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Abstract. Given recent evidence challenging the replicability of results in the social

and behavioral sciences, critical questions have been raised about appropriate measures for

determining replication success in comparing effect estimates across studies. At issue is the

fact that conclusions about replication success often depend on the measure used for

evaluating correspondence in results. Despite the importance of choosing an appropriate

measure, there is still no wide-spread agreement about which measures should be used.

This paper addresses these questions by describing formally the most commonly used

measures for assessing replication success, and by comparing their performance in different

contexts according to their replication probabilities – that is, the probability of obtaining

replication success given study-specific settings. The measures may be characterized

broadly as conclusion-based approaches, which assess the congruence of two independent

studies’ conclusions about the presence of an effect, and distance-based approaches, which

test for a significant difference or equivalence of two effect estimates. We also introduce a

new measure for assessing replication success called the correspondence test, which

combines a difference and equivalence test in the same framework. To help researchers plan

prospective replication efforts, we provide closed formulas for power calculations that can

be used to determine the minimum detectable effect size (and thus, sample sizes) for each

study so that a predetermined minimum replication probability can be achieved. Finally,

we use a replication dataset from the Open Science Collaboration (2015) to demonstrate

the extent to which conclusions about replication success depend on the correspondence

measure selected.

Keywords: Causal replication, equivalence test, correspondence test, power

analysis
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Introduction

The advancement of science presumes that research results are governed by a set of

stable, potentially context-specific laws that can be uncovered through repeated

experimentation or observation, resulting in reliable knowledge (Popper, 1959; Schmidt,

2009). Replication failure, however, challenges the accumulation of trusted knowledge and

the credibility of scientific results. Over the last two decades, low replication rates of

published research findings have led many to conclude that research results are fragile and

hard to replicate, prompting a “replication crisis” across the social and behavioral sciences

(e.g., Duvendack et al., 2017; Ioannidis, 2005, 2008; Klein et al., 2014; Madden et al., 1995;

Makel and Plucker, 2014; Maxwell et al., 2015; Open Science Collaboration, 2015;

Valentine et al., 2011).

But when results are compared across replication studies, when are effect estimates

sufficiently similar (or different) to conclude replication success (or failure)? Over the

years, this question has been addressed differently by researchers, with some looking at

correspondence in the direction, size, and statistical significance pattern of effects (Open

Science Collaboration, 2015; Wilde & Hollister, 2007), while others have examined results

from statistical tests of difference (Open Science Collaboration, 2015) or equivalence (Dong

& Lipsey, 2018; Wellek, 2010) of study effects. The challenge with such myriad approaches

for assessing replication success, however, is three-fold. First, the assessment of replication

success or failure from replication efforts may be ambiguous if multiple criteria for assessing

correspondence in results yield contradictory conclusions. Table 1 summarizes results from

two hypothetical studies in a replication effort. Study 1 has an effect estimate of 12 points

and is statistically significant, and Study 2 has an effect estimate of 11 points but is not

statistically significant. A researcher assessing correspondence in results would arrive at

different conclusions depending on the measure used for determining replication success. A

test of statistical difference of the two effects yields a non-significant result, leading the

researcher to conclude the replication success was achieved; however, a comparison of
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statistical significance pattern or an equivalence test of effects leads the researcher to a

different conclusion—that the replication failed.

Second, without clear consensus about appropriate correspondence measures for

determining replication success, reporting results from replication efforts may be subject to

its own form of biases. When multiple criteria yield different conclusions about replication

success—such as the example in Table 1—researchers may be tempted to report and weigh

more heavily results from criteria that demonstrate the robustness of results. Such

ambiguity for drawing conclusions about replication success provides opportunities for

researchers to engage in questionable research practices, like p-hacking, results-driven

choice of assessment criteria, or selective outcome reporting, when analyzing the data of

individual studies, assessing replication success, and reporting of the results of the

replication effort.

Finally, without well-defined and a priori chosen criteria for determining replication

success, the researcher cannot ensure that a prospectively planned replication effort has

sufficient statistical power to guarantee a minimum replication probability of, say, .8 if the

unknown true effects of the two studies were identical. This is especially important because

study-specific power requirements for determining replication success across two studies are

generally larger than what is needed for detecting an effect in a single study (Anderson &

Kelley, 2022; Bonett, 2021; Hedges & Schauer, 2018). To see the logic of why this is true,

consider two studies that have a power of .8 to detect the unknown true effect. Then, the

probability of concluding replication success from both studies, that is, obtaining either

two significant or two non-significant effect estimates, is not very high—it is

.8 × .8 + .2 × .2 = .68. Moreover, statistical power for detecting replication success and thus

sample size requirements will differ depending on which criterion is used for assessing

replication success. In the absence of prospective planning it is also unclear whether

researchers should expect high or only low probabilities of replication success, even if the

underlying true effects were identical.



ASSESSING REPLICATION SUCCESS 5

These methodological challenges in replication are especially important now given

recent federal funding initiatives from the Institute for Education Sciences (Institute of

Education Sciences, 2022), National Institutes of Health (Collins & Tabak, 2014), and

National Science Foundation (Bollen et al., 2015) to support and promote studies that

evaluate the replicability of findings. For example, a recent Request for Applications for

Systematic Replication Efforts from the Institute for Education Sciences asked researchers

to specify a plan for comparing effects to determine replication success, but did not provide

guidance on what criteria should be used, and was silent on power analyses for

demonstrating that replication success could be detected in the proposed study (Institute

of Education Sciences, 2022). Given recent developments in the replication literature that

demonstrate the lack of statistical power for comparing effects in most replication efforts

(Hedges & Schauer, 2018; Maxwell et al., 2015; McShane & Böckenholt, 2014), replications

funded by these initiatives are likely to yield ambiguous or even incorrect conclusions

unless both studies were adequately powered to yield at least a replication probability of .8

(if effects where identical) with respect to a predetermined correspondence measure.

This article addresses these concerns. We begin by formalizing common approaches

for evaluating replication success, which we describe as conclusion-based and distance-based

measures for determining correspondence in results. Conclusion-based measures examine

whether results from two studies yield the same substantive conclusion about an

intervention or policy’s effectiveness; they include examining the direction, magnitude, and

statistical significance pattern of effects from individual studies. Distance-based measures

examine how close or different two estimates are, usually using a difference estimate of two

study effects. To address sampling error, researchers may conduct tests of statistical

difference between two study-level effect estimates. But if individual studies in the

replication effort are not well-powered to detect a statistical difference in results, the

conclusion from the difference test may be ambiguous—where a null result may mean that

there is no difference in the effect estimates or it may mean that the test is underpowered
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for detecting a difference. Instead, researchers may opt to examine the statistical

equivalence between two effect estimates. But equivalence tests require careful

determination of a tolerance threshold for defining how close two estimates must be to be

considered equivalent and generally require large sample sizes for establishing equivalence

(Anderson & Kelley, 2022; Anderson & Maxwell, 2016; Bonett, 2021; Maxwell et al., 2015;

Wellek, 2010). Many more approaches for assessing replication success have been

suggested, like prediction intervals (Patil et al., 2016) or Bayesian methods (Maxwell et al.,

2015; Rindskopf et al., 2018), but in this article we restrict our discussion to frequentist

approaches that rely on null-hypothesis significance testing (NHST) in comparing the

results of two studies. We consider results from two studies only, as pairwise comparisons

of replication results have been common practice. And, we focus on correspondence

measures that involve NHST because they provide a clear decision criterion of whether the

results of two studies have been successfully replicated or failed to replicate. This does not

imply that other approaches for assessing replication success are inferior to NHST-based

criteria (they actually might be more informative). However, covering additional

approaches is beyond the scope of this article, except to note that they face similar issues

with regard to the interpretation of replication success and the determination of replication

probabilities and sample size requirements.

To address the ambiguous interpretations resulting from traditional NHST-based

criteria for determining replication success, we propose a new metric for assessing

replication success, called the correspondence test, which combines the test of difference

and equivalence in the same framework (Steiner & Wong, 2018; Tryon & Lewis, 2008). The

test has the advantage of yielding a result of statistical difference or equivalence when there

is sufficient power from each study in the replication effort but it will indicate statistical

indeterminacy when the replication effort of two independent studies is underpowered. In

this sense, the proposed correspondence test is a more severe test (Mayo, 2018) than the

difference and equivalence tests on their own because they cannot distinguish between the
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truth of the null hypothesis and lack of power.

In this article, we demonstrate the statistical properties of each correspondence

measure, highlighting the contexts and conditions under which these measures will yield

correct conclusions about replication success. To facilitate the prospective planning of

replications, we derive formulas for researchers to conduct power analyses for each

correspondence measure, demonstrating the critical design parameters that researchers

must consider in planning sufficiently powered replication efforts. Finally, through an

applied example, we consider how different criteria for replication success affect the

interpretation of results in a replication effort. To this end, we reanalyze data from the

Open Science Collaboration (2015) to demonstrate the differing conclusions that

researchers would arrive at with different choices of correspondence measures.

In our evaluation of correspondence measures, we adopt the causal perspective of

the Causal Replication Framework (Steiner et al., 2019; Wong & Steiner, 2018b) and

assume that both studies estimate the causal effect of the same treatment-control contrast

and that all causal replication assumptions are met. In particular, this implies the absence

of any confounding bias, publication bias, or any questionable research practices because

they would result not only in biased estimates of effects and standard errors, but also in

actual Type I error rates that are presumably much larger than the nominal α-level

(Ioannidis, 2005; Kerr, 1998; McShane & Böckenholt, 2014; Simmons et al., 2011).

We also restrict our discussion to pairwise comparisons of results of two or multiple

prospectively planned studies rather than the comparison of post-hoc replications with

results from an already published study because the original studies are regularly

insufficiently powered for assessing replications success (as will become clear later).

Prospectively planned replication efforts allow for replication designs that achieve a

predefined replication probability (say, of .8) and can also better address issues related to

publication bias and questionable research practices because studies are conducted with

regard to replication as the primary research question. Taking a prospective perspective has
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also implications on what counts as replication success. Unlike in post-hoc replications, a

repeated demonstration of the absence of an effect is also considered a successful replication

in a prospective approach. Similarly, if a test shows that two effects are equivalent (within

a certain equivalence threshold), it is irrelevant whether the effects are significant.

Thus, we evaluate the properties of different correspondence measures under ideal

conditions and do not consider adjustments to power calculations for post-hoc replications

(Anderson and Kelley, 2022; Anderson et al., 2017; Anderson and Maxwell, 2017) or

adjustments for publication bias (e.g., Andrews and Kasy, 2019; Carroll et al., 2017). This

does not imply that correspondence measures cannot be used for post-hoc replication

efforts, but one should keep in mind that we only discuss the measures’ pure statistical

properties. In the presence of confounding bias, publication bias, and questionable research

practices, the measure’s performance and the meaning of replication success or failure is

unclear, that is, the nominal replication probabilities discussed in this article will not hold

and the outcome of a single replication effort might not be meaningfully interpretable with

regard to confirming scientific theories or previous evaluation results.

This article will be most useful for researchers who are prospectively planning

replication studies (Wong et al., 2021), because two individual ad hoc replication studies

will often be underpowered for making definitive conclusions about replication success. In

our Discussion, we describe a path forward for replication designs that plan a series of

replication efforts to test systematic sources of variation across studies.

