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1  |   INTRODUCTION

Whole-number arithmetic is a main focus of the mathemat-
ics curriculum in the early years of elementary education, 
and appropriate learning experiences in these grades im-
prove students' chances for later success (National Research 
Council, 2001). Recent reform efforts in mathematics educa-
tion attempt to create space for students to use problem-solv-
ing strategies efficiently, creatively, and flexibly (National 
Council of Teachers of Mathematics (NCTM), 1989; 2000; 
National Governors Association Center for Best Practices and 
Council of Chief State School Officers (NGA and CCSSO), 
2010; Peters et al., 2013).

Some scholars have argued that when students are encour-
aged to invent their own strategies for solving addition and 
subtraction problems, they develop better understandings of 

related mathematics concepts and perform better on tests of 
their mathematical abilities than those who use standard al-
gorithms (Carpenter et. al, 1998; Kamii & Dominic, 1998). 
Cobb and Wheatley (1988) reported that many students who 
correctly carry out standard algorithms procedurally do not 
understand the reasons for the procedures or the underlying 
concepts. Nevertheless, many students continue to be intro-
duced to the standard algorithms for addition and subtraction 
by the time they are in second grade (Sahin, 2015).

Some researchers have claimed that the strategies stu-
dents use to solve mathematics problems can be influenced 
by the class environment in which they learn mathemat-
ics (Cobb et  al.,  1992; Torbeyns et al., 2009; Yackel & 
Cobb, 1996). Students who receive mathematics instruc-
tion focused on application of one particular strategy are 
likely to use this strategy to solve mathematical tasks. 
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Moreover, those who receive mathematics instruction 
focused on the development of various student-invented 
strategies from the start of their mathematics instruction 
tend to exhibit more variation in formal and informal strat-
egies used while solving mathematics problems (Torbeyns 
et al., 2009).

The purpose of the present study was to perform an empir-
ical study of the extent to which second-grade students used 
various strategies for solving multidigit computation problems 
and to investigate the association between students' strategy 
use and their performance on mathematics achievement tests. 
We focused on second grade in this study, because whole-num-
ber addition and subtraction are strongly emphasized in the 
second-grade curriculum, and we know that many students 
have been introduced to the standard algorithm by this time. 
Extant studies comparing students' use of invented strategies 
and standard algorithms have been mostly small in scale and 
qualitative or descriptive in nature. In this study, we used em-
pirical data to investigate students' strategy use for multidigit 
addition and subtraction and their mathematics achievement 
at a much larger scale than previous studies have done. The 
present study was guided by the following research questions.

1.	 What strategies do second-grade students use to solve 
multidigit addition and subtraction problems?

2.	 To what extent are the problem-solving strategies used by 
second-grade students associated with their performance 
on mathematics tests?

2  |   LITERATURE REVIEW

Extensive research has been conducted regarding student-
invented strategies for solving multidigit addition and sub-
traction problems (Blöte et al., 2001; Carpenter et al., 2015; 
Fuson et al., 1997; Hiebert & Wearne, 1993; Torbeyns et al., 
2006). These studies have identified a variety of invented 
strategies children use to solve multidigit addition and sub-
traction problems. Fuson et al. (1997) classified six types of 
student-invented strategies: (a) “the decompose-tens and-
ones method: add or subtract everywhere and then regroup”; 
(b) “the decompose-tens and-ones method: regroup then add 
or subtract everywhere”; (c) “the decompose-tens and-ones 
method: alternate adding or subtracting and regrouping”; (d) 
“the begin-with-one-number method: begin with one and 
move up or down by tens and ones”; (e) “mixed methods: 
add or subtract tens, make sequence number with original 
ones, add or subtract other ones”; and (f) “the change both 
numbers methods” (pp. 147–148). Carpenter et  al.  (2015) 
identified three types of invented strategies: incrementing, 
combining the same units, and compensating. These three 
categories combine several categories that are presented 
separately by Fuson et al.  (1997). Table 1 summarizes and 

gives examples of the three types of invented strategies de-
scribed by Carpenter et  al.  (2015), including explanations 
from Fuson et al. (1997).

