortunately, informal learning patterns revealed an inverse relationship between an engineer's level of education and the probability of participating in informal learning activities (Andries de Grip, 2012), which indicates that individuals with higher levels of education have a lower probability of participating in informal learning. Because there is a need to fill the gap in perceived differences between educational background and informal learning, organizations should consider introducing programs that encourage every individual, regardless of their educational background, to participate in learning activities, whether formal or informal (Aerts et al., 2020; Andries de Grip, 2012; Saxe, Mahmoud & Razavinia, 2022). Additionally, formal, and informal learning and training should remain practice-oriented, relevant, and tailored according to the profession (Aerts et al., 2020; Andries de Grip, 2012). Uden & Dix (2000; 2004) suggested that organizations should consider implementing an effective learning culture to create a supportive environment that promotes selfdirected learning and on-the-job training.

Problem-based learning is among the most impactful techniques that promote and allow students to gain important personal skills. Unfortunately, greater importance is placed on understanding engineering knowledge at the expense of one's abilities and capabilities (Duffy & Bowe, 2010). However, modifications in accreditation requirements with an increased focus on personal interaction and resolving issues competencies were used. Integration of a problem-based approach will promote a deeper and independent understanding of the learning material, and learning skills such as self-management, information retrieval, proper communication, time management, and problem-solving capabilities (Vardiambasis et al., 2007; Patterson, Labun, and Eikenaar, 2016; Uden & Dix, 2014) that are crucial for lifelong learning in the engineering domain (Deveci & Nunn, 2018). Integration of a group-based approach enables the promotion of both technical and non-technical abilities improvement necessary for lifelong learning for engineers (Vardiambasis et al., 2007; Patterson, Labun, and Eikenaar, 2016; Uden & Dix, 2014).

In this regard, learning and vocational institutions should consider the implementation of an approach where the learners can operate both individually and in groups to solve multifaceted flexible problems with content that is specific to the engineering field. Additionally, they should invest in the development of non-technical skills of their employees or students as much as they do for technical skills; both aspects are equally significant.

Institutions can demonstrate their commitment to lifelong learning by integrating it into their internal and external departmental reviews and accreditation procedures (Bowman, 1997). This can help to ensure that the institutions remain up to date with the most recent research in the area and can provide its pupils with the most comprehensive instruction feasible (Bowman, 1997). Institutions can offer courses tailored for engineers who have graduated more than ten years ago or those who are transitioning into a new career (Bowman, 1997). These courses should focus on senior undergraduate topics in areas experiencing rapid technological changes (Bowman, 1997). This approach can help to update the skills and knowledge of practicing engineers and ensure that they are equipped with the latest tools and techniques in their field (Bowman, 1997).

Self-reflection and self-regulation are important skills required regarding architects' ongoing education (El Mawas et al., 2017) as these skills enable them to identify their traits, whether in terms of technical or non-technical skills that require improvement, allowing them to take the necessary steps to acquire the required expertise (Aerts et al., 2020). The gap identified by Andries de Grip (2012) where female engineers spend a limited amount of time on self-teaching in comparison to their male counterparts should be filled by developing programs that encourage all engineers, especially women and those in lower management levels, to take part in self-directed learning activities.

According to Graham Guest (2006) encompasses the most recent findings in the field and can give its students the most in-depth education possible (Bowman, 1997). The future will be characterized by self-directed learning to support individuality and independence during the continuous professional development process. Therefore, self-directed learning should be implemented in learning and vocational institutions to promote individuality in self-assessment and self-regulation.

It is crucial for practicing engineers to enhance certain essential skills such as delivering presentations, writing reports and memos, managing projects, and budgeting, as well as interpersonal communication (Martínez-Mediano & Lord, 2012). Studying scientific publications is an effective way to stay current on market developments. Collaborating with colleagues who share similar interests can also aid in professional development (Martínez-Mediano & Lord, 2012). When working in a team, all members can pool their strengths to accomplish the team's objectives, identify and solve issues, enhance their work, and foster innovation, resulting in valuable synergies (Martínez-Mediano & Lord, 2012).

Many consulting and management firms may offer in-house training programs, but most of the learning comes from participating in various initiatives with a range of clients (Bowman, 1997). Nevertheless, scientists who work for themselves or small companies frequently lack access to these programs, and their education is mostly restricted to on-the-job training with customers. As a result, all engineers must have an organized framework for ongoing development that could involve accredited colleges and universities to augment their on-the-job training (Bowman, 1997).