Correspondence Measures for Assessing Replication Success

Due to sampling uncertainty, it is unlikely that two studies produce identical effect

estimates even if all causal and statistical assumptions needed for direct replication were

met (Wong & Steiner, 2018b). Thus, researchers need to rely on decision rules for assessing

the correspondence in effect estimates. A wide range of conclusion- and distance-based

correspondence measures has been proposed and used in the replication literature to assess

replication efforts.
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The correspondence measures presented here are based on a scenario comparing two

independent, perfectly implemented randomized controlled trials (RCTs) estimating two

true but unknown effects, τ1 and τ2, for study 1 and 2, respectively. We assume that each

RCT focuses on the same single treatment-control contrast. However, the two RCTs are

allowed to vary with respect to populations, settings, and time which may result in

different true effects, τ1 ̸= τ2. The unbiased effect estimators of the true effects are denoted

by τ̂1 and τ̂2, respectively, with sampling variances σ2
τ̂1 and σ2

τ̂2 . The estimators may refer,

for example, to differences in treatment and control means or covariate-adjusted regression

estimators. Throughout the article we assume that the variance estimators used by

researchers accurately reflect the sampling (or randomization) uncertainty. The two studies

may use different methods for estimating and testing the effects. However, we assume that

the effect estimators’ sampling distributions are well-approximated by a normal

distribution provided sample sizes are sufficiently large. Since all correspondence measures

require large sample sizes to ensure adequate power, normal approximations are well

justified and sufficient for planning replications in practice.1

Though we discuss our correspondence measures with regard to two perfectly

implemented RCTs, these results directly apply to any type of independent studies,

including quasi-experiments relying on regression discontinuity, difference-in-differences,

matching, or instrumental variable estimators (Angrist and Pischke, 2009; Shadish et al.,

2002). However, if researchers are interested in claiming equivalence or difference in causal

effect estimates, they must assure that both studies successfully identify a causal effect and

that the effect estimators and their variance estimators are both unbiased or at least

consistent (for details on the Causal Replication Framework see Steiner et al., 2019; Wong

and Steiner, 2018b). While these results can apply to properly identified causal effects in

observational research, their application to non-causal findings, that is, conditional

1 This might not necessarily hold for estimators relying on more complex models like random or

mixed-effect models.
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associations between an outcome and an independent variable of interest, is less

straightforward. Replicating conditional associations requires the strong assumption that

the extent of confounding between the two variables under consideration is the same in

both studies (conditional on the covariates controlled for in the analyses). If this

assumption is violated, replication failure is difficult to interpret because any differences in

the confounding associations could have led to replication failure. Even if replication

success is concluded, the causal effect and confounding structure might have varied

simultaneously across studies so that the change in the causal effect is approximately

compensated by the corresponding change in the confounding bias. In either case it is

unclear what one can learn from successful or failed replications of conditional associations.

Conclusion-based Correspondence Measures

Conclusion-based measures compare the conclusions drawn from two studies, that

is, whether the evidence obtained allows researchers to draw the same conclusions about

the presence or absence of an effect. For each study, the conclusion about an effect’s

presence is derived from a decision rule that may involve the sign, magnitude, or statistical

significance of the effect estimate. Whether the two studies arrive at the same conclusion

depends on the unknown true effect of each study, τ1 and τ2, and their respective power to

detect the effect. As the true effects are never known in practice, it will become clear that

the conclusion-based measures’ dependence on the true effects’ magnitude presents

obstacles to successfully planning replication studies. Here, we consider only a single

conclusion-based correspondence measure: correspondence in the statistical significance

pattern. Other measures assess the correspondence in the effect estimates’ sign and

magnitude without considering sampling uncertainty. Since these measures are rarely used

we provide a full discussion of these measures in Appendix A. For all correspondence

measures, functions written in R (R Core Team, 2022) and Stata (StataCorp., 2021) are

provided in the supplement.2

2 We thank Steffen Erickson for providing the Stata script file.
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Correspondence in Significance Pattern

Comparing the pattern of statistical significance in two studies has been a common

approach for evaluating replication success (e.g., Camerer et al., 2016; Gleason et al., 2018;

Open Science Collaboration, 2015). This measure assesses correspondence based on the

two studies’ NHST outcome, that is, whether both studies consistently suggest a significant

or non-significant effect (we also consider non-significant effects because we focus on

prospectively planned replication studies). Correspondence in significance pattern is

consistent with a replication goal of showing the existence of an effect as compared to

demonstrating that the effects are consistent with respect to their magnitude (Anderson

and Maxwell, 2016; see also Bonett, 2021). In each study, NHST is typically used to test

the two-sided null hypothesis of no effect, H0 : τk = 0, for k = 1, 2. Though it is also

possible to test one-sided null hypotheses of whether the estimated effect provides reliable

evidence to reject the null hypothesis of an effect size less than or equal to a magnitude δM ,

H0 : τk ≤ δM , we only focus on the two-sided default null hypothesis because that is what

researchers regularly use when assessing correspondence in significance—despite the fact

that research questions are often one-sided and that effect sizes of less than certain

magnitude |δM | might neither be of practical nor theoretical relevance. Thus, we formalize

correspondence in significance with regard to the two-sided null hypothesis H0 : τk = 0 with

a common Type I error rate α for both studies. The observed effects are converted to

z-scores, zk, and compared to the critical z-value that corresponds to the selected α, z∗
1−α/2.

Correspondence in significance pattern, S(α), is indicated if either both effects have

the same sign and both null hypotheses are rejected, |zk| ≥ z∗
1−α/2, or both studies fail to

reject the null hypothesis regardless of either effect’s sign, |zk| < z∗
1−α/2:

S(α) = 1[{sgn(τ̂1) = sgn(τ̂2) & (|z1| ≥ z∗
1−α/2 & |z2| ≥ z∗

1−α/2)} ∨

(|z1| < z∗
1−α/2 & |z2| < z∗

1−α/2)],
(1)

where sgn(.) is the sign function and 1[.] the indicator function that returns replication

success if the logical expression is true and replication failure if it is false (the ampersand,
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&, is the logical and and the symbol ∨ the logical or). Thus, the probability of a successful

replication is a function of each effect estimate’s probability of being significant. Assuming

that the effect estimators’ sampling distributions are asymptotically normal with

expectations τ1 and τ2 and variances σ2
τ̂1 and σ2

τ̂2 , the replication probability is given by

P (S(α) = 1|τ1, τ2, στ̂1 , στ̂2 , α) =

[1 − Φ(ζ+
1 )][1 − Φ(ζ+

2 )] + [Φ(ζ−
1 )][Φ(ζ−

2 )]+

[Φ(ζ+
1 ) − Φ(ζ−

1 )][Φ(ζ+
2 ) − Φ(ζ−

2 )],

(2)

with ζ+
k = z∗

1−α/2 − τk

στ̂k

, ζ−
k = z∗

α/2 − τk

στ̂k

and Φ the standard normal distribution function

(see also Schauer & Hedges, 2021). The proofs of this and all further results are provided

in Appendix B.

The formula for the replication probability indicates that the unknown true effects

τk and the estimable variances σ2
τ̂k

directly affect the replication probabilities. Note that,

for correspondence in significance, the replication probability depends on the true effect

because it is the true effect size that impacts the probability of a test being significant. In

situations where both studies have large true effects, correspondence in significance pattern

is more likely than in situations with smaller effects unless both studies are sufficiently

powered. When the true effects are medium-sized or small, the study-specific test outcomes

have a higher chance of contradicting each other. Also, each study’s statistical power to

detect the true effect impacts whether correspondence in significance pattern can be

established. Studies with sufficient power to detect the true effects may both find

significant effect estimates and thus indicate correspondence. However, studies that lack

power may also suggest correspondence even if the two effects are dissimilar, as both

results are likely to be non-significant. This is one drawback of correspondence in

significance pattern, but can be resolved by defining correspondence with respect to

significant outcomes only. Since we take a prospective point of view in planning

replications, we do not further consider this option.3

3 In practice, however, replication efforts using correspondence in significance pattern often begin with an
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The main drawback of conclusion-based measures like correspondence in significance

pattern is the replication probability’s dependence on the true but unknown effects. As we

will see, this makes it difficult to plan and sufficiently power replication efforts so that a

predetermined replication probability will be achieved (even if the true effects of both

studies can be assumed to be identical). A possibility to overcome these issues is to define

correspondence with regard to the distance (or difference) in true effects.

Distance-based Correspondence Measures

Distance-based measures use NHST to evaluate whether the distance between two

effect estimates, τ̂1 − τ̂2, differs from 0. This provides evidence for a significant difference or

equivalence of the true effects τ1 and τ2, respectively. Thus, unlike the conclusion-based

measures, distance-based measures apply formal NHST to the distance in effect estimates of

the two replication studies. We consider three tests: (1) the standard NHST for the effect

difference, to which we refer as the difference test; (2) the equivalence test; and (3) the

correspondence test, which combines the outcomes of the difference and equivalence test.

A key difference compared to the conclusion-based measures is that the replication

probabilities of the three tests do not depend on the magnitude of the true but unknown

effects τ1 and τ2. Rather, these measures depend only on the difference between the two

effects and the estimator variances. For example, distance-based measures have the same

probability to detect correspondence when the true effects are τ1 = 0.1 and τ2 = 0.3 SD or

when they are τ1 = 0.9 and τ2 = 1.1 SD because the differences and thus test statistics are

identical (provided the estimator variances are the same for both situations). Whether one

effect is positive, τ1 = 0.1, and the other negative, τ2 = −0.1, does not make a difference

either—only the distance matters. Thus, replication success is possible even if effects are of

existing, significant effect and attempt to directly replicate this effect in a new study. In a post-hoc

replication study, given that a significant positive effect has already been found, the probability of showing

correspondence is simply the probability that the replication effort will show a positive, significant effect:

1 − Φ(z∗
1−α/2 − τ2

στ̂2
).
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opposite sign or different significance pattern. If researchers find such a situation

unsatisfactory, one can combine conclusion-based measures about the sign or significance of

effects with distance-based measures into a new correspondence measure and then

determine the corresponding replication probabilities. The properties of such a composite

measure will be a combination of its constituent correspondence measures, but the

replication probability would again depend on the magnitude of the unknown true effects.

However, we do not discuss such combinations of measures further.

Difference test

The difference test compares the estimates of two independent studies, τ̂1 and τ̂2.

The test is consistent with a replication goal of showing whether two effects are

inconsistent with each other (Anderson and Maxwell, 2016; see also Bonett, 2021) and is

implemented as a z-test based on a normal approximation (unknown variances σ2
τ̂1 and σ2

τ̂2

are estimable from the observed data of the two studies). The null hypothesis of the test

claims that the difference between the true effects from the studies is zero versus the

alternative that the difference is non-zero: H0 : τ1 − τ2 = 0 vs H1 : τ1 − τ2 ̸= 0. The null

hypothesis is tested using the z-test statistic, zDT = (τ̂1 − τ̂2)/
√

σ2
τ̂1 + σ2

τ̂2 . The difference

test, DT (αR), suggests correspondence of effects if a non-significant result is obtained,

which occurs when the absolute value of the observed test statistic, |zDT |, is smaller than

the critical value z∗
1−αR/2 for a given Type I error rate αR (the subscript R in αR is used to

distinguish the Type I error rates of the replication tests from the Type I error α of effect

tests conducted for each single study):

DT (αR) = 1[|zDT | < z∗
1−αR/2] (3)

Alternatively, correspondence can be defined using the test’s p-value and the

pre-determined αR level. The outcome of the difference test, DT (αR), depends both on the

difference between the two estimated effects and their corresponding variance.

The replication probability of the difference test, that is, the probability that the
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null hypothesis of no difference in effects cannot be rejected, is given by

P (DT = 1|τ1, τ2, στ̂1 , στ̂2 , αR) =

Φ
z∗

1−αR/2 − τ1 − τ2√
σ2

τ̂1 + σ2
τ̂2

− Φ
−z∗

1−αR/2 − τ1 − τ2√
σ2

τ̂1 + σ2
τ̂2

 .
(4)

This expression is equivalent to the Type II error of the z-test for two independent

samples, with a probability of P (DT = 1) = 1 − αR if the effect difference is zero. The

probability of a successful replication decreases as the difference in true effects increases or

the estimator variances decrease.