Although student-invented strategies are applicable to spe-
cific numbers and not necessarily generalizable, Carpenter 
et al. (2015) argue that they tend to reflect an intuitive or in-
formal understanding of the underlying laws or properties of 
operations and equality. Invented strategies involve students 
making deliberate decisions about how to solve computation 
problems. Students' use of these invented strategies may in-
dicate that they understand that numbers can be decomposed 
and recomposed in different ways, and that they can per-
form operations on multidigit numbers with understanding 
(Hiebert & Carpenter, 1992; Kamii & Livingston, 1994).

Besides invented strategies, students also learn standard 
algorithms to solve multidigit addition and subtraction prob-
lems. “An algorithm is a step-by-step process that guarantees 
the correct solution to a given problem, provided the steps 
are executed correctly” (Barnett, 1998, p. 69). Standard al-
gorithms differ from student-invented strategies. Students 
are not likely to invent the steps involved with standard algo-
rithms on their own. Therefore, we can assume students who 
use these strategies were instructed in the steps to execute 
the algorithm(s). Standard algorithms are useful, because 
they are highly generalizable and can be accurate and effi-
cient, but their basis in the properties of number, operations, 
and equality are less obvious than many of the strategies stu-
dents invent. This latter point is why we categorize them as 
instructed, not invented. Success or failure in carrying out an 
instructed algorithm yields more insight into whether a stu-
dent knows how to carry out the procedures in the algorithm 
and less insight into his or her understanding of the underly-
ing properties of numbers, operations, or equality.

Historically, the application of standard algorithms has 
been a primary emphasis in the mathematics curriculum at the 
elementary and secondary levels (Mingus & Grassl, 1998). 
The Common Core State Standards for Mathematics 
(CCSSM), however, emphasize the use of strategies that are 
based on place value and properties of operations in first 
and second grade, and strategies and algorithms based on 
place value and properties of operations in third grade. The 
CCSSM specify that students should “fluently add and sub-
tract multidigit whole numbers using the standard algorithm” 
in fourth grade (NGA & CCSSO, 2010, p. 29).

2.1  |  Theoretical framework

Murray and Olivier (1989) formulated a theoretical frame-
work that describes four levels of children's understanding of 
two-digit numbers, which is summarized in Table 2.

They asserted that level-three understanding provides 
children with the conceptual basis to use invented strategies 
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Strategies 28 + 25 = □ 53 − 28 = □ 28 + □ = 53

Incrementing Count on/add on tens, then ones Count down/subtract tens, then ones Count on/add up tens, then ones

28, 38, 48, 49, 50, 51, 52, 53 53, 43, 33, 32, 31, 30, 29, 28, 27, 26, 
25

28, 38, 48, 49, 50,51, 52, 53:25 added

28 + 20 → 48 + 5 → 53 53 − 20 → 33 − 8 → 25 28 + 20 → 48 + 5 → 53:25 added

Count on/add on to make a 10, count 
on/add on tens, then the rest of ones

Count down/subtract to make a 10, 
count down/subtract tens, then the 
rest of the ones

Count up/add up to make a 10, count up/
add up tens, then the rest of ones

28, 29, 30, 40, 50, 51, 52, 53 53, 52, 51, 50, 40, 30, 29, 28, 27, 26, 
25

28, 29, 30, 40, 50, 51, 52, 53:25 added

28 + 2 → 30 + 20 → 50 + 3→ 53 53 − 3 → 50 − 20 → 30 − 5 → 25 28 + 2 → 30 + 20 → 50 + 3 → 53:25 
added