Professional licensing bodies should establish practical approaches and practices that support the lifelong

learning process for their members. To do this, they should develop and monitor guidelines that facilitate ongoing education and training (Bowman, 1997). Maintaining documentation that demonstrates designers' ongoing ability, particularly proof of attendance at official programs and acknowledgment of accomplishments in the industry, constitutes a best practice (Bowman, 1997). This can help ensure that engineers remain up to date with the latest developments and maintain their expertise throughout their careers. Establishing continuous education requirements for architects who hold managerial roles, especially those having monetary, monetary, and staffing duties, was another excellent practice (Bowman, 1997). Such guidelines can help ensure that engineers in leadership roles remain competent and able to make informed decisions that benefit their organizations and the wider profession (Bowman, 1997).

Lifelong learning is imperative for the continuous professional development of engineers. The principal obligation for professional development must ultimately rest with the specific engineer (Martinez-Mediano & Lord, 2012). Engineers have a responsibility to establish their occupational paths and ensure their technical and non-technical competencies develop to meet the challenges faced in their profession. The current literature review proposed the implementation of numerous approaches to promote lifelong learning for engineers including mentoring and coaching, group-based approach, self-directed learning, group-based learning, and formal and informal learning and training. Education and vocational institutions as well as workplaces should consider implementing these strategies.

Conclusions

Our database search identified 5342 hits of which 28 articles met the predefined eligibility criteria. Most of the hits were from the United Kingdom, USA, and Europe, as well as a substantial number from India, and more articles were retrieved from Google Scholar and ScienceDirect than Scopus. Statistical and descriptive analyses formed a major proportion of the total, which resulted in the identification of five themes - instructional methods such as mentoring and guidance, both conventional and unconventional learning, and team-based strategies. Our thematic analysis found a shift in focus towards more informal learning owing to the development of technology and the fact that in many cases, formal learning is not sufficiently tailored toward existing practical needs.

Both formal and informal learning and training are significant and should be promoted, especially in workplaces. Further, educational institutions, as well as workplaces, should consider integrating more problembased approaches and processes to promote lifelong learning. In addition, self-directed learning is inevitable and should be integrated into learning institutions as well as in employment training to promote lifelong learning for engineers. Also, well, a group-based approach confers independence and equips the trainee or worker with the personal and technical skills required in the market. Lastly, conventional management, training, and other mechanistic techniques are being replaced by mentoring and coaching that are based on dialogue as opposed to instructions delivered in a one-way fashion. Our findings will provide a fillip to justify the need for continuous professional development of engineers.

Limitations

The number of studies included in the current literature review was a significant limitation. The inclusion criteria may have been too restrictive, leading to the exclusion of studies that may have been useful for the current thematic analysis. For instance, the time restraint and language limitation may have resulted in the exclusion of studies that would have been impactful for the current literature review. In some cases, there was incoherence in the available themes resulting in their exclusion from the thematic analysis.

Future research works based on lifelong learning for engineers should aim to overcome the limitations identified in this research and study detailed into key themes. A more thorough understanding will be ensured by extending inclusion criteria to cover a more expanded geographical and language range of studies. Comprehensive investigations into specific subjects like mentoring, problem-based learning, and the importance of self-directed learning should also be addressed using a variety of research approaches. Research ought to study the impact of new digital tools on engineering education as technology develops, and long-term studies should assess how the integration of lifelong learning concepts affects engineers' professional growth and career paths.

Implications

Particularly in organizations, only a few organizations support professionals' continuous education. Patterns discovered through the present thematic assessment brought to light shortcomings in the application of plans to support engineers' lifelong learning. The knowledge gained from the topical examination may help with the creation of strategies to support professional growth on an ongoing basis.

Author Contributions

The only relevant assignment selection, assessment, examination, data as well as details extraction process, analysis of themes, as well as data synthesis activities in which the author engaged fully, were those. The final draught was examined and authorized by the person who wrote it.

References

Aerts, C. (2020). Lifelong learning for engineers–Tackling the hurdles. University-Industry Innovation Network Connect.

Berzina, K. a. (2019). Promoting of lifelong learning in engineering. IEEE, 1--4.

Bowman, C. (1997). Lifelong learning for professional engineers. Engineering Issues, 1--2.