However, one cannot infer correspondence between two estimated effects based

solely on a non-significant difference test because it is impossible to distinguish between the

scenario in which the null hypothesis is true and that in which the alternative is true but

the test has insufficient power to detect a difference. The difference test is able to provide

evidence regarding the lack of correspondence between effects, which sometimes might be

the goal of a replication effort. But a non-significant difference test provides only

inconclusive evidence (Anderson & Maxwell, 2016; Bonett, 2021). On its own, the

difference test is thus not able to demonstrate the equivalence of effects. Equivalence tests,

which we discuss next, are designed to test for the equivalence rather than the difference of

two effects.

Equivalence test

While the difference test examines the null hypothesis that the two true effects are

identical, the equivalence test examines the null hypothesis that the absolute difference in

the two effects from the two studies is equal to or exceeds a predefined equivalence

threshold δE, H0 : |τ1 − τ2| ≥ δE (Rogers et al., 1993; Tryon, 2001; Tryon & Lewis, 2008).

To establish equivalence of two effects, the null hypothesis must be rejected; when the null

hypothesis is rejected, the test provides evidence that the effect of interest has been

replicated (Bonett, 2021). Therefore, the equivalence test avoids the ambiguity of

non-significant difference tests. It is aligned with the replication goal of showing whether
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two effects are consistent with each other (Anderson and Maxwell, 2016; see also Bonett,

2021). Equivalence is only established if the replication effort has sufficient power to reject

the null hypothesis of an effect difference.

Equivalence testing requires the determination of a pre-specified equivalence

threshold, δE > 0, that is, the maximum difference in effects one considers negligibly small

or inconsequential (Bonett, 2021; Steiner & Wong, 2018; Tryon, 2001; Tryon & Lewis,

2008). For instance, if researchers believe that an effect size of about 0.5 SD is needed for

both studies to be meaningful (from a theoretical or practical perspective), then an effect

difference of 0.1 SD or even 0.2 SD might be considered negligibly small. If researchers

believe that an effect size of about 0.2 SD is needed to be meaningful, a threshold of 0.2 SD

seems too large but 0.1 SD might be acceptable. In any case, it is advisable to avoid too

large equivalence thresholds as equivalence could be established for non-negligible effects of

opposite sign.4 As will become clear later, the choice of a specific equivalence threshold

implies that both studies must be powered with respect to a minimum detectable effect size

that is smaller than the threshold.

The equivalence test, ET (δE, αR), is implemented as two one-sided tests (Anderson

& Maxwell, 2016; Schuirmann, 1987; Tryon, 2001) each with a nominal Type I error rate

αR. The first test examines the hypothesis pair with the positive threshold:

H+
0 : τ1 − τ2 ≥ δE vs H+

1 : τ1 − τ2 < δE. The second test probes the corresponding

hypothesis pair with the negative threshold: H−
0 : τ1 − τ2 ≤ −δE vs H−

1 : τ1 − τ2 > −δE.

4 To avoid an equivalence outcome when the two effects are of opposite sign or show different significance

patterns one could combine correspondence in sign or significance pattern with the equivalence test into a

new correspondence metric with its own formula for the replication probability. Then, replication success

would be achieved if both effect estimates have the same sign or significance pattern and if the null

hypothesis of a difference greater than the equivalence threshold is rejected. For such a measure, the

replication probabilities depend again on the magnitude of the unknown true effects.
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Assuming asymptotic normality, the corresponding test statistics for the two tests are

zET + = (τ̂1 − τ̂2) − δE√
σ2

τ̂1 + σ2
τ̂2

and zET − = (τ̂1 − τ̂2) + δE√
σ2

τ̂1 + σ2
τ̂2

. (5)

Correspondence in equivalence is then given if both one-sided null hypotheses are rejected.

Thus, for the significance level αR, the two observed test statistics, zET + and zET − , must be

more extreme than the corresponding critical values z∗
1−αR

and z∗
αR

:

ET (δE, αR) = 1[zET + ≤ z∗
αR

& zET − ≥ z∗
1−αR

]. (6)

The replication probability of establishing correspondence in equivalence between the two

effect estimates is then obtained as the probability that both one-sided hypotheses are

rejected (see also Chow et al., 2008),

P (ET = 1|τ1, τ2, στ̂1 , στ̂2 , αR, δE) =

Φ
−z∗

1−αR
− (τ1 − τ2) − δE√

σ2
τ̂1 + σ2

τ̂2

− Φ
z∗

1−αR
− (τ1 − τ2) + δE√

σ2
τ̂1 + σ2

τ̂2

 .
(7)

Unlike the difference test, the equivalence test provides direct evidence as to

whether the effects of two studies are equivalent with respect to the threshold δE. As with

the difference test, the magnitude of the difference between the true effects and the

estimator variances impact the probability of detecting an effect. However, choosing an

adequate threshold δE for the equivalence test is crucial, as it directly impacts the

replication probability. The smaller the threshold, the harder it is to establish equivalence

because the two true effects must be rather similar and the variances of both effect

estimators must be small to reject the two one-sided null hypotheses (i.e., large sample

sizes are required). Further, if a single study’s effect estimate has a large variance (e.g., due

to a small sample size), the replication probability may be close to 0 regardless of how

small the other study’s estimator variance is. Also note that a non-significant equivalence

test does not necessarily indicate that the two true effects differ by more than δE. It is also

possible that the null hypothesis of a difference could not be rejected due to a lack of
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power. Thus, to overcome this limitation of the equivalence test, it makes sense to combine

the difference and equivalence test together into a correspondence test.

Correspondence test

Both the difference and equivalence test can provide information as to whether two

studies succeeded in replicating an effect. However, each test provides limited information

on its own. A significant difference test suggests that the two effects are different, while a

significant equivalence test suggests that the two effects do not differ by more than δE.

However, if both tests are non-significant, no reliable conclusions about a difference or

equivalence can be drawn because both tests lacked sufficient power to provide evidence for

a difference or equivalence.

To capture the possibility of both tests being inconclusive, the two tests can be

combined into a correspondence test (Steiner & Wong, 2018; Tryon & Lewis, 2008). Such a

correspondence test allows researchers to make a more nuanced inference regarding

replication success or failure based on whether the null hypothesis of each test can or

cannot be rejected. As a combination of a difference and equivalence test, the

correspondence test simultaneously addresses two replication goals: the demonstration

either of the consistency or inconsistency between two effects (Anderson & Maxwell, 2016).

The correspondence test, CT (δE, αR), has four possible outcomes:

CT (δE, αR) =



Equivalence (EQU) if DT (αR) = 1 & ET (δE, αR) = 1

Difference (DIF ) if DT (αR) = 0 & ET (δE, αR) = 0

Trivial Difference (TRI) if DT (αR) = 0 & ET (δE, αR) = 1

Indeterminacy (IND) if DT (αR) = 1 & ET (δE, αR) = 0

(8)

The test returns Equivalence with respect to the equivalence threshold δE if the

difference test is non-significant (suggesting correspondence), DT (αR) = 1, and the

equivalence test is significant, ET (δE, αR) = 1. In this case, the equivalence test has

sufficient power to establish Equivalence while the difference test does not indicate a
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significant effect difference.

Conversely, to establish a Difference between the two effects, a significant difference

test, DT (αR) = 0, and a non-significant equivalence test, ET (δE, αR) = 0, are required.

That is, both tests suggest a lack of correspondence between the two effects. A Difference

can only be established if the difference test has sufficient power to reject the null

hypothesis of equivalence.

The third possible outcome of the correspondence test is a Trivial Difference in

effects, that is, the difference test is significant and indicates non-correspondence,

DT (αR) = 0, while the equivalence test is also significant and suggests correspondence with

regard to the given threshold δE, ET (δE, αR) = 1. This means that while there is evidence

that the true effects differ, they differ by an amount smaller than the equivalence

threshold. Such a result most likely occurs when both the difference and equivalence tests

are highly powered. But note that the power of the equivalence test might be due to the

choice of a large threshold δE.

The final possible result is Indeterminacy, which occurs when neither the

equivalence nor difference test produces a significant result, that is, DT (αR) = 1 and

ET (δE, αR) = 0. Such a test outcome is fairly uninformative because inadequate power

resulted in a failure to reject the null hypothesis of both the difference and equivalence

test. In this circumstance, neither a reliable difference nor equivalence (within the

threshold δE) is established. A result of indeterminacy means that additional replications

are necessary to determine whether the true effects correspond or not.

By differentiating between these four possible outcomes, the correspondence test

improves upon both of its constituent tests. Specifically, it does not confound insufficient

power with a result of substantive interest, that is, the two effects being equivalent or

different. Thus, the correspondence test provides stronger evidence where the equivalence

or difference tests alone could not differentiate between their respective null hypotheses

and insufficient power. In this sense, it is a more severe test than its constituent tests
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because the correspondence test clearly indicates when claims regarding replication success

or failure are warranted or unwarrented due to lack of power (Mayo, 2018).

Because CT is based on the difference and equivalence test, the probabilities for the

four possible outcomes of the correspondence test are directly linked to the replication

probability of DT and ET . To determine the replication probabilities we need to

distinguish between two cases. First, where correspondence from the equivalence test is less

likely than correspondence from the difference test, P (ET = 1) ≤ P (DT = 1), and second,

where it is more likely, P (ET = 1) > P (DT = 1). The first condition can also be written

as P (DT = 0) + P (ET = 1) ≤ 1, which implies that the critical regions of the difference

and equivalence test do not overlap and thus leave space for Indeterminacy, while the

outcome of a Trivial Difference becomes impossible because it requires that both tests are

simultaneously significant. The second condition is equivalent to

P (DT = 0) + P (ET = 1) > 1, which indicates a situation where the critical regions of the

two tests overlap such that a simultaneous significance of both the difference and

equivalence test becomes possible (Trivial Difference), while Indeterminacy is no longer

possible and thus has a probability of zero. In practice, the second condition is unlikely to

occur unless large equivalence thresholds are used or sample sizes are huge. This second

condition which allows for a Trivial Difference becomes possible only because the difference

test does not us an equivalence threshold. If the difference test were conducted with regard

to the null hypothesis H0 : |τ1 − τ2| ≤ δE, then P (ET = 1) ≤ P (DT = 1) of the first

condition would always hold (but the indeterminacy region would become much larger

because small effect differences would no longer be detected). For more detailed

explanations and a visualization of the outcomes of the correspondence test, see the proof

in Appendix B.

Table 2 lists the replication probabilities for all four outcomes of the two possible

cases. Note that for both cases, the four probabilities sum to one. Though the

correspondence test has four possible outcomes, only Equivalence is a clear replication
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success, though one may also consider a Trivial Difference as a replication success provided

that the threshold δE is sufficiently small.

Replication Probabilities of Correspondence Measures

As indicated by the correspondence measures’ probability formulas, the replication

probabilities depend on several parameters and thresholds (τ1, τ2, στ̂1 , στ̂2 , α, αR, δM , δE).

To produce generally valid probability plots that also facilitate the comparison of all

correspondence measures discussed in this article, we assume that the true effects, the

effect estimators’ variances, and the thresholds refer to standardized effect size measures

where the effect sizes of both studies have been standardized by the same standard

deviation (SD) of the outcome variable (otherwise, the effects would not be comparable).

Moreover, in each probability formula, we express the standard errors στ̂k
in terms of their

study-specific minimum detectable effect size (MDES). The MDES is the smallest effect for

which the null hypothesis of no effect is rejected with probability 1 − β for given Type I

and II error rates and the standard error of the effect estimate:

MDESk = (Φ−1(1 − α/2) + Φ−1(1 − β))στ̂k
(9)

for study k = {1, 2}, where Φ−1(1 − α/2) is the normal quantile corresponding to the

selected Type I error rate α and Φ−1(1 − β) is the normal quantile corresponding to the

selected Type II error rate β. Thus, the standard error στ̂k
can be expressed in terms of the

MDES :

στ̂k
= MDESk

(Φ−1(1 − α/2) + Φ−1(1 − β)) . (10)

For given Type I and II error rates, smaller MDESs imply smaller standard errors and thus

greater power for significance tests. Since we use a default Type I error rate of α = .05 and

power of 1 − β = .8 for both studies, the standard errors are given by στ̂k
≈ MDESk/2.8.

