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Abstract. Summarization enhances comprehension and is considered an effec‐
tive strategy to promote and enhance learning and deep understanding of texts.
However, summarization is seldom implemented by teachers in classrooms
because the manual evaluation requires a lot of effort and time. Although the need
for automated support is stringent, there are only a few shallow systems available,
most of which rely on basic word/n-gram overlaps. In this paper, we introduce a
hybrid model that uses state-of-the-art recurrent neural networks and textual
complexity indices to score summaries. Our best model achieves over 55% accu‐
racy for a 3-way classification that measures the degree to which the main ideas
from the original text are covered by the summary . Our experiments show that
the writing style, represented by the textual complexity indices, together with the
semantic content grasped within the summary are the best predictors, when
combined. To the best of our knowledge, this is the first work of its kind that uses
RNNs for scoring and evaluating summaries.

Keywords: Automated summary evaluation · Recurrent neural network
Semantic models · Word embeddings

1 Introduction

Summarization is an effective strategy to promote and enhance learning and deep
understanding of the subject matter among students [1, 2]. Summarizing a text allows
readers to differentiate between relevant and irrelevant information within texts,
integrate content with pre-existing knowledge, allowing for both better retention of
the text content [3], as well as deeper comprehension of the material [4]. Earlier
studies have indicated that summary writing helps students retain new information
[1]. Summary strategies are also effective for different types of learners including
native speakers [5], language learners [6], students with learning disabilities [7] and
students with low literacy skills [8]. A meta-analysis indicated that summarization
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enhanced comprehension in 18 out of 19 studies [9]. Further, summarization is
particularly useful for lower-skilled readers [10].

Given the effectiveness of summarizing texts, our aim is to develop computer-based
summarization strategy training and practice that parallels an existing implementation
of self-explanation and comprehension strategy practice within the Interactive Strategy
Training for Active Reading and Thinking (iSTART) [11]. iSTART was developed to
train comprehension strategies that help students understand complex, informational
texts. Previous research demonstrated the effectiveness of iSTART for middle school
[11], high school [12, 13], and college students [14, 15]. Currently, iSTART includes
lesson videos covering four summarization strategies (deletion, main ideas, replace‐
ment, and topic sentences; see [16]). The development of practice modules in which
students practice writing and revising summaries in turn necessitates a Natural Language
Processing (NLP) algorithm capable of scoring the quality of summaries. ITSs that
leverage NLP can provide students immediate, individualized feedback on their
constructed (i.e., written) responses. This feedback is indispensable to learners
attempting to improve their literacy skills [17].

Although summarization practice has proven effectiveness, teachers can find it chal‐
lenging to implement practice activities because evaluating student summaries requires
a great deal of effort and time [18]. Automated methods for summary evaluation tradi‐
tionally involve evaluating quality metrics such as readability, content, conciseness,
coherence and grammar [19]. In recent years, the research community has been
successful in developing various measures for evaluating summaries. Some of the auto‐
mated summary evaluation tools include Recall-Oriented Understudy for Gisting Eval‐
uation (ROUGE [20]), ParaEval, Summary Input similarity Metrics (SIMetrix [21],
QARLA [22], and SEMantic similarity toolkit (SEMILAR [23]).

The purpose of this study is to investigate the use of one of the most recent machine-
learning techniques – recurrent neural networks (RNNs) [24] for automated scoring of
summaries. To the best of our knowledge, this is the first work of its kind that uses RNNs
for scoring and evaluating summaries.

The next section describes existing solutions and approaches used in literature for
automated summary evaluation, and general deep-learning methods. In Sect. 3, the
corpus, scoring rubric, followed by the proposed solution along with a detailed archi‐
tecture is discussed. Finally, we report the results and conclude with discussions and
future scope of the work.

2 Related Work

Evaluation of summaries is generally classified as intrinsic or extrinsic [25]. Intrinsic
evaluation measures the text quality of summaries assessed by human annotators for
fluency, informativeness and coverage, or evaluates the content of the summary using
cue-words, term-frequency and inverted document frequency, cohesion methods, and
Latent Semantic Analysis (LSA) [26]. By contrast, extrinsic evaluation is mostly task
based involving document categorization, question answering and information retrieval
[27]. The work described here focuses on intrinsic summary evaluation. Some of the
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earliest works in intrinsic summary evaluation include evaluation of chemistry docu‐
ments [28] and electronic news publications [29]. Both of the latter studies used small
data sets of 200 to 250 documents for evaluation. However, some early research efforts
in large-scale evaluation of text summarization include TIPSTER SUMMAC [30] and
the Document Understanding Conference (DUC). Researchers contributing to DUC
have claimed that at large scales, even simple manual summary evaluations of content
coverage and linguistic traits (e.g., capitalization errors, incorrect word order, unrelated
fragments joined into one sentence, unnecessarily repeated information, misplaced
sentences) requires a few thousand hours of human efforts [31]. In addition, some studies
[32–35] show that human evaluations can be unstable and inconsistent with low inter-
annotator agreement.