Count on/add on tens, add on ones, 
count on/add on other ones

Count down/subtract tens, add original 
ones, count down/subtract other ones

Count up/add up tens, add original ones, 
count up/add up other ones

20, 30, 40, 48, 49, 50, 51, 52, 53 50, 40, 30, 33, 32, 31, 30, 29, 28,27, 
26, 25

20, 30, 40, 48, 59, 50, 51, 52, 53:25 
added

20 + 20 → 40 + 8 → 48 + 5 → 53 50 − 20 → 30 + 3 → 33 − 8 → 25 20 + 20 → 40 + 8 → 48 + 5 → 53:25 
added

Combining the 
Same Units

Add tens, add ones, combine tens 
and ones

Subtract tens, subtract ones, combine 
totals

**

20 + 20 = 40, 8 + 5 = 13, 40 + 13 
= 53

50 − 20 = 30, 3 − 8 = −5, 30 
− 5 = 25

Add ones, add tens, combine tens 
and ones

Subtract ones, subtract tens, combine 
totals

8 + 5 = 13, 20 + 20 = 40, 13 + 40 
= 53

3 − 8 = −5, 50 − 20 = 30, 30 
− 5 = 25

**

Compensation Overshoot and come back Overshoot and come back If it were 30, 30 + 23 would be 53, but 
it is 28, so add 2 more to 23, it would 
be 25

30 + 25 would be 55. 55 − 2 would 
be 53

53 − 30 would be 23, 23 + 2 would 
be 25

Make initial number a tens number, 
change other to maintain difference

Move some from one number to the 
other to make a tens number

Make subtracted number a tens 
number, change other to maintain the 
difference

28 + □ = 53 is the same as 30 + □ = 
55,

28 + 2 → 30, 25 − 2 → 23, 30 + 23 
→ 53

53 − 28 = 55 − 30 = 25 so □ = 25

Note: Adapted from “Children's Conceptual Structures for Multidigit Numbers and Methods of Multidigit Addition and Subtraction,” by K. Fuson, D. Wearne, 
J.C. Hiebert, H. G. Murray, P. G. Human, A.I. Olivier, T. P. Carpenter, E. Fennema, 28, pp. 147–148. Copyright 1997 by The National Council of Teachers of 
Mathematics, Inc.

T A B L E  1   Examples of student-invented strategies

Levels of understanding of two-digit numbers Description

One A child can count a number of objects and has the knowledge of the number names and 
their associated numerals, however does not assign meaning to the individual digits

Two A child can conceptualize a given number as an abstract unit item with a meaning and 
does not need physical referents

Three A child can see two-digit numbers as composite units of decades and ones

Four A child can see two-digit numbers as groups of tens and some ones

T A B L E  2   Description of children's levels of understanding of two-digit numbers
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and level-four understanding facilitates a progressive short-
ening and abstraction of those strategies. They suggested that 
level-four understanding is a prerequisite to execute a stan-
dard algorithm meaningfully. They argued that when children 
performing at level-one and level-two have difficulty in com-
putation with larger numbers, teachers tend to “help” them 
by introducing the standard algorithm. Murray and Olivier 
(1989) further claimed that even if the teachers try to build a 
conceptual basis for the algorithms, such efforts would be ill-
fated if levels two and three are bypassed in the development 
of children's mathematical understanding. They concluded 
that facility in executing the algorithm could hide serious de-
ficiencies in children's understanding.

The framework developed by Fuson et  al.  (1997) pro-
vides a sequential development of students' understanding 
of multidigit English number words (such as 54) and written 
number marks (54). The framework consists of five levels 
of conceptual structures of two-digit numbers that students 
acquire. These conceptual structures are: (a) Unitary, (b) 
Decade and ones, (c) Sequence tens and ones, (d) Separate 
tens and ones, and (e) Integrated sequence-separate tens 
and ones.