These are deliberate though common choices for α and 1 − β, but different choices only

result in scale shifts while the shape of the plots remain the same. Using standardized

measures and MDESs allows for a description of the correspondence measures’ replication
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probabilities that does not depend on the scale of the outcome variables and directly

relates the unknown true effects—the target of the replication effort—to the MDESs.

Moreover, using MDESs also helps in planning sufficiently powered replication studies (see

next section). It is important to note that when we discuss MDES in this context, we refer

to the MDES as a rescaled standard error that is necessary for both studies to attain a

specific replication probability for a given correspondence measure. This should not be

confused with the target MDES when determining sample size requirements in a power

analysis to detect the smallest effect of substantive interest in a single study.

The following probability plots are all presented in terms of ratios between the

unknown true effects and the studies’ MDES, τk/MDESk, or the ratios of the effect

differences and the average MDES ∗ across the two studies |τ1 − τ2|/MDES ∗ (defined

below). The replication probabilities are fully determined by these ratios. For instance, the

replication probability of the difference test is the same for an effect difference of 0.1 SD and

an MDES of 0.2 SD for both studies, and a difference of 0.2 SD and MDESs of 0.4 SD—in

both scenarios we obtain the same difference ratio of |τ1 − τ2|/MDES = 0.5. Similarly, the

equivalence threshold is also expressed in relation to MDES. Using such ratios allows us the

represent all possible scenarios (with fixed Type I and II error rates) in a single plot rather

than having separate plots for different choices of true effects, MDESs, and thresholds.

These ratios also make intuitive sense. For instance, if one is conducting an RCT in which

the true effect of interest is τ = 0.5 SD, one would need to power the study with an MDES

of 0.5 SD or lower to detect the effect with a probability of at least 1 − β. This implies an

effect ratio of τ/MDES ≤ 1. If the MDES is much lower than the true effect, say 0.1 SD,

the effect ratio of τ/MDES = 0.5/0.1 = 5 indicates more than sufficient power to detect the

effect. However, with an MDES of 0.75 SD, the effect ratio of τ/MDES = 0.5/0.75 = 0.67

suggests a poorly powered study. Thus, effect ratios of greater than 1 indicate properly

powered individual studies. But as we will see, two properly powered individual studies

might still be poorly powered for achieving a sufficiently high replication probability. R
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functions for computing the replication probabilities are provided in the supplement.

Conclusion-based Measures: Correspondence in Significance Pattern

Figure 1 shows the replication probabilities for correspondence in significance

pattern, that is, P (S(α) = 1). Probabilities are shown as functions of τk/MDESk, for

k = 1, 2, on the x- and y-axis, respectively. The scales for these ratios range from -2 to 2,

accounting for the possibility that the true effects may have different signs. Note that

MDESk is always assumed to be positive because it is used as an alternative expression for

the standard error. Thus, negative values indicate negative true effects (τk). The contour

lines within the plot show different levels of replication probabilities, with darker shading

indicating a higher probability of replication success. The gray scale becomes significantly

darker once a replication probability of .8 is exceeded. We consider a probability of .8 to be

the minimum for serious replication efforts.

The plot in Figure 1 shows three areas with high replication probabilities. The first

two refer to situations where both studies’ effect ratio exceeds at least 1 (for positive

effects) or falls below -1 (for negative effects). That is, both studies are sufficiently powered

with regard to the unknown true effects. But note that two studies with an effect ratio of

τk/MDESk = 1, which is sufficient to detect the true effect with a probability of .8, only

achieve a replication probability of .68. The third area with high replication probabilities is

located at the center of the plot where τk/MDESk = 0. In this case, both studies lack

power to detect an effect and likely fail to reject the null hypothesis of no effect.

Replication failure is most likely when the true effects of the two studies have

opposite signs or when the effect ratio of study 1 falls below 1, τ1/MDES1 < 1, while the

other study has a ratio greater than 1, τ2/MDES2 > 1 (or vice versa; analogous for

negative effects). That is, while study 1 most likely fails to reject the null hypothesis of no

effect, study 2 will indicate a significant effect with high probability.

It is clear that researchers must have a reasonable guess about the true effect for

both studies in order to prospectively plan for a specific replication probability. Otherwise,
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it is possible that one of the studies will not be sufficiently powered, making replication

success unlikely. While knowing the effect estimate of study 1 before planning study 2

might be helpful, the assumption that the true effects are identical across the two studies,

even when treatments, populations, and settings are held constant, may be incorrect and

result in a replication failure. Moreover, the effect estimate of the first study should never

be directly used as the target MDES for the second study even if the underlying true

effects were identical (Anderson & Maxwell, 2017).

While correspondence in significance pattern is not an ideal measure of replication

success, there are some circumstances where it is suitable. For instance, it can be a suitable

measure if a replication question primarily concerns whether the same decision would be

made to implement a policy. A major drawback of correspondence in significance pattern is

that replication success can be achieved even if the true effects of the two studies are

extremely different. This is so because the replication probability is determined by the

effect ratios rather than the magnitude of the effects. For instance, assume that study 1

has an underlying true effect of τ1 = 0.25 SD and study 2 an effect of τ2 = 1 SD, and both

are sufficiently powered with an effect ratio of τk/MDESk = 1.5. We then obtain a

replication probability of .98 despite the heterogeneity in effect sizes.

Distance-based Correspondence Measures

Just as the correspondence in significance pattern depends on ratios involving the

true effects, all of the distance-based measures depend on the ratio of the difference in

effects to the MDES, (τ1 − τ2)/MDES. The equivalence and correspondence tests also

depend on the corresponding ratio of the equivalence threshold, δE/MDES. For the

probability plots of distance-based measures it is sufficient to cover only positive effect

differences (or the absolute value of the difference) and positive equivalence thresholds

because they are symmetric with respect to both the difference and threshold. The scales

of the x- and y-axis range from 0 to 3. While the replication probabilities of the

conclusion-based measures depend on each studies’ effect ratio, the probabilities of
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distance-based measures can be shown to depend on the average MDES of the two studies,

that is,

MDES ∗ =
√

MDES2
1 + MDES2

2
2 . (11)

The average of the squared MDESs has to be considered because the MDES is used as an

alternative expression for the standard error (i.e., this is akin to averaging variances).

Using the average MDES ∗ simplifies our plots without any loss of generality, because once

researchers determine the MDES for both studies, the average MDES ∗ and associated

replication probability can be determined accordingly. The same applies when powering

individual studies to achieve a certain replication probability. All MDES combinations of

two studies have identical replication probabilities as long as their average MDES ∗ is the

same.

Difference Test

Figure 2 shows the replication probability for the difference test, P (DT = 1). The

replication probability is determined solely by the single ratio |τ1 − τ2|/MDES ∗. Thus, its

replication probability can be described by a single curve. The replication probability

peaks at 1 − α = .95 when there is no difference in effects (implying a ratio of 0), and

converges to zero for large ratios. The shape of the plot is identical to the Type II error

plot of the two-sample z-test.

The plot indicates that a sufficiently high replication probability, P (DT = 1) > .8,

is achieved only with ratios |τ1 − τ2|/MDES ∗ < 0.563. Thus, whenever the effect difference,

|τ1 − τ2|, is clearly smaller than the average MDES ∗ replication success is very likely. This

is achieved when the effect difference is negligibly small or when at least one of the two

studies is poorly powered—a large MDES of one study strongly affects the average MDES ∗

even when the other study’s MDES were close to zero. For this reason, the difference test

is a poor choice for assessing correspondence in two effect estimates.
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Equivalence Test

The replication probability for the equivalence test, P (ET = 1), is shown in Figure

3 and depends on two ratios: one for the effect difference |τ1 − τ2|/MDES ∗ (x-axis) and the

other for the equivalence threshold δE/MDES ∗ (y-axis). The plot shows that the

equivalence test has a high probability (> .8) of indicating correspondence in effect

estimates if the effect difference is close to zero and the equivalence threshold is at least

1.48 times larger than the MDES ∗ (i.e., δE/MDES ∗ > 1.48).

Under the ideal equivalence scenario where τ1 − τ2 = 0, the threshold ratio of

δE/MDES ∗ = 1.48 implies that both studies’ MDESs must be very small to achieve a

replication probability of .8. The average MDES ∗ must be less than δE/1.48. For instance,

an equivalence threshold of δE = 0.3 SD demands an average MDES ∗ that is less than

0.3/1.48 = 0.203 SD—an MDES not attained by many studies in practice. Moreover, if

one study has a large MDES, for instance due to a small sample size or unexpectedly large

error variance, then the second study will be unable to bring the average MDES ∗ down to a

sufficiently small size (see also Bonett, 2021). Consider for example a threshold of δE = 0.5

and an MDES1 = 1 (which may be sufficient to demonstrate an effect size of 1 SD or

greater in this single study), then even with an MDES close to zero for the second study,

MDES2 ≈ 0, the smallest possible average MDES ∗ is 0.71. The corresponding threshold

ratio of δE/MDES ∗ = 0.5/0.71 = 0.7 then immediately suggests that the replication

probability is essentially zero. Thus, establishing correspondence in equivalence requires

that both studies have a small MDES, implying that samples sizes generally must be large.

However, if the true effects differ by more than the chosen equivalence threshold,

|τ1 − τ2| > δE, the replication probability is always less than α = .05. Thus, the equivalence

test has a high probability of indicating replication failure if the effects actually differ. But

replication failure might also be due to insufficient power. The correspondence test is able

to distinguish between these two scenarios as the next section demonstrates.
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Correspondence Test

Figure 4 shows the probability distribution across the four outcomes of the

correspondence test based on the effect difference ratio |τ1 − τ2|/MDES ∗ (x-axes) and

threshold ratio δE/MDES ∗ (y-axes). The probabilities across the four outcomes sum to 1

(i.e., if we overlay the four plots, the probabilities add up to 1). Adding the probabilities of

the Equivalence and (Trivial) Difference outcomes in the top two plots in Figure 4 results

in the probability plot for the equivalence test.

For a more compact representation in a single plot, Figure 5 shows for each outcome

the area where its probability exceeds .5 and thus is more likely than any other of the three

outcomes. According to this plot, Equivalence is the most probable outcome of the

correspondence test only if the effect difference ratio is less than 0.99 and the threshold

ratio exceeds at least 1.17.

Whenever |τ1 − τ2|/MDES ∗ > 0.99, the correspondence test most likely indicates a

Difference or Trivial Difference, the latter being more likely for large equivalence

thresholds and smaller effect differences. Finally, Indeterminacy is the predominant

outcome of the correspondence test whenever the effect difference ratio is less than 0.99

and the threshold ratio below about 1.2 (Figure 4). Indeterminacy represents a situation

that most likely occurs in current replication practices because most studies’ MDES is not

small enough to either demonstrate Equivalence or a (Trivial) Difference.

Though the threshold ratio can be controlled by researchers, thresholds greater than

the actual studies’ MDESs are rarely desirable. Consider a replication effort with an

average MDES ∗ of 0.5 SD and the presumption that the effect difference is less than 0.5

SD, implying an effect difference ratio of less than one, |τ1 − τ2|/MDES ∗ < 1, and thus, a

rather low probability (< .5) for a (Trivial) Difference. Then, to avoid the undesirable

Indeterminacy outcome and to demonstrate Equivalence, researchers would need to choose

an equivalence threshold greater than 0.6 or 0.7 SD to obtain a threshold ratio greater than

1.2 or 1.4, respectively. Such high equivalence thresholds generally do not make sense
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regardless of the MDES ∗, especially so when studies are powered to demonstrate effect

sizes smaller than the threshold (such as 0.5 SD). Thus, the MDES of each study is ideally

smaller than the maximum tolerable threshold δE.