2.1 Automated Summary Evaluation

Some initial efforts towards developing automated summary evaluation metrics used n-
gram overlap [33, 36]. These studies were motivated by the machine translation evalu‐
ation metric BiLingual Evaluation Understudy (BLEU) [37]. ROUGE [20] is one of the
first and most widely used recall-oriented metrics for summary evaluations. ROUGE
compares inputted summaries with one or multiple human written gold-standard
summaries. One of the disadvantages of ROUGE is that all n-grams are considered
equally important when computing the final score. Hovy et al. [38] proposed another
simple metric based on basic elements’ overlap, which are represented by one or two
words, depending on their syntactic role.

Saggion et al. [39] proposed three content-based similarity measures: cosine simi‐
larity, unit overlap (unigrams or bigrams), and longest common subsequence (LCS).
However, they did not discuss how these measures correlated with human evaluation.
Another novel semi-automated approach is the pyramid method [40] which identifies
and compares expert summaries’ content units (SCUs) with to-be-evaluated summaries.

Some researchers have used random indexing [41, 42], that reduces terms by consid‐
ering synonyms, hence allowing greater variations in summaries. Others have used
distribution-similarity measures such as Kullback–Leibler (KL) divergence and Jensen
Shannon (JS) divergence [21, 43], textual entailment [44] and crowdsourcing based LSA
[18] for evaluating summaries. However, relatively few studies have used machine-
learning techniques for summary evaluation beyond the aforementioned regression-
based approaches [45–47].

2.2 Deep Neural Networks and Summary Evaluation

A common architecture used for text representation consists of recurrent neural
networks, in particular Long Short-Term Memory networks (LSTM) [48] and Gated
Recurrent Unit (GRU) [49]. These networks are capable of “memorizing” information,
thus being able to better represent longer segments of text, without the danger of
vanishing/exploding gradients encountered in traditional, normal recurrent neural
networks [50]. These types of networks have been successfully used in most NLP
tasks [51].
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Recurrent neural networks have been improved further by considering different
networks for the forward and backward directions [52]. This is especially useful when
dealing with long text segments, because not all words in the text will have the same
weight (e.g., depending on the language, the ones at the end are in most cases more
important than the ones at the beginning). When using two different networks, the output
for each word is usually represented by the concatenation of the outputs from the two
directions. This way, all the words in the text influence the output for a single word.

We could not find any work that uses deep-learning techniques such as RNNs in
particular for evaluating and scoring summaries. As a result, in order to explore the
performance and success of these latest techniques for summary scoring and evaluation,
we performed several experiments using RNNs.

3 Method

3.1 Corpus Description

We collected a corpus of 636 summaries for 30 texts (range: 20–24 summaries per text)
using the Amazon Mechanical Turk online research service. The 30 texts used for the
summary corpus collection were attained from the California Distance Learning Project
(CDLP)1, with permission from the Sacramento County Office of Education. The CDLP
texts are real, simplified news stories that can be used by low-literate adults to improve
their comprehension skills. The texts cover life-relevant topics, such as health and safety,
housing, family, and money. Each text was between four and eight paragraphs and
ranged from 128 to 452 words (SD = 73.9 words). Flesch-Kincaid grade level was
between 4th and 8th grade (SD = 1.1) for all texts. The participants read and summarized
three texts, randomly selected from the full set of 30 texts. Most of the participants
(210/214) completed the entire summary task, producing three summaries total, for three
separate texts. However, summaries submitted by the four participants who did not
complete the entire task were also included in the corpus.

3.2 Scoring Rubric

Two trained researchers scored the summaries in the corpus on two major dimensions:
(a) main ideas and (b) accuracy of main ideas. Before applying the coding scheme, the
researchers individually examined the original texts, identifying the main ideas from
each. Through discussions, they finalized a list of main ideas for each text. During coding
of the summaries, the trained coders referenced this list of main ideas. For the main ideas
dimension, each summary was scored from 0 (none of the main ideas from the text are
included in the summary) to 3 (all of the main ideas from the text are included in the
summary). For the accuracy of main ideas dimension, each summary was scored from
0 (main ideas present in the summary are completely inaccurate, or no main ideas are
present in the summary) to 3 (all the main ideas in the summary are accurate represen‐
tation of the content from the text).