In the unitary level, students are not able to differentiate 
quantities into groupings, and number words and number 
marks into parts. According to a student at this level, the 1 
in 18 is not related to the teen in 18, and 18 is not separable 
into 10 and 8. The decade and ones level requires students to 
be able to separate the decade and the ones parts of a number 
word and begin to relate each part to which the quantity re-
fers. A student at this level understand that in 53 50 refers to 
50 objects and three to three objects.

The sequence-tens and ones level requires children to con-
struct a 10-structured version of the decade and ones concep-
tion. At this level, children are able to count by tens, see the 
groups of tens within a quantity, and choose to count these 
groups by tens (e.g., “ten, twenty, thirty, forty”). The sep-
arate-tens and ones conception requires children to see the 
quantity as separate tens and ones. In this stage, students are 
able to see and count the groups rather than the objects in the 
groups (e.g., “one ten, two tens, three tens, four tens”).

The integrated sequence-separate tens and ones level re-
quires constructing both the sequence tens and ones and sep-
arate tens and ones conception and being able to use them 
interchangeably based on the problem structures. A child at 
this level is able to recognize immediately that 60 has six tens 
without counting by tens to 60 with keeping track of how 
many tens he counted or counting six tens to find out that they 
make 60.

Students' construction of these conceptual structures de-
pends on their experiences both in and out of school (Fuson 
et al., 1997). Therefore, not all students construct all the con-
ceptions (Verschaffel et al., 2007). Students' construction 
of these conceptual structures of multidigit numbers affects 

their use of different strategies for multidigit addition and 
subtraction problems (Carpenter et  al.  (2015). The current 
study was informed by these two theoretical frameworks de-
veloped for students' understanding of multidigit structures 
of the numbers.

3  |   METHODS

This study uses a cross-sectional design to investigate the 
association between second-grade students' strategy use and 
mathematics achievement. Students were nested in schools. 
Because unobserved school-level factors may exert an influ-
ence on students' strategies and performance on the math-
ematics test, we used hierarchical linear modeling (HLM) to 
account for the nested structure of the data (Gall et al., 2007).

3.1  |  Participants and data sources

The sample for the present study included 270  second-grade 
students from 22 public elementary schools located in two ad-
jacent school districts in Florida. Teachers and students in the 
22 schools were participating in a larger study investigating the 
impact of teachers' opportunities to participate in a professional 
development program based on Cognitively Guided Instruction 
(CGI) on student mathematics achievement (Schoen et al., 
2020). The present study used student data that were gathered 
in the 1st year of the larger study. About 52% of the students in 
this sample were females and 48% were males. Approximately 
38% of the students were White, 28% were Hispanic, and 14% 
were African American. The rest of the ethnicities (e.g., Asian, 
American Indian) made up approximately 10% of the sample, 
and ethnicity was not indicated for about 10% of the students 
in the sample. [Article updated on October 3, 2020 after first 
publication: This paragraph was updated to reflect the correct 
year of publication for Schoen et al.]

The data for the present study were drawn from a student 
mathematics interview named Mathematics Performance and 
Cognition (MPAC; Schoen et al., 2016), and the Iowa Test of 
Basic Skills-Math Problems test (ITBS; Hoover et al., 2001). 
The ITBS and MPAC interviews were administered in spring 
2014. This study used the ITBS test to measure mathematics 
achievement, and the MPAC interviews to determine students' 
strategy use. The MPAC interviews and ITBS tests were ad-
ministered by trained research personnel. Students were pro-
vided with base-10 blocks, snap cubes, paper, and markers 
during the interviews. They were instructed by the interview-
ers to solve the problem in any way that made sense to them. 
Thirteen percent of the interviews were coded by two indepen-
dent raters, and the percentage-agreement method was used to 
calculate the proportion of interrater agreement for the major 
strategy type, which was found to be 83% (Schoen et al., 2016).
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3.2  |  Data analysis

3.2.1  |  Describing and classifying students' 
strategy use

Seven multidigit problems (four word problems and three com-
putation problems) drawn from the MPAC interviews were 
used to describe and classify students' strategy use (see Table 5 
in the results section for problem types and number combina-
tions used in the problems). To describe the strategies students 
used for each problem we classified students' strategies as: (a) 
unitary (i.e., modeling with/counting by ones), (b) modeling 
with tens, (c) invented strategies, (d) standard algorithm, and 
(e) other strategies. A strategy was classified as “other” when it 
did not fit into any of the named categories. Student responses 
were classified in accordance with the strategy they used, re-
gardless of whether they obtained a correct answer.