The plot in Figure 6 builds on Figure 5 by showing the area where most current

replication efforts are presumably located (bounded by the solid line)—in or just outside of

the uninformative Indeterminacy zone, provided the underlying true effects are not too

different. Increasing the chances for establishing Equivalence or a (Trivial) Difference

requires smaller MDESs with respect to a power of 1 − β = .8 or, equivalently, powering

the desired study-specific MDESs with 1 − β = .9 or even .95. In practice, this can only be

achieved by reducing sampling variances (e.g, by increasing sample sizes or using better

experimental control of extraneous noise factors, blocking, covariate adjustments, or a

careful control of study settings and populations). But even if replication efforts would

power their MDESs with 1 − β = .9 or .95 for a replication probability of .8, the area

outside the Indeterminacy zone does not become much larger—as shown in Figure 6 by the

dashed and dotted boundaries. This suggests that replication efforts with two, not

prospectively planned studies will often fail to successfully establish Equivalence or a

(Trivial) Difference, even if the true effects are almost identical.

Determining Minimum Detectable Effect and Sample Sizes for Replication

Achieving a replication probability of at least .8 requires two well-planned, highly

powered studies. Otherwise, it is unlikely that any tests conducted to determine replication

success or failure will help in establishing stable knowledge and advancing subject matter

theory. Thus, it is vital to prospectively plan replication studies to ensure a reasonable

chance of demonstrating replication success.

The formulas for the replication probabilities we presented above can be used to

determine the required sample sizes such that a desired minimum replication probability pR

for the chosen correspondence measure is achieved. In this section, we demonstrate how

the MDES and the corresponding minimum required sample size for each of the two
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studies can be determined. Compared to determining the required samples sizes for a

single study, where the MDES is chosen based on researchers’ intent to demonstrate a

minimum effect size of interest, the choice of a specific correspondence measure and the

desired replication probability directly dictates each study’s MDES and thus sample size.

To highlight MDES ’s dependence on the desired replication probability pR, we use MDESR

to represent the necessary minimum detectable effect size to achieve the pre-specified

replication probability. Note again, we use the MDESs as rescaled standard errors for the

effect estimators. Thus, if replication success should be established with a certain

probability, researchers cannot choose an MDES they consider as meaningful or

important—the MDESs are fixed once the desired replication probability has been

determined. The obtained MDESR might seem small for a single study to demonstrate an

effect of a certain magnitude but this is irrelevant when the research question concerns

demonstrating replicability of results across two studies. Thus, it is necessary to power

both studies such that they jointly provide conclusive evidence about the presence or

equivalence of effects. Since the presence of an effect has to be demonstrated twice, sample

size requirements are rather demanding, particularly if one wants to establish equivalence

within a small equivalence threshold.

Determining the minimum required sample size for each study involves the following

steps:

1. For each study, determine the effect estimator and its variance estimator to be used

in the analysis of the data.

2. Determine the study-specific Type I and II error rates α and β and their

corresponding z-values (z1−α/2, z1−β).

3. Choose a correspondence measure and determine

• the desired replication probability (pR),
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• depending on the chosen measure, the magnitude of true effects (τk) or

threshold δE, and

• the Type I and II error rates for distance-based replication measures (αR, βR).

4. Compute the required MDESR for the chosen correspondence measure according to

the formula presented below.

5. Translate the MDESR into standard error units, στ̂k
= MDESR

z1−α/2+z1−β
(for the

standardized effect size), and derive the necessary sample sizes using the variance

estimator from Step 1.

Before we use an example to demonstrate the computation of the required sample

sizes, we present the MDESR formulas for each correspondence measure. We discuss the

determination of MDESR and sample sizes for two prospectively planned studies, that is,

they are planned jointly in advance but might still be implemented by different research

teams.5 The MDESR calculations are done under the hypothesis that the true effects are

identical across both studies, τ1 = τ2, and that both studies are planned to have the same

MDESR. These restrictions are required to ensure that all MDESR formulas are

analytically solvable. In practice, the study-level true effects will likely be different, which

may cause the resulting studies to be underpowered depending on the method used to

assess correspondence. Nonetheless, powering replication efforts to demonstrate a presumed

equivalence of the underlying true effects is the goal of most replication efforts, thus it also

makes sense use the same MDESR. However, this does not imply that the two studies must

have the same sample sizes because they might differ with regard to the expected sampling

variance (for instance, due to different sampling or blocking strategies, or because different

5 Post-hoc MDESR computations for the second study, after the effect estimates of the first study are

available, pose additional difficulties such as imprecise effect estimates and publication bias. These

difficulties arise even if one were to assume that the true effects are identical across the two studies

(Anderson & Kelley, 2022; Anderson & Maxwell, 2016; Maxwell et al., 2015)
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estimators are used). For the computation of the needed MDESR, functions written in R

(R Core Team, 2022) and Stata (StataCorp., 2021) are provided in the supplement. The

script files also contain a completely worked-out example for determining the minimum

required sample sizes (the example follows the setup discussed below).

Conclusion-based Measures: Correspondence in Significance Pattern

The determination of a study-specific MDESR and the required sample sizes for

correspondence in significance pattern requires researchers to first specify the magnitude of

the presumed true effects (τ1 = τ2 = τ). The formula given in Equation (2) is not

analytically solvable for the MDESR, but if the significance test being conducted is a

one-sided test, it becomes possible. If the true effects are assumed to be positive, and a

corresponding one-sided test is performed, the replication probability pR is

pR = p+
1 p+

2 + (1 − p+
1 )(1 − p+

2 ), (12)

where p+
k is the probability for an individual significance test being significant. To recover

the MDESR needed for a two-sided test with Type I error rate α, we use α/2 for the Type I

error rate of the one-sided test. Then, if both true effects are assumed to be equal, the

required MDESR under the null hypothesis is

MDESR = (z1−α/2 + z1−β) τ

z1−α/2 − Φ−1
(

1−
√

1−2(1−pR)
2

) . (13)

The formula highlights that the MDESR needed to obtain a prespecified replication

probability pR depends only on the true effect τ once the Type I and II error rates have

been fixed. Thus, researchers cannot choose the MDESR based on the smallest effect size of

interest as is commonly done for a standard power analysis of a single study. MDESR is

fixed once the true effect τ and desired replication probability have been determined. Also

note that researchers’ smallest effect size of interest cannot be used as a substitute for the

unknown true effect τ . Doing so would result in an MDESR with unknown actual

replication probability—one would not even know whether to expect high or low
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replication probabilities. If the equality of effects is not tenable then the two studies’

MDESR or sample size needs to be determined in a simulation that allows for different true

effects across the two studies.

Distance-based Correspondence Measures

Determining the MDESR needed to achieve a predefined replication probability pR

for distance-based correspondence measures requires researchers to specify the presumed

equivalence threshold δE. Unlike the conclusion-based measures, researchers do not need to

make any assumptions about the magnitude of effects. Since the MDESR computations are

performed under the hypothesis that the true effects are identical across studies, no explicit

specification of the effect difference is needed either because τ1 − τ2 = 0. Replication

probabilities can again be expressed in terms of the average MDES ∗
R .

Difference Test

For τ1 − τ2 = 0, the replication probability of the difference test depends only on the

Type I error rate αR and is given by pR = 1 − αR. Thus, under the null hypothesis, any

MDESR would be adequate for the difference test to indicate correspondence with a high

replication probability.

Equivalence Test

The necessary MDESR to demonstrate equivalence depends on the equivalence

threshold, in addition to the Type I and II error rates. The average MDES ∗
R needed to

ensure a replication probability of pR for the equivalence test is

MDES ∗
R = (z1−αR/2 + z1−βR

)

√√√√1
2

(
δE

Φ−1(pR

2 + .5) + z1−αR

)2

. (14)

The formula highlights that the MDES ∗
R needed to obtain a prespecified replication

probability pR depends only on the equivalence threshold δE once the Type I and II error

rates have been fixed. As before, the MDES ∗
R cannot be chosen by researchers with respect

to the smallest effect size of interest; it is fixed once the desired replication probability and

equivalence threshold have been determined.
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Correspondence Test

To determine the MDES ∗
R and sample size necessary for the correspondence test, one

can use the formula for the equivalence test to obtain a predefined replication probability.

This is sufficient if the goal of the replication effort is to demonstrate equivalence under the

presumption that the effects are stable across studies. If this presumption is false, the

correspondence test has the advantage to signal significant effect differences. Importantly,

if a replication effort has sufficient power to demonstrate equivalence with a reasonably

small equivalence threshold, then an Indeterminacy outcome will be very unlikely but

either a Trivial Difference or Difference will be indicated if the effect difference is greater

than the studies’ MDES ∗
R . In discussing the outcomes of the correspondence test, we need

to distinguish between two scenarios. First, where the two studies are powered for an

MDES ∗
R that results in a replication probability pR ≤ 1 − αR = .95 for the equivalence

tests, and second, where pR > 1 − αR = .95 (for the standard choice of αR = .05).

If the equivalence test has a replication probability pR ≤ .95, the correspondence

test can result in Equivalence, Difference, or Indeterminacy but not in a Trivial Difference

provided τ1 = τ2 is true. Thus, the probability of the correspondence test showing

Equivalence is equal to the replication probability used for the equivalence test, and the

probability of indicating a Difference is equal to αR = .05 (because the difference test will

have a replication probability of .95 = 1 − αR). Finally, the probability of showing

Indeterminacy is 1 − .05 − P (ET = 1).

If the studies are powered such that the replication probability of the equivalence

test is larger than .95, then the outcome of a Trivial Difference becomes a possibility even if

τ1 = τ2 holds. The probability of the correspondence test showing Equivalence is less than

the probability found using the formula for the equivalence test (because some significant

equivalence results will also suggest a significant difference). However, a replication

probability pR > .95 for an equivalence test is unlikely in practice. Even when τ1 = τ2, the

sample size requirements to achieve the necessary study-level power are very high, and thus
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Trivial Difference is unlikely unless an unreasonably large equivalence threshold is used.

Example: MDESR and Sample Size Calculations

To demonstrate the MDESR and sample size calculations, we consider the

implementation of two independent RCTs to replicate a well-defined treatment-control

contrast for a specific population and setting of interest. The causal effects of the two

RCTs, with i = 1, 2, ..., nk participants in study k = 1, 2, will be independently estimated

and tested with a simple regression model without any additional control variables:

Ŷik = γ̂k + τ̂kZik, where γ̂k and τ̂k are the estimators of the intercept and causal effect,

respectively, and Zik is the dummy-coded treatment indicator. Assuming homoskedasticity,

equal treatment and control group sizes, and a standardized outcome variable Y , the

standard error στ̂k
of each regression estimator τ̂k is given by

στ̂k
=

√
1 − R2

k

.5√
nk

, (15)

where R2
k is the coefficient of determination of the regression model (Hanley, 2016). The

explicit specification of the estimators for the causal effect and its standard error concludes

Step 1 of the procedure for determining the studies’ required sample sizes (outlined above

at the beginning of this section).

Step 2 demands the determination of the study-specific Type I and II error rates

which are set to the conventional levels of α = .05 and β = .2, the latter implying a power

of .8 for each study. The resulting z-values are then given by z1−α/2 ≈ 1.96 and z1−β ≈ .84.

Step 3 first requires the choice a correspondence measure. For demonstration

purposes we compute the MDESR and required sample sizes for all correspondence

measures. For each measure, we aim for a replication probability of at least pR = .8. For

correspondence in significance pattern, we calculate sample size needs for three different

values for the unknown true effects: τ1 = τ2 = τ = 0.1, 0.5, and 1 SD. For the equivalence

test we investigate four different thresholds: δE = 0.1, 0.2, 0.3, and 0.5 SD. Finally, we use

Type I and II error rates of αR = .05 and βR = .2 together with z1−αR/2 ≈ 1.96 and
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z1−βR
≈ .84 for the difference and equivalence test.