Das, A. K. (2011). Emergence of open educational resources (OER) in India and its impact on lifelong learning. *Library Hi Tech News*.

- de Grip, A. a. (2012). What affects the lifelong learning of scientists and engineers? *International Journal of Manpower*, 583--597.
- Deveci, T. a. (2018). Intrapersonal communication as a lifelong learning skill in engineering education. *Journal* of Higher Education, 68--77.
- Dix, A. a. (2000). Lifelong Learning for Software Engineers.
- Duffy, G. a. (n.d.). A strategy for the development of lifelong learning and personal skills throughout an undergraduate engineering programme. In 2010 IEEE Transforming Engineering Education: Creating Interdisciplinary Skills for Complex Global Environments (pp. 1--14). IEEE.
- El Mawas, N. a.-M.-A.-M.-F. (2017). Towards a self-regulated learning in a lifelong learning perspective. In CSEDU 2017: 9th International Conference on Computer Supported Education-Special Session Lifelong Learning (pp. 661--670).
- Evans, G. J. (2018). Windmills of your mind: metacognition and lifelong learning. *Proceedings of the Canadian Engineering Education Association (CEEA)*.
- Froehle, K. a. (2022). Understanding Lifelong Learning and Skills Development: Lessons Learned from Practicing Civil Engineers. *Journal of Civil Engineering Education*, 04022007.
- Goldberg, J. a. (2004). Integrating Information Literacy Skills With Engineering Course Content For Lifelong Learning.
- Guest, G. (2006). Lifelong learning for engineers: a global perspective. *European Journal of Engineering Education*, 273--281.
- Integrating Information Literacy Skills With Engineering Course Content For Lifelong Learning. (2004). In 2004 Annual Conference (pp. 9--761).
- Latinopoulos, P. (2005). Lifelong learning for civil engineers in Europe: An overview. In 5th AECEF Symposium on Civil Engineering in the Next Decade (ASCEND) Espoo Finland: Strategies for education, research, innovation and practice. Aristotle University of Thessaloniki, Greece.
- Lenschow, R. J. (1998). From teaching to learning: A paradigm shift in engineering education and lifelong learning. *European Journal of Engineering Education*, 155--161.
- Litzinger, T. a. (2001). Assessing readiness for lifelong learning. In 2001 Annual Conference (pp. 6--211).
- Marra, R. M. (1999). Lifelong learning: A preliminary look at the literature in view of EC 2000. In FIE'99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011) (pp. 11A1--7). IEEE.
- Martínez-Mediano, C. a. (2012). Lifelong learning program for engineering students. In *Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON)* (pp. 1--6). IEEE.
- Naimpally, A. a. (2011). Lifelong learning for engineers and scientists in the information age. Elsevier.
- Naimpally, A. a. (2011). Lifelong learning for engineers and scientists in the information age. Elsevier.
- Nimmi, P. a. (2021). Channelling employability perceptions through lifelong learning: An empirical investigation. *Education+ Training*, 763--776.
- Parkinson, A. (1999). Developing the attribute of lifelong learning. In FIE'99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering

October 20-23, 2023 Antalya, TURKEY

www.icses.net

Education. Conference Proceedings (IEEE Cat. No. 99CH37011 (pp. 11A1--16). IEEE.

- Patterson, L. a. (2016). Teaching and assessing "Lifelong Learning" in Engineering Communication Courses. *Proceedings of the Canadian Engineering Education Association (CEEA)*.
- Peat*, M. a. (2005). Re-engineering of undergraduate science curricula to emphasise development of lifelong learning skills. *Innovations in Education and Teaching International*, 135--146.
- Porter Jr, J. B. (2012). *Lifelong learning imperative in engineering: Sustaining American competitiveness in the 21st Century*. National Academies Press.
- Sabri, O. a. (2022). A structured literature review on construction conflict prevention and resolution: A modified approach for engineering. *Organization, Technology and Management in Construction: an International Journal*, 2616--2630.
- Saxe, A. a. (2022). A Systems Theory Framework for Embedding Lifelong Learning Holistically in Undergraduate Engineering Education. Proceedings of the Canadian Engineering Education Association (CEEA).
- Skrentny, J. D. (2022). Beyond the "STEM pipeline": Expertise, careers, and lifelong learning. Minerva, 1--28.
- Stolk, J. D. (2015). Can disciplinary integration promote students' lifelong learning attitudes and skills in project-based engineering courses. *International Journal of Engineering Education*, 434--449.
- Uden, L. a. (2004). Lifelong learning for software engineers. *International Journal of Continuing Engineering Education and Life Long Learning*, 101--110.
- Witt, E. a. (2012). Lifelong learners in engineering education--students' perspectives. *International Journal of Education and Information Technologies*, 9--16.

www.icses.net

October 20-23, 2023

Antalya, TURKEY

Appendix.