Next, we used the strategies used by individual students 
for seven problems to classify individual students into one of 
four mutually exclusive and collectively exhaustive strategy 
groups to be used in the regression analyses. The strategy 
groups were named as follows: (a) standard algorithm, (b) in-
vented, (c) mixed, and (d) unclassified. Table 3 lists the strat-
egy groups and their descriptions (see Table 6 in the results 
section for descriptive statistics about the strategy groups). 
These categories are nominal and do not imply any sort of a 
priori ranking in our study.

3.2.2  |  Multilevel modeling

For inferential statistics, we used HLM 7.03 Student Version 
(Raundenbush et al., 2017) to analyze the data using two-level 

hierarchical-linear regression to determine the association 
of strategy groups with the mathematics achievement. We 
used a two-level model with students nested in schools. The 
standardized score from the ITBS-Math Problems test was 
the dependent variable, and strategy use was the independ-
ent variable. The strategy-use variable had four categories, 
so it was dummy coded. This created four variables which 
we named as standard algorithm, invented, mixed, and 
unclassified.

We ran three models to see which strategy group dif-
fered significantly from the other strategy groups. In the 
first model, the dummy variable corresponding to standard 
algorithm was the reference variable. In the second model, 
the dummy variable corresponding to invented was the ref-
erence variable. In the third model, the dummy variable 
corresponding to mixed was the reference variable. Using 
three models, we were able to compare all strategy groups 
to each other. Table 4 shows the regression equations for 
the three models.

4  |   RESULTS

Table 5 shows the percentages of strategies students used for 
each of the seven problems. As Table 5 shows, students used 
the standard algorithm most often which was followed by the 
unitary strategies, and that was followed by the invented strat-
egies. Students used modeling with tens strategy the least. 
Among all seven problems, the computation problem 201 − 
199 = ? was the most difficult for the students, with only 25% 
of the interviewed students providing a correct answer. The 
most common strategy used by the students for this problem 
was the standard algorithm. The standard algorithm-based 

Strategy group Description

Standard algorithm The student was observed to use (or attempted to use) the standard 
U.S. algorithm to add or subtract and was not observed using any 
invented strategies

Invented The student was observed using an invented strategy at least one 
time and was not observed using any standard algorithm

Mixed The student was observed using an invented strategy at least one 
time and using (or attempting to use) a standard algorithm at least 
one time

Unclassified The student was not observed using any invented strategy or 
standard algorithm

T A B L E  3   Strategy group descriptions

Models Hierarchical linear regression equation

Model 1 ITBS\_MAT= �00 +�10 ∗UNCLASSI+�20 ∗ INVENTED+�30 ∗MIXED+u0 +r

Model 2 ITBS\_MAT= �00 +�10 ∗UNCLASSI+�20 ∗ALGORITH+�30 ∗MIXED+u0 +r

Model 3 ITBS\_MAT= �00 +�10 ∗UNCLASSI+�20 ∗ALGORITH+�30 ∗ INVENTED+u0 +r

T A B L E  4   Hierarchical linear 
regression models



6  |      SAHIN et al.

solution to this problem involves two regrouping processes, 
which may have contributed to its difficulty. The standard 
algorithm-based solution to the problem 100 − 3 = ? also in-
cludes two regrouping processes for the two zero digits in the 
minuend, but this item was the easiest problem for the stu-
dents, with 81% of the interviewed students providing a cor-
rect answer. This may be due to the subtrahend being three, 
which makes it easy for students to count down by ones. As 
Table 5 shows, this counting-by-ones strategy was the most 
prevalent strategy used by the students for this problem.