In Step 4, we plug the numbers from Step 3 into the MDESR formulas for each

correspondence measure to obtain the minimum required MDESR for each RCT to

guarantee a replication probability of pR = .8. Step 5 first transforms the MDESR into the

study-specific standard error, στ̂ = MDESR

z1−α/2+z1−β
= MDESR

1.96+0.84 . Then, we solve the formula of

our regression-based standard error Equation (15) for the sample size, nk =
(√

1−R2
k

0.5στ̂k

)2
, and

after plugging in the standard error expressed in terms of MDESR we obtain the minimum

required sample size for each study. Note that the two RCTs will need different sample

sizes if the error variances (1 − R2
k) are assumed to be different. For effect estimators

beyond Ordinary Least Squares (OLS) regression, like from random effects models, sample

sizes nk need to be computed using the appropriate formulas for the estimators of the

standard error.

Table 3 shows the results for correspondence in significance pattern. The table

highlights that the required MDESR must be smaller than the true effect to achieve a

replication probability of .8. For instance, if the true effect is τ = 0.3 SD for both studies,

the MDESR must be 0.26 SD or smaller. It is also important to note that sample size

requirements increase drastically if the true effects become small. The main practical issue

here is that the true effect sizes are unknown and most likely vary across studies if

populations and settings differ. Thus, planning for sufficiently powered replication studies

remains a challenge.

Table 4 shows the results for the equivalence test with four different thresholds:

δE = 0.1, 0.2, 0.3, and 0.5 SD. No results for the difference and correspondence test are

contained in the table because the difference test always has a replication probability of

1 − αR = .95 under the assumption of identical effects, while the correspondence test uses

the same MDES ∗
R as the equivalence test. In comparison to correspondence in significance

pattern, the equivalence test requires a smaller MDES ∗
R if small equivalence thresholds, δE,

are used. The results in Table 4 indicate that the studies’ MDES ∗
R must be considerably
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lower than the chosen equivalence threshold δE. For instance, if a threshold of δE = 0.2 SD

is used, then both studies’ MDESR must be 0.14 SD to achieve a replication probability of

.8. The corresponding sample size requirements then depend on the magnitude of the error

variances in the two regression models, here expressed in terms of the study-specific R2

(assumed to be identical for the two studies). Then, for δE = 0.2 and R2 = .1, we would

need 1542 units for each study in our example; With R2 = .5 we still would need 858 units

per study. From these results, it is clear that achieving a high replication probability

requires high precision for both studies.

Re-analysis of the Open Science Collaboration Data

Using the data set from the study of the Open Science Collaboration (2015), we

compare the performance of the discussed correspondence measures with real data and

assess whether the choice of a specific correspondence measure makes a difference in

practice. The re-analysis also serves as a demonstration for how the correspondence test

can be used to analyze results of pairwise replication studies and highlights that post-hoc

replication efforts tend to be underpowered. The OSC data consist of 100 replications of

statistically significant results of original studies in psychology. Since each replication effort

consists of an original study and a single replication study we can apply our

correspondence measures to each replication pair. Since the effect sizes in the OSC data set

were reported in terms of Pearson’s correlation r, with no original effect sizes or standard

errors reported, we applied Fisher’s z-transformation to convert the correlations to z-scores

(z = arctanh(r)) and computed corresponding standard errors for each estimate of an effect

size (σ = 1√
n−3). Though the effect sizes and standard errors on the raw scales would be

preferable for assessing replication success, the z-scores provide a good approximation and

are sufficient for our purpose of comparing the correspondence measures’ performance. Of

the original 100 studies, the OSC team reported that standard errors are only calculable

for 73 of them—specifically, the studies that reported their results with a t-test, F -test

with 1 numerator degree of freedom, or a Pearson’s r. For the other studies that reported
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their results with a χ2-statistic or an F -statistic with more than 1 numerator degree of

freedom, standard errors are not calculable as these test statistics correspond to analyses

with more than two variables (i.e., treatment conditions).

With these 73 studies, correspondence between the original and replication effects is

assessed based on their conclusion-based correspondence in significance pattern, and their

distance-based difference, equivalence and correspondence test. We conducted the

equivalence and correspondence test with three different equivalence thresholds in terms of

Pearson’s r (r = 0.1, 0.3, 0.5, which corresponds to thresholds of δE = 0.1, 0.31, 0.55 in SD

units). For each correspondence measure, the portion of successful replications is shown in

Table 5.

For the correspondence in significance measure we obtain a replication rate of 37%

which is well aligned with the 36% that OSC found when judging replication by

correspondence in significance. Switching to the distance-based correspondence measures,

the difference test suggests that 71% of the studies successfully replicated. To probe

whether this high replication success is due to a lack of power or whether the obtained

effect estimates are truly very similar, we conduct the equivalence and correspondence

tests. Since the replication rates for the equivalence test are rather low, ranging from 0% to

8% and 40% for thresholds δE = 0.1, 0.3, and 0.5, respectively, there is strong indication

that both the equivalence and difference tests lacked sufficient power to establish

equivalence or a difference in effects, respectively. This is confirmed by the very high

Indeterminacy rate of the correspondence test, which is 71% for δE = 0.1 and 64% for

δE = 0.3. Only when a threshold of δE = 0.5 is used the Indeterminacy percentage drops

down to 40%. For thresholds δE = 0.1 and 0.3, Equivalence is established for none (0%) or

only 7% of the replications. To increase the Equivalence percentage to 32% we would need

to use an unreasonably large equivalence threshold of δE = 0.5. However, a significant

Difference is indicated for 29% of the studies, with 1% and 8% suggesting a Trivial

Difference for δE = 0.3 and 0.5, respectively.
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As expected, the Equivalence and Indeterminacy rates of the correspondence test

strongly depend on the magnitude of the chosen equivalence threshold. As the threshold

increases, the likelihood of replication success increases while the inconclusive outcome of

Indeterminacy become less likely. The overall conclusion about a difference in effects does

not depend on the chosen threshold. As the threshold increases, the split between a

Difference and a Trivial Difference changes, with more Trivial Differences observed when

the threshold is higher. The choice of an appropriate equivalence threshold should be

informed by the largest acceptable difference in effects that researchers consider as being in

agreement with subject matter theory or meaningful with regard to the population of

interest. The threshold should be smaller than the largest difference considered as

inconsequential or insufficiently meaningful. Lacking this information for each single study,

we examined the differences between the original and replicated effect estimates, and

transformed those differences back to the scale of Pearson’s r. The resulting average

absolute difference in observed effects across all studies is 0.29 (with a median of 0.24).

This explains the low Equivalence rates for thresholds of δE = 0.1 and 0.3.

Overall, the results in Table 5 indicate that the choice of an appropriate

correspondence measure matters. The equivalence and correspondence test apparently

suffer from insufficiently powered studies as indicated by the high Indeterminacy

percentage. As the OSC dataset is comprised of post-hoc replications, it is unsurprising

that Indeterminacy was so common. This underscores the importance of prospectively

planned replication studies, as this makes it more likely that sufficient power is attained to

show replication success. Insufficient power is most likely also an issue for the

correspondence in significance pattern, but since the true effect sizes are not known,

insufficient power and actual effect differences contribute to the low replication percentage.

Finally, note that the low replication rates of the equivalence test and the correspondence

in significance pattern may also be due to publication biases or questionable research

practices in the original studies.
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Discussion

In this article we investigated the statistical properties of commonly used and some

new correspondence measures under ideal conditions (absent of any publication bias and

questionable research practices) and provided formulas for determining individual study

MDESRs that are needed to achieve a predefined replication probability.

Although conclusion-based measures like correspondence in significance pattern

have the disadvantage that the replication probabilities depend on the unknown true

effects, they are, in general, less demanding with regard to sample size needs unless the

true effects are small. Despite their dependence on the magnitude of the true effects,

conclusion-based measures are of interest whenever the research question of the replication

effort takes a policy perspective. That is, would researchers draw the same conclusion

about the effectiveness of an intervention or treatment from two independent but

comparable studies? Whether the effect magnitudes differ is not of concern here.

Distance-based measures assess the similarity of the two effect estimates rather than

the congruence of conclusions derived from the two studies. The main advantage of

distance-based measures is that the replication probabilities do not depend on the

magnitude of the unknown true effects but on their difference only. Thus, determining

sample size requirements to ensure a predefined replication probability is easier for

distance- than conclusion-based measures. However, equivalence and correspondence tests

require the specification of an equivalence threshold that is considered negligibly small or

inconsequential for a given replication effort.

The assessment of replication success or failure depends on the choice of the

correspondence metric. Measures may contradict each other. For instance, the

correspondence test might reveal Equivalence of the two effect estimates when considered

jointly, while the estimate may be significant in one study but non-significant in the other

(which may even occur for identical effect estimates). Conversely, both studies may result

in a significant positive effect, but the difference in effect sizes might result in a significant
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Difference outcome when the correspondence test is applied. Thus, it is important that

researchers choose their preferred correspondence measure before analyzing the data,

ideally when planning the replication effort.

Whenever the main goal of a replication effort is about demonstrating stable effects

or learning about effect heterogeneity, the correspondence test should be the preferred

measure because it is able to explicitly distinguish between Equivalence, (Trivial)

Difference, and Indeterminacy. Sometimes, the two studies might be sufficiently powered

to establish Equivalence if the underlying true effects are (almost) identical, or to establish

a Difference if the the true effects are sufficiently different across the two studies.

Moreover, an Indeterminacy outcome prevents researchers from over-interpreting the result

of a replication effort and points towards the need for more evidence. Thus, the

correspondence test is a severe test (Mayo, 2018) in the sense that it has a high probability

of indicating Equivalence if the effects are equivalent, a high probability of indicating a

(Trivial) Difference if the effects actually differ, and a high probability of Indeterminacy if

the evidence is insufficient to establish Equivalence or a (Trivial) Difference. None of the

other correspondence measures achieves this level of severity. A key requirement for

making effective use of the correspondence test is the prospective planning of replication

studies. The sample size requirements to consistently show results other than

Indeterminacy are quite high, and are unlikely to be attained from a post-hoc replication

effort. Thus, a move away from post-hoc replication studies towards more prospectively

planned ones is necessary to make use of methods most suited for assessing replication

success and failure like the correspondence test.

However, the main practical challenge with all correspondence measures is the

potential lack of power to demonstrate equivalence even if the underlying true effects are

identical. To guarantee replication probabilities of at least .8, the MDESR must be quite

small for both studies. Thus, without prospectively planned and sufficiently powered

replication efforts, researchers should not be surprised to regularly see failed replications
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even if the underlying effects are (almost) identical. After all, replication efforts address a

research question that is different from demonstrating an effect only once in a single study.

Thus, power considerations must appropriately reflect the replication question. One way to

increase the replication probabilities (provided the true effects are not too different) is to

conduct prospectively planned replications with sufficiently powered individual studies. In

general, the required MDESRs will be smaller than what is needed for the demonstration of

an effect in a single study. Alternatively, one may use the same MDESs but increase the

power to at least .9 or .95 instead of using the conventional power of .8.

Although we have assumed throughout this article that the effect estimates were

obtained from an RCT, these results generalize to effect estimates from quasi-experimental

and observational studies, provided the assumptions of the Causal Replication Framework

hold. Observational studies are likely to have larger sample sizes than RCTs, leading to

effect estimates with more precision. Thus, well-designed and planned observational studies

could make use of the correspondence test and be more likely to have sufficient power to

obtain a result other than Indeterminacy.

Another way out of the replication crisis is to acknowledge that single studies are

unlikely to be sufficiently powered for pairwise replication assessments, and to conduct an

entire series of prospectively and systematically planned replications. While two studies

often will not have sufficient power to show conclusive evidence either of replication success

or failure, evidence from multiple replication efforts can provide more power (Hedges &

Schauer, 2019). Meta-analytic techniques such as the Q-statistic (Hedges & Schauer, 2018)

can be used to assess if the effect heterogeneity among any number of replications exceeds

a certain threshold, and response surface modeling can be used to assess and model effect

heterogeneity if present (Box & Draper, 2007; Cooper et al., 2011; Rubin, 1992). Then,

even in the presence of effect heterogeneity, more stable and reliable knowledge about

interventions or treatments can be derived from multiple, potentially under-powered

replications than from two highly powered studies. However, whether the overall sample
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size requirements across all studies entering a meta-analysis are less demanding than for

two larger studies, particularly if the multiple studies vary considerably with respect to

populations and settings, still needs to be investigated.