Author	Year	Purpose	Methodology	Country	Outcomes
Graham Guest	2006	Think about what	Content Analysis	United Kingdom	Coaching and
		the 21st century			mentoring, which
		has in store for			emphasize
		continuing			individual
		education and			professionals and
		professional			include
		growth and			communication
		include some			rather than teaching,
		relevant topics			are replacing
		like coaching and			training,
		mentorship.			management, and
					other "mechanistic"
					techniques.
Andries de Grip	2012	To add to the	Tobit analyses of	Netherlands	S&Es working for
		conversation of	survey data		companies that use
		what factors			innovative
		influence			production methods
		scientists' and			are more likely to
		engineers' training			take part in formal
		participation and			training programs
		informal learning			and profit from the
		(S&Es)			opportunity for on-
					the-job learning. In
					companies with lots
					of product
					breakthroughs,
					lifelong learning is
					not stimulated.
					S&Es work less
					frequently in formal
					training programs
					when they are
					engaged by
					companies in very

Table A1. Data Extraction

www.icses.net

October 20-23, 2023

Antalya, TURKEY

Author	Year	Purpose	Methodology	Country	Outcomes
					competitive
					industries. By
					analyzing employee
					characteristics, and
					job and business
					characteristics, the
					paper contributes to
					a reservoir of
					information on the
					elements impacting
					the growth of human
					resources, together
					with educational
					institutions and
					other types of
					informal education.
Froehle K. et al.	2022	Examine lifelong	Thematic analysis	United States	Understanding from
		learning in	of interview		knowledge,
		engineering!	transcripts		acquiring knowledge
		Workplaces.			through coaches,
					and gaining
					knowledge through
					asking inquiries are
					all essential.
Aerts et al.	2020	Find the ideal	Qualitative	Belgium	As LLL is often
		learning	Analysis		spread around the
		environment for			curriculum and not
		professionals and			directly named as
		competencies that			such, its presence
		must be trained.			may be lost on some
					students.
Uden & Dix	2000	Examine the	Module analysis	United Kingdom	PBL may be used to
		benefits of			develop abilities for
		problem-based			lifelong learning.
		learning for			
		learning (PBL)			
Duffy & Bowe	2010	The results in all	Group-based	Ireland	A project-based,

www.icses.net

October 20-23, 2023 Antalya, TURKEY

KEY w

Author	Year	Purpose	Methodology	Country	Outcomes
		the featured	project analysis		collaborative
		research			educational
		emphasized the			approach should be
		suggested			implemented to
		remedies for			promote lifelong
		professionals'			learning.
		continuous			
		education.			
Vardiambasis et	2007	To determine the	Survey Analysis	Greece	To support the
al.		requirement for			industry's
		Greek engineers			requirement to
		to continue their			sustain high research
		education			and innovation
					potential, summer
					courses in "hot"
					engineering
					disciplines are
					organized using a
					more research-
					oriented approach.
Patterson, Labun,	2016	Examine how the	Content Analysis	United Kingdom	Given the relatively
and Eikenaar		CEAB graduate			limited enrolment in
		qualities of			such courses, co-
		"Lifelong			curricular programs
		Learning" can be			like I2E and
		provided with			communication
		instruction and			courses like SOE's
		evaluation in the			APSC 176 and 201
		APSC 176 and			offer chances for
		APSC 201			major effect among
		communication			undergraduate
		courses, both of			engineering
		which are part of			students.
		an engineering			Additionally,
		program at the			communication
		UBC Faculty of			training and practice
		Medicine.			serve as models for