We next classified the students into the standard algo-
rithm, invented, mixed, and unclassified strategy groups 
using the criteria given in Table 3. Based on the given crite-
ria, 148 students were classified into the standard algorithm 
group, 31 into the invented group, 63 into the mixed group, 
and 28 into the unclassified group.

Table  6 shows the mean and standard deviation of the 
ITBS-Math Problems scores for students in each of the 
strategy groups. The mixed strategy group had the highest 
mathematics achievement (M = 189.1, SD = 18.9). The in-
vented strategy group had the second highest (M  =  181.9, 
SD = 18.6), and the standard algorithm group had the third 
highest (M = 174.5, SD = 18.9) mathematics achievement. 
The unclassified group had the lowest mathematics achieve-
ment (M = 159.4, SD = 17.7).

We used three multilevel regression models to deter-
mine the association of strategy groups with mathematics 
achievement and provide the results of the models in Table 7. 

Students in the standard algorithm, the invented strategy, and 
the mixed strategy groups performed higher on the ITBS-
Math Problems test than the students in the unclassified group 
(ps < .001). The students in the standard algorithm group 
had lower mathematics achievement than the students in the 
invented strategy group (p = .060) and in the mixed strategy 
group (p < .001). The students in the invented strategy group 
had lower mathematics achievement than the students in the 
mixed group (p = .091), but the p value was highest for this 
latter comparison.

5  |   DISCUSSION

The CCSSM emphasizes the use of strategies based on num-
ber properties in early elementary grades, and previous re-
search reported the benefits of students using strategies of 
their own choosing/invention (Carpenter et al., 1998; Cobb 
& Wheatley, 1988; Kamii & Dominic, 1998). In our study, 
only 34% of second-grade students used an invented strategy 
at least one time during the interviews, and 78% of the stu-
dents used a standard algorithm at least once. The reason that 
a majority of students did not use an invented strategy during 
the mathematics interview could be simply because they did 
not prefer to use an invented strategy or because they had not 
yet acquired level-three or level-four understanding, which 
according to Murray and Oliver (1989) must be acquired to 
be able to use invented strategies with understanding.

The results of the current study showed that students who 
primarily used the standard algorithm had statistically sig-
nificantly lower mathematics achievement than the students 
who used a combination of invented strategies and standard 
algorithms (i.e., the mixed group). The standard algorithm 
group had lower mathematics achievement than the students 
in the invented strategy group (p = .060), and the invented 
strategy group had lower mathematics achievement than the 
students in the mixed group (p = .091). This reveals that the 
use of invented strategies is associated with higher achieve-
ment than the use of standard algorithms, and it implies that 

T A B L E  5   Problems from the mathematics interviews and students' strategies

Problem type
Number 
combination

% of Strategies used by the students

Unitary
Modeling with 
tens Invented

Standard 
algorithm Other

Word problem—join result unknown (28, 43) 14.3% 13.3% 15% 52.4% 4.9%

Word problem—join change unknown (17, 26) 45.8% 3.8% 8.4% 33.6% 8.4%

Word problem—join result unknown (49, 56) 8.4% 13.3% 15% 52.8% 10.5%

Word problem—separate change unknown (42, 36) 30.8% 2.1% 9.1% 40.9% 17.1%

Computation problem 63 − 17 = ? 29% 8% 10.8% 45.8% 5.6%

Computation problem 100 − 3 = ? 60.5% 5.6% 16.4% 7.7% 7%

Computation problem 201 − 199 = ? 11.9% 1.7% 10.5% 54.5% 19.6%

T A B L E  6   Sample means and standard deviations for ITBS math 
problems standardized score for each strategy group

Strategy group n Mean
Std. 
Deviation

Mixed 63 189.1 18.9

Invented 31 181.9 18.6

Standard algorithm 148 174.5 18.9

Unclassified 28 159.4 17.7
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encouraging students to use strategies of their own invention 
to solve problems may serve to increase their performance 
on standardized mathematics tests. This recommendation 
goes against the grain of the conventional approach to math-
ematics instruction currently in use in many second-grade 
classrooms, where students are commonly instructed on the 
application of standard algorithms in place of using strategies 
of their own invention.