But even with a series of replication studies, pairwise assessments of replication

success or failure should be conducted. First, researchers might want to assess replication

success or failure after the results from the first two or three studies are in. Second, not all

replication studies may be directly comparable by design. In such situations, researchers

should assess pairwise correspondence for comparable studies (in addition to a

meta-analysis or response surface model). Third, if effect heterogeneities are suspected,

then it makes sense to investigate which effects significantly differ from each other. This

helps identify effect moderators to establish generalizability boundaries or constraints on

generality (COG; Simons et al., 2017).

Pairwise replication assessments can be particularly useful when researchers have a

goal of falsifying a causal claim. For instance, if a study makes a claim about the

effectiveness of a treatment based on an observational study, it is desirable to examine if

this finding holds under an RCT. Correspondence metrics are useful in assessing whether

the results of an RCT have falsified the claims of an observational study. If paired with a

research design such as a within-study comparison, the researcher has some degree of

control over sources of effect heterogeneity such as differences in settings or populations

(Wong & Steiner, 2018a). This allows for a priori planning of the replication study to

ensure a suitable replication probability is achieved. The correspondence test is the

best-suited measure for this purpose as it enables researchers to understand whether their

replication effort falsified the original finding, supported it, or if there is insufficient

information to make a claim either way.

For pairwise replication assessments, we advocate using the correspondence test with

its four possible outcomes of Equivalence, Trivial Difference, Difference, and Indeterminacy,

because it allows researchers to clearly distinguish between replication success and failure
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with regard to the magnitude of the underlying true effects. The application of the

correspondence test also highlights that the replication crisis is a crisis of indeterminacy

rather than an explicit failure. Replication failure due to a (Trivial) Difference in effects

does not need to be regarded as failure as long as the source for the difference is causally

identifiable (Steiner et al., 2019; Wong et al., 2021). In such situations, researchers actually

learn from failed replications—they provide information that is at least as meaningful as

establishing the comparability of effect sizes in direct replication efforts.
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Table 1

Assessing Replication Success: Example

Study
Effect estimate

(standard error)
Conclusion

Study 1 12 pts (4 pts) significant

Study 2 11 pts (7 pts) non-significant

Difference Study 1 vs 2 1 pt (8 pts) non-significant

Correspondence Measure Outcome
Replication

conclusion

Significance pattern different failure

Difference test non-significant success

Equivalence test (3 pts threshold) non-significant failure
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Table 2

Probabilities for each outcome of the correspondence test (CT )

Case 1 Case 2

CT Outcome P (ET = 1) ≤ P (DT = 1) P (ET = 1) > P (DT = 1)

P (CT = EQU) P (ET = 1) P (DT = 1)

P (CT = DIF ) 1 − P (DT = 1) 1 − P (ET = 1)

P (CT = TRI) 0 P (ET = 1) − P (DT = 1)

P (CT = IND) P (DT = 1) − P (ET = 1) 0

The table shows the probability of the Equivalence, Difference, Trivial Difference, and Inde-

terminacy outcomes in terms of replication probabilities of the Equivalence Test (ET) and

Difference Test (DT). The CT probabilities depend on the sum of the replication probabil-

ities for the ET and DT, that is, whether the sum is less than or equal to one (Case 1) or

greater than one (Case 2). Each of the two columns sums to one.
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Table 3

Required replication minimum detectable effect size (MDESR) and study-specific sample

sizes for the correspondence in significance pattern under different values of the true effects

τ1 = τ2 = τ

τ = 0.1 τ = 0.3 τ = 0.5 τ = 1

MDESR 0.09 0.26 0.44 0.88

Sample size (n) 4016 440 152 32

R2 (i.e., variance explained by treatment indicator Zik) .003 .02 .06 .25
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Table 4

Required replication minimum detectable effect size (MDES ∗
R) and study-specific sample

sizes for the equivalence test with different equivalence thresholds (δE, in SD units) and

model R2 (= R2
1 = R2

2), assuming no difference between true effects (τ1 − τ2 = 0)

δE = 0.1 δE = 0.2 δE = 0.3 δE = 0.5

MDES ∗
R 0.07 0.14 0.20 0.33

Sample size (n)

R2 = .1 6166 1542 686 248

R2 = .3 4796 1200 534 192

R2 = .5 3426 858 382 138
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Table 5

Proportion of successful replications of 73 replication efforts of the Open Science

Collaboration (2015)

Correspondence Measure Proportion of Successful Replications

Significance Pattern, S(α = .05) .37

Difference Test, DT (αR = .05) .71

Equivalence Threshold (δE) δE = .1 δE = .3 δE = .5

Equivalence Test, ET (δE, αR = .05) 0 .08 .40

Correspondence Test, CT (δE, αR = .05)

Equivalence 0 .07 .32

Difference .29 .27 .21

Trivial Difference 0 .01 .08

Indeterminacy .71 .64 .40

Note that proportions for the correspondence test (CT ) may not sum to 1 due to rounding.
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Figure 1

Replication probability of the correspondence in significance pattern
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Replication probabilities are shown as function of the ratio of the true effect to the minimum

detectable effect sizes, τk/MDESk, for studies k = 1, 2. The contour lines indicate specific

replication probabilities.
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Figure 2

Replication probability of the difference test
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Replication probabilities are depicted as function of the ratio of the absolute value of the

difference in true effects to the average minimum detectable effect size, (|τ1 − τ2|)/MDES ∗.
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Figure 3

Replication probability of the equivalence test
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Replication probabilities are depicted as function of the ratio of the absolute value of the

difference in true effects to the average minimum detectable effect size, |τ1 − τ2|/MDES ∗,

and the ratio of the equivalence threshold to the average minimum detectable effect size,

δE/MDES ∗. The contour lines show the replication probability attained for a given pair of

ratios.
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Figure 4

Replication probability of the correspondence test
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δE/MDES ∗. The contour lines show the replication probability attained for a given pair of
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Figure 5

Probability boundaries of the outcomes of the correspondence test
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The grey regions indicate ratio combinations for which the denoted outcome has a probability

of at least .5. In the two white regions, the probability of any particular outcome is less than

.5. These probabilities are based on the ratio of the absolute value of the difference in true

effects to the average minimum detectable effect size, |τ1 − τ2|/MDES ∗ and the ratio of the

equivalence threshold to the average minimum detectable effect size, δE/MDES ∗.



ASSESSING REPLICATION SUCCESS 61

Figure 6

Probability boundaries of the outcomes of the correspondence test with area marking

presumed current replication efforts
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See notes on as Figure 5. The areas demarcated by the solid black line, dashed line, and

dotted line represent the presumed dominating outcomes when the individual minimum

detectable effect sizes of replication studies are powered with .8, .9, and .95, respectively.



ASSESSING REPLICATION SUCCESS 62

Appendix A

Correspondence in Magnitude and Sign

Definition and Correspondence Probability

The simplest measure for comparing two effect estimates is to assess whether they

both exceed or fall below a pre-specified magnitude threshold, δM (Wilde & Hollister,

2007). If the threshold is chosen to be zero, assessing correspondence of the two effect

estimates is equivalent to comparing the estimates’ sign. Importantly, correspondence in

magnitude or sign does not account for any sampling uncertainty in effect estimates.

For a given threshold δM , correspondence in magnitude, M(δM), can be formalized

as an indicator function, 1[.], that returns 1 either if both effect estimates are greater than

or equal to δM or both are less than δM ; otherwise, the indicator function returns 0 and

indicates a lack of correspondence:

M(δM) = 1[(τ̂1 ≥ δM & τ̂2 ≥ δM) ∨ (τ̂1 < δM & τ̂2 < δM)], (A1)

The replication probability, that is, the probability that the correspondence measure

indicates replication success, P (M(δM) = 1), is the product of probabilities that each effect

estimate equals or exceeds the magnitude threshold plus the product of probabilities that

each will fall below the magnitude threshold. Assuming that the effect estimators’

sampling distributions are asymptotically normal with expectations τ1 and τ2 and variances

σ2
τ̂1 and σ2

τ̂2 , the replication probability is given by

P (M(δM) = 1|τ1, τ2, στ̂1 , στ̂2 , δM) =

[1 − Φ(δM − τ1

στ̂1

)][1 − Φ(δM − τ2

στ̂2

)] + [Φ(δM − τ1

στ̂1

)][Φ(δM − τ2

στ̂2

)],
(A2)

where Φ is standard normal distribution function.

A2 indicates that the replication probability depends on the threshold δM , the

unknown true effects τ1 and τ2, and the sampling variance of the estimators, σ2
τ̂1 and σ2

τ̂2 .

While the estimator variances can be directly inferred from the two studies, the magnitude

of the two true effects remains unknown. Since the replication probability also depends on
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the threshold δM , choosing the threshold in advance is crucial, and should be based on

subject matter expertise and the minimum effect size of substantive interest. The default

choice of δM = 0 might not always be the best choice, particularly so when sampling

uncertainty is not taken into account or when small effects have no policy relevance.

Correspondence Probability Plot

Figure A1 shows the contour plot for two studies where the ratio (τk − δM)/MDESk

may differ across the two studies. The x- and y-axes show the ratios for study 1 and 2,

respectively. In interpreting the plot, we focus on the correspondence in sign where the

magnitude threshold is set to zero, δM = 0, such that the ratio directly reflects the size and

sign of the unknown true effects in relation to the study-specific MDESs. The probability

plot indicates that satisfactory replication probabilities of P (M(δM = 0) = 1) > .8 are

guaranteed only when both studies’ ratio τk/MDESk is greater than 0.43 or less than -0.43.

If one study’s ratio is larger, then the other study’s ratio may be slightly smaller, but must

always exceed about 0.3. This suggests that neither study needs to be sufficiently powered

to actually detect the true effect (via NHST). This is so, because correspondence in sign

does not rely on NHST and thus ignores sampling uncertainty. However, if the sign of the

true effects differs, then the replication probability will always be below .5.

From Figure A1 it becomes clear that the values of the true effects greatly impact

the replication probability. Even with the MDESs known, researchers still need to have

reliable knowledge about the magnitude of the true effects to be able to estimate the

replication probability or to sufficiently power the two studies to guarantee a replication

probability greater than .8.
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Figure A1

Replication probability of correspondence in sign
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Figure A1 shows the replication probability for correspondence in sign dependent on the ratio

of the true effect minus the magnitude threshold of both studies to the minimum detectable

effect sizes, (τk − δM)/MDESk, for studies k = 1, 2. The contour lines indicate specific

replication probabilities.

MDES Formula for Sample Size Calculations

Based on the formula for the replication probability in Equation (A2), the necessary

MDES to obtain a fixed replication probability pR is given by

MDES = δM − |τ |

Φ−1
(

1−
√

1−2(1−pR)
2

) × (z1−α/2 + z1−β), (A3)
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assuming δM < |τ | to ensure the MDES is positive.
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Appendix B

Proofs for replication probabilities

Correspondence in magnitude and sign

The replication probability for correspondence in magnitude is the product of the

probabilities that each effect estimate equals or exceeds the magnitude threshold plus the

product of probabilities that each will fall below the magnitude threshold:

P (M(δM) = 1|τ1, τ2, δM) = P1(τ̂1 ≥ δM)P2(τ̂2 ≥ δM) + P1(τ̂1 < δM)P2(τ̂2 < δM), (B1)

where P1 and P2 are the randomization or sampling distributions of τ̂1 and τ̂2, respectively.