www.icses.net

October 20-23, 2023

Antalya, TURKEY

www.istes.org

Author	Year	Purpose	Methodology	Country	Outcomes
		Investigate the			the continual and
		following stages			self-directed nature
		in creating			of lifelong learning.
		relevant criteria			
		for judging if			
		these courses			
		successfully			
		satisfy this			
		accreditation			
		requirement.			
Lords and	2012	to emphasize the	Program Analysis	Spain	An engineering-
Martinez-		value of			specific program for
Mediano		continuous			the ongoing
		education and			development of
		competencies			skills is described in
		required in the			the paper. This
		engineering field.			program is made to
					assist professionals
					in maintaining their
					understanding and
					abilities to stay
					relevant in their
					industry. The
					program focuses on
					five key
					competencies:
					critical thinking and
					problem-solving,
					communication,
					teamwork,
					leadership, and
					lifelong learning.
Uden & Dix	2000	To evaluate case	Program Analysis	United Kingdom	Students are being
		studies of how			forced to use more
		PBL might be			autonomous and
		used to obtain			learner-centered
		lifetime learning			strategies because of

www.icses.net

October 20-23, 2023

Antalya, TURKEY

Author	Year	Purpose	Methodology	Country	Outcomes
		skills			the decreasing
					resources available
					in higher education.
					After running the
					instructional
					software design
					program for two
					years, studies
					showed that students
					who took it
					improved
					academically and
					could apply what
					they learned to other
					courses and jobs.
Latinopoulos	2005	To examine the	Review	Europe	All higher education
		present state of			institutions should
		lifelong learning			prioritize lifelong
		practices for civil			learning as they
		engineers in			adjust their strategic
		Europe,			objectives to
		considering the			encourage a larger
		historical			and more effective
		evolution of			involvement in these
		general European			activities.
		policies, particular			
		aims and target			
		audiences,			
		providers, and			
		forms of			
		provision, as well			
		as teaching and			
		learning			
		methodologies.			
Skrentny &	2022	To statistically	Survey Analysis	United States	The findings as a
Lewis		evaluate each			whole provide
		factor related to			broader perspectives

www.icses.net

October 20-23, 2023

Antalya, TURKEY

Author	Year	Purpose	Methodology	Country	Outcomes
		the pipeline			on STEM education
		character of			and employment and
		STEM education			add to research on
		using data from			the diversity and
		the National			workforce
		Assessment of			transitions in the
		University			sciences and
		Students.			engineering.
Lenschow	1998	To provide	Content Analysis	Not Specific	In industry, project-
		information about			based learning is
		fresh measures			growing, but more
		implemented to			slowly in colleges
		support utilizing			and institutions.
		technology for			
		information and			
		communication			
		enabling project-			
		based learning in			
		both small- and			
		large-scale			
		initiatives.			
Peat, Taylor &	2005	To assess the	Content Analysis	Norway	When PBL is used
Franklin		significance of			effectively in the
		project-based			correct courses,
		learning			students learn more
					and become more
					competent,
					combining an
					appropriate mindset,
					ability, expertise,
					and skills is referred
					to as competency.
Saxe, Mahmoud	2022	A complete	Systems Theory	Canada	Self-directed
& Razavinia		structure for	Framework		learning promotes
		continuing			lifelong learning.
		education in			Evaluation of the
		undergrad design			issue, research,

lifelong learning.

www.icses.net

October 20-23, 2023

Antalya, TURKEY

Methodology Purpose Country Author Year Outcomes programs will be creation, and described. application of technical instruments professionalism are all traits and skills that require constant amelioration throughout one's career. Lifelong learning transcends all graduate attributes because it is imperative for each of their development and improvement. Parkinson, A 1999 Discuss how Descriptive United States The strategy being attributes required Analysis used is based on for lifelong several fundamental learning can be principles, including developed setting clear expectations, expecting students to be accountable for their learning while enrolled in school, providing opportunities for learning outside of the classroom, motivating students, and teaching them how to learn. Porter, Patil, & 2012 Analyze the Descriptive Not Specific Lifelong learning is Dutta significance of Analysis significant for