The theoretical framework offered by Murray and Oliver 
(1989) may explain why the students who used a combination 
of invented strategies and standard algorithm had the highest 
mathematics achievement of the strategy groups. They sug-
gested that level-four understanding of two-digit numbers facil-
itates the shortening and abstraction of the invented strategies, 
and it is also a prerequisite to employ the standard algorithm 
meaningfully. It may be the case that students who used a com-
bination of invented strategies and standard algorithm had a 
level-four understanding of two-digit numbers, hence had a bet-
ter understanding of the standard algorithm, which yielded less 
errors in computation and higher mathematics achievement on 
the test. It could also be the case that having an understanding 
of both invented strategies and the standard algorithm provided 
more flexibility and enabled students to choose the most effi-
cient strategies for specific problems. For example, an invented 
strategy could be more efficient than the standard algorithm for 
101 − 92 (a student may say “I know 92 + 8 is 100 and then, +1 
is 101, so 101 − 92 is 9”), whereas the standard algorithm can 
be more efficient than an invented strategy (such as increment-
ing or compensation) to evaluate 198 − 47, where regrouping is 
not necessary to perform the algorithm, and counting and other 
invented strategies are not applied as easily.

6  |   LIMITATIONS

This study had some limitations that should be noted. First, 
we had a relatively low number of multidigit items that 

were used to determine students' strategy use. Second, if a 
student was not observed using a given strategy, we cannot 
infer the student was not able to use that type of strategy. 
The student might have simply decided not to use strategies 
other than the ones we observed the student using. Third, 
the study design is correlational, so the causal relations and 
the direction of their influence should not be implied. The 
current study is cross sectional, and provides insight into 
students' use of strategies in second grade, but it cannot 
provide longitudinal perspective on changes in strategy use 
or performance over time, which is worthy of exploration 
in future studies. Finally, the sample was formed by con-
venience, and an a priori power analysis was not done to 
determine the optimal sample size. This factor of the de-
sign should be considered when interpreting p values and 
point estimates. Moreover, while the statistical analyses 
may account for some of the unobserved localized effects 
in this sample, the extent to which these results would be 
replicated or would generalize to the broader population is 
not currently known.

7  |   CONCLUSION

In this study, we found that second-grade students who used 
a combination of invented strategies and standard algorithms 
had higher performance on standardized tests in mathematics 
than those who only used standard algorithms to solve multi-
digit addition and subtraction problems. This large-scale, 
empirical study provides new evidence to support theory and 
previous empirical results that have been found at a smaller 
scale reporting the benefit of children using invented strate-
gies. We recommend that future research should involve con-
ducting more interviews to determine whether students who 
use standard algorithm know and explain conceptually what 
they are doing or if they execute the steps of the algorithm 
mechanically.

T A B L E  7   Combined results of the three regression models

Reference group
Strategies compared to 
reference group Coefficients

Standard 
Error t-ratio Approx. df p value

Standard algorithm Unclassified −13.605 3.561 −3.821 245 <.001

Invented 6.497 3.433 1.893 245 .060

Mixed 12.848 2.599 4.943 245 <.001

Invented Unclassified −20.102 4.583 −4.386 245 <.001

Standard algorithm −6.497 3.433 −1.893 245 .060

Mixed 6.351 3.747 1.695 245 .091

Mixed Unclassified −26.453 3.992 −6.626 245 <.001

Standard algorithm −12.848 2.599 −4.943 245 <.001

Invented −6.351 3.747 −1.695 245 .091
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