While P1 and P2 also depend on the true effects and the magnitude threshold, we explicitly

indicate this dependence only in the expression for the replication probability after the

conditioning bar.

The probability of any given effect estimate τ̂k being larger than the magnitude

threshold δM , with k = 1, 2 and assuming τ̂k is distributed normally, is

P (τ̂k > δM), τ̂k ∼ N(τk, σ2
τk

)

= P ( τ̂k − τk

στ̂k

>
δM − τk

στ̂k

)

= 1 − Φ(δM − τk

στ̂k

),

where Φ represents the standard normal probability density function.

To find the replication probability for two studies, this value is computed for both

studies. The total replication probability is then the sum of the product of these two values

and the probability that neither effects are larger than δM . Thus, the overall replication

probability is

P (M(δM) = 1|τ1, τ2, δM) = P (τ̂1 > δM)P (τ̂2 > δM) + (1 − P (τ̂1 > δM))(1 − P (τ̂2 > δM)).

Correspondence in significance pattern

To determine the replication probability, we first compute for each study the

probability that the effect estimate is positive and significant (denoted ps+
k ) and the
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probability that effect estimate is negative and significant (denoted ps−
k ). These two

probabilities depend on the critical z-value for the selected α, and the observed z-score:

ps+
k = Pk(zk ≥ z∗

1−α/2)

ps−
k = Pk(zk ≤ z∗

α/2),
(B2)

where, again, Pk is the randomization or sampling distribution of the estimator τ̂k. For

k = 1, 2 studies both testing the null hypothesis H0 : τk = τ0 with study-specific effect

estimators τ̂k with standard errors στ̂k
, a critical z-value z∗

1−α/2 for the two-tailed

significance test, and conditional on the true value of the effect τk, ps+
k is given by

ps+
k = P ( τ̂k − τ0

στ̂k

≥ z∗
1−α/2)

= P ( τ̂k − τ0

στ̂k

− τk − τ0

στ̂k

≥ z∗
1−α/2 − τk − τ0

στ̂k

)

= P ( τ̂k − τk

στ̂k

≥ z∗
1−α/2 − τk − τ0

στ̂k

)

= 1 − Φ(z∗
1−α/2 − τk − τ0

στ̂k

).

The probability that the observed effect is significant in the left tail, ps−
k , is calculated in a

similar way, with a critical value of z∗
α/2:

ps−
k = P ( τ̂k − τ0

στ̂k

≤ z∗
α/2)

= P ( τ̂k − τ0

στ̂k

− τk − τ0

στ̂k

≤ z∗
α/2 − τk − τ0

στ̂k

)

= P ( τ̂k − τk

στ̂k

≤ z∗
α/2 − τk − τ0

στ̂k

)

= Φ(z∗
α/2 − τk − τ0

στ̂k

).

The overall probability of showing correspondence in significance pattern for two studies is

equal to the sum of the probability that both studies are significant in the right tail, the

probability that both studies are significant in the left tail, and the probability that neither

are significant. Assuming that the probability of obtaining a certain significance result in

study 1 is independent of the probability of finding a certain significance result in study 2,
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the replication probability is:

P (S(α) = 1|τ1, τ2, στ̂1 , στ̂2 , α) = ps+
1 ps+

2 + ps−
1 ps−

2 + (1 − ps+
1 − ps−

1 )(1 − ps+
2 − ps−

2 )

= [1 − Φ(ζ+
1 )][1 − Φ(ζ+

2 )] + [Φ(ζ−
1 )][Φ(ζ−

2 )] + [Φ(ζ+
1 ) − Φ(ζ−

1 )][Φ(ζ+
2 ) − Φ(ζ−

2 )],

where ζ+
k = z∗

1−α/2 − τk−τ0
στ̂k

and ζ−
k = z∗

α/2 − τk−τ0
στ̂k

Difference test

The probability of finding replication due to a non-significant difference test is

equivalent to the probability that the observed test statistic based on observed effects τ̂1

and τ̂2 and the standard error of their difference
√

σ2
τ̂1 + σ2

τ̂2 is less extreme than the critical

z-values z∗
1−αR/2 for a given Type I error rate for the replication test αR:

P (−z∗
1−αR/2 <

τ̂1 − τ̂2√
σ2

τ̂1 + σ2
τ̂2

< z∗
1−αR/2|τ1, τ2)

= P (−z∗
1−αR/2 − τ1 − τ2√

σ2
τ̂1 + σ2

τ̂2

<
τ̂1 − τ̂2 − (τ1 − τ2)√

σ2
τ̂1 + σ2

τ̂2

< z∗
1−αR/2 − τ1 − τ2√

σ2
τ̂1 + σ2

τ̂2

)

= Φ(z∗
1−αR/2 − τ1 − τ2√

σ2
τ̂1 + σ2

τ̂2

) − Φ(−z∗
1−αR/2 − τ1 − τ2√

σ2
τ̂1 + σ2

τ̂2

)

Equivalence test

The probability of replication due to a significant equivalence test is the probability

that the observed difference in effects τ̂1 − τ̂2 within the bounds set by the equivalence

threshold ±δE, rescaled to be on the same scale as the test statistic:

P (− δE√
σ2

τ̂1 + σ2
τ̂2

+ z∗
1−αR

≤ τ̂1 − τ̂2√
σ2

τ̂1 + σ2
τ̂2

≤ δE√
σ2

τ̂1 + σ2
τ̂2

− z∗
1−αR

|τ1, τ2)

= P (−δE − (τ1 − τ2)√
σ2

τ̂1 + σ2
τ̂2

+ z∗
1−αR

≤ τ̂1 − τ̂2 − (τ1 − τ2)√
σ2

τ̂1 + σ2
τ̂2

≤ δE − (τ1 − τ2)√
σ2

τ̂1 + σ2
τ̂2

− z∗
1−αR

|τ1, τ2)

= Φ(δE − (τ1 − τ2)√
σ2

τ̂1 + σ2
τ̂2

− z∗
1−α) − Φ(−δE − (τ1 − τ2)√

σ2
τ̂1 + σ2

τ̂2

+ z∗
1−α)
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Note that, depending on the choice of δE, the replication probability here can be

negative. δE must be sufficiently larger than the true difference in effects τ1 − τ2 to ensure

that the first term in the final expression is larger than the second. In the applications

here, if the replication probability is calculated to be negative for the equivalence test, it is

set to 0.

Correspondence Test

For the condition where P (ET = 1) ≤ P (DT = 1), the probabilities for the

outcomes of Equivalence and Difference are the same as the outcome of the equivalence

test and difference test. The probability of Indeterminacy is then equal to whatever is

necessary so that the three probabilities sum to 1, i.e. P (DT = 1) − P (ET = 1).

When P (ET = 1) > P (DT = 1), the sum of these two probabilities exceeds one,

indicating an overlapping region where both the equivalence test and difference test can be

significant. Thus, the probability of Equivalence is equal to the probability of the difference

test showing correspondence P (DT = 1), as this is a necessary condition for the

Equivalence result. The probability of Difference is simply 1 − P (ET = 1). Then, the

probability of a Trivial Difference is the degree of overlap between P (DT = 1) and

P (ET = 1), P (ET = 1) − P (DT = 1).

Figure B1 visualizes the possible outcomes of the correspondence test. Panel A

shows the three possibilities when P (DT = 0) + P (ET = 1) ≤ 1. Here, when the difference

between effects is close to 0, Equivalence is likely, while when the difference is far from 0,

Difference is likely. The space between these outcomes leads to an outcome of

Indeterminacy. Panel B of Figure B1 shows the possibilities when

P (DT = 0) + P (ET = 1) > 1. Here, the regions of Equivalence and Difference overlap,

allowing for the possibility of a Trivial Difference outcome.
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Figure B1

Visualization of possible results of the correspondence test

− z1−α 2 − e1−α 0 e1−α z1−α 2

A

Equivalence
Difference

− e1−α − z1−α 2 0 z1−α 2 e1−α

B

Panel A visualizes the Indeterminacy situation. The Equivalence region is marked by the

solid line, and bound by two critical thresholds ±e1−α, that is, the one-sided z-values of

the equivalence test. The Difference regions are marked by the dashed line, and begin at

the critical values ±z1−α/2. These regions do not overlap, and thus the empty white space

between them is the region of Indeterminacy. Panel B shows the Trivial Difference situation,

when the regions do overlap.
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Appendix C

Proofs for Required Minimum Detectable Effect Sizes

Correspondence in Sign or Magnitude

Here, we assume that the effect estimates for studies 1 and 2 will have the same

standard error, στ̂1 = στ̂2 = στ̂ , and the same true effect τ . Let p = Φ( δM −τ
στ̂

) and pR be the

replication probability:

pR = p2 + (1 − p)2

0 = 2p2 − 2p − (pR − 1)

p =
2 ±

√
4 − 4(2)(1 − pR)

4

Φ(δM − τ

στ̂

) =
1 ±

√
1 − 2(1 − pR)

2

στ̂ = δM − τ

Φ−1
(

1±
√

1−2(1−pR)
2

)
If the numerator is positive, then the addition part of the denominator will produce a valid

(i.e., non-negative) standard error. If the numerator is negative, then the subtraction part

will produce a valid standard error. To ensure the result is always positive, the absolute

value of τ can be taken. Multiplying this result by z1−αR/2 + z1−βR
produces the required

MDES :

MDES = (z1−α/2 + z1−β) δM − |τ |

Φ−1
(

1±
√

1−2(1−pR)
2

)
Correspondence in significance

For a set of one-sided tests with equal, positive effects τ1 = τ2 = τ and probabilities

of being significant ps+
1 = ps+

2 = ps+ = Φ(z1−α/2 − τ
στ

), the required MDES for a specified
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replication probability pR is

pR = ps2
+ + (1 − ps+)2

0 = 2ps2
+ − 2ps+ + 1 − pR

ps+ =
1 ±

√
(1 − 2(1 − pR))

2

Φ(z1−α/2 − τ

στ̂

) =
1 ±

√
1 − 2(1 − pR)

2

στ̂ = τ

z1−α/2 − Φ−1(1±
√

1−2(1−pR)
2 )

MDES = (z1−α/2 + z1−β) τ

z1−α/2 − Φ−1(1±
√

1−2(1−pR)
2 )

.

The use of α/2 in this formula will result in the required MDES to achieve correspondence

in significance for a two-sided test with Type I error α, rather than a one-sided test with

Type I error rate α.

Equivalence Test

For a given replication probability pR, the necessary standard error for both studies

(assuming equal standard errors, σ2
τ̂1 = σ2

τ̂2 = σ2) and average MDES ∗ (assuming

standardized effects) is found by:

pR = Φ( δE√
2σ2

− z1−αR
) − Φ( −δE√

2σ2
+ z1−αR

)

pR = 2
(

Φ( δE√
2σ2

− z1−αR
) − .5

)

Φ−1(pR

2 + .5) = δE√
2σ2

− z1−αR

√
2σ2 = δE

Φ−1(pR

2 + .5) + z1−αR

σ =

√√√√1
2

(
δE

Φ−1(pr

2 + .5) + z1−αR

)2

MDES ∗ = (z1−αR/2 + z1−βR
)

√√√√1
2

(
δE

Φ−1(pR

2 + .5) + z1−αR

)2

.



Translational Abstract. 

Research reproducibility and effect replication has become a topic of major concern throughout the 

social and behavioral sciences. During the last decade, low replication rates of published research 

findings became a major issue, leading to the public proclamation of a "replication crisis". Given the 

importance of the issue, it is crucial to consider which methods researchers use to assess replication 

success because replication success or failure strongly depends on the chosen measure for assessing 

correspondence in effect estimates. This article discusses the statistical properties of selected 

correspondence measures for comparing the results of two independent replication studies. One of the 

measures is the novel correspondence test that combines the outcomes of a difference and significance 

test. To facilitate the computation of correspondence measures and the calculation of sample size 

requirement to achieve a predetermined probability for replication success R and Stata tools are 

provided. 
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