lifelong learning

www.icses.net

October 20-23, 2023

Antalya, TURKEY

www.istes.org

Author	Year	Purpose	Methodology	Country	Outcomes
		for engineers.			
Marra, R. M.,	1999	Discuss ideas for	Numerical	United States	Engineers should be
Camplese, K. Z.,		evaluating	Analysis		taught to learn
& Litzinger		students' lifetime			independently in
		learning while			preparation for
		summarizing the			lifelong learning.
		findings of the			
		first literature			
		research on the			
		topic as it relates			
		to engineering			
		education.			
Deveci & Nunn	2018	Give an example	Content Analysis	United States	Within a
		of how			constructivist
		engineering			learning framework,
		education uses			reflective writing,
		intrapersonal			visualization, and
		communication as			progress reporting
		a lifetime learning			can encourage
		ability.			intrapersonal
					dialogue and
					experiential
					learning,
					empowering
					students to take on
					the responsibilities
					of lifelong learning.
Berzina et al.	2019	Additionally,	Content Analysis	United Kingdom	Programs can be
		there is a brand-			applied to help
		new continuing			engineers in lifelong
		education program			learning.
		in substances,			
		layout, and			
		function for			
		electrical and			
		optical devices			
		that is currently			

www.icses.net

October 20-23, 2023 Antalya, TURKEY www.istes.org

Author	Year	Purpose	Methodology	Country	Outcomes
		underway at the			
		National			
		Excellence Centre			
		for Lifelong			
		Learning in			
		Electrical			
		Engineering at			
		RTU.			
Stolk & Martello	2015	If disciplinary	Statistical	Not Specified	All engineering
		integration fosters	Analysis		students, particularly
		students' attitudes			female students, can
		and abilities for			benefit from
		lifelong learning			developing a feeling
		in project-based			of social relatedness
		engineering			that fosters greater
		courses.			learning by placing
					human context at the
					core of technical
					instruction.
El Mawas et al.	2017	To emphasize the	Numerical	Not Specific	From a lifetime
		value of self-	Analysis		learning viewpoint,
		controlled			the investigation
		learning for			provided an
		lifelong learning.			autonomous method
					of learning that
					incorporated
					technological,
					working, and
					aesthetic
					components.
Litzinger et al.	2001	To concentrate on	Statistical	United States	Although the need
		assessing students'	Analysis		for faculty and
		capacity for self-			curricula to educate
		directed learning			students for
		and making some			continuous learning
		early steps to			is recent, the
		improve the			engineering

www.icses.net

October 20-23, 2023

Antalya, TURKEY

Purpose Methodology Author Year Country Outcomes course to help profession places students grow in importance on lifelong learning, this capacity. particularly continuing education. Independent instruction is essential for continuous development. Witt, E., & Lill 2012 To explain the Statistical Estonia The results indicated research of learner Analysis a wide range in views on lifelong learners' perceptions learning and of what constitutes Estonia's skill present and future needs for the industrial construction requirements, a lack of satisfaction with sector. how well HEIs are meeting those needs, and a reluctance to adopt the required position of lifelong learner-all of which pose challenges to the model. Das, A. K. 2011 Statistical India To assess The study provided critically the way Analysis examples of OER's open learning role in democratizing material (OER) activities have venues for lifelong evolved in India, learning, which with a focus on ultimately aid in how the OER skill development. movement

www.icses.net

October 20-23, 2023 Antalya, TURKEY

Author	Year	Purpose	Methodology	Country	Outcomes
		evolved from an			
		open access			
		revolution			
		against the			
		background			
		of growth based			
		on the information			
		economy.			
Williams,	2004	To demonstrate	Statistical	United States	Developing
Blowers &		how fostering	Analysis		information literacy
Goldberg		information			skills is significant
		literacy in			for lifelong learning.
		students will			
		enable them to			
		exercise greater			
		control over their			
		education, inside			
		as well as outside			
		of the classroom.			
Evans G.J.	2018	To promote the	Descriptive	Canada	There are simple
		explicit teaching	Analysis		ways to include
		of metacognition			metacognition
		as a means of			education into
		promoting lifelong			current
		learning and self-			undergraduate
		directed learning.			engineering courses,
					which might have a
					significant positive
					impact on students.
Nimmi,	2021	to find out if	Numerical	India	The results support
Zakkariya, &		continuous	Analysis		lifelong learning's
Rahul		education makes			position as a
		human resources			mediator in the
		more valuable			relationship Because
		when assessing			they reveal an
		the likelihood of			advantageous
		employment.			connection between

www.icses.net

October 20-23, 2023 Antalya, TURKEY

Author	Year	Purpose	Methodology	Country	Outcomes
					human resources and one's perceived employment.
Bowman	1997	To determine the key issues faced by engineers during lifelong learning.	Content Analysis	N/A	Career success requires the maintenance of competence.