1 www.cdlponline.org.
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Two trained raters scored the three dimensions for all 636 summaries. Inter-rater
agreement for the Main Idea dimension was kappalinear weighted = .67, r = .78, 71% exact
agreement, and 99% adjacent agreement. Agreement for the Accuracy of Main Ideas
dimension was kappalinear weighted = .44, r = .52, 76% exact agreement, and 91% adjacent
agreement. Differences between the ratings from the two researchers were resolved
through discussions.

The distribution of the scores for main ideas and accuracy of main ideas is presented
in Table 1. Due to the highly unbalanced distribution of the accuracy of main ideas
dimension, it was not included in our follow-up experiments. Moreover, all 14 examples
with a score of 0 for the main ideas dimension were ignored as there were not sufficient
test cases in order to train a classifier.

Table 1. Distribution of output classes.

Score No. of summaries
Main ideas Accuracy of main ideas

0 14 28
1 165 22
2 255 61
3 202 525

3.3 Network Architecture

The network receives as input the summary and the original text, represented with
pretrained Glove [53] word embeddings of size 100, ignoring words that were not part
of the vocabulary. A BiGRU Siamese architecture (Fig. 1) was used to share network
weights for the summary and the whole text. Max-pooling is performed on the forward-
backward concatenated outputs from each cell. This results in two 2 * d vectors (where
d is the size of the GRU cell), representing the summary and the text. These two vectors
are concatenated (“concat” operator from Fig. 1) and passed through two fully-
connected layers (FCN module from Fig. 1).

Fig. 1. Siamese recurrent network architecture.
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The network produces a real number between 0 and 1, whereas our dataset has 3
output classes. Hence, we represented this task as a linear regression. To avoid force-
fitting the network to the boundaries of this interval for the two extreme classes, the
output score was multiplied by 4, resulting in a (0, 4) interval. When using the sigmoid
activation function as output, it a good practice to avoid values close to 0 and 1 because
the gradient for these flat regions is close to 0, making the training process difficult.
Therefore, we split this domain and reassigned the predicted classes (i.e., 1, 2, and 3) as
shown in Fig. 2, where all the three classes have almost equal range in the global interval.

Fig. 2. Regression output.

As a baseline, we tested various complexity indices computed with the ReaderBench
framework [54], which provides indices related to express the writing style of the text,
instead of its content. From the available index categories, we extracted surface, syntax,
word complexity, co-reference, connectives, cohesion, semantic dependencies, and
word lists indices. Indices with low linguistic coverage (more than 20% of the values
were missing) were removed and remaining indices were checked for multi-collinearity
(Pearson r ≥ .9). This cleaning process resulted in 191 features. These features were
used to train two different models: a) individually within a 2-layered fully-connected
network, and b) together within the recurrent network, as shown in Fig. 3. In both the
cases, we tested two ways of using the complexity indices as input to the network: the
difference between the two feature vectors (summaries and text) and the concatenation.
Difference (marked as “diff” in Fig. 3) refers to the mathematic operator and is useful
to highlight discrepancies between each feature or embedding dimension.

Fig. 3. Hybrid architecture of BiGRU, combined with ReaderBench textual complexity indices.
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4 Results

As there were multiple summaries available for each text, the data were split into training
and test sets (80–20). There were no common texts in the two partitions in order to avoid
overfitting. The reported accuracies in Table 2 for each corresponding model were
computed by averaging accuracy over three runs. The results in Table 2 indicate that the
concatenation of feature vectors, despite needing more weights for the training process,
works better and achieves better accuracy than the difference operator. This shows that
important information is lost when the difference between the feature vectors is
computed.

Table 2. Cell size and accuracy of models.

Model Cell size Accuracy (%)
Indices (difference) - 41.90
Indices (concatenate) - 37.14
Siamese 50 50.47
Siamese 100 50.15
Siamese + indices (difference) 50 47.30
Siamese + indices (difference) 100 53.34
Siamese + indices (concatenate) 100 55.24

In addition, we can observe from results in Table 2 that the complexity indices by
themselves have the lowest accuracy, followed by the Siamese BiGRU network when
used separately. The highest accuracy was obtained when combining the Siamese
BiGRU network with the textual complexity indices from ReaderBench. This shows
that both semantic features and writing style are important for summary evaluation.

5 Conclusions

This paper introduces a state-of-the-art model based on recurrent neural networks and
textual complexity indices to evaluate and score summaries. To the best of our knowl‐
edge, this is the first work of its kind and the obtained accuracies of more than 55% is
encouraging, given the size of the dataset. Moreover, our experiments show that the
semantic content of the summary is more important than the writing style represented
by the Readerbench textual complexity indices. However, replications with larger
corpora should be conducted to support this conclusion.

Follow-up studies will also include an attention mechanism proven to be successful
when comparing two or more text fragments by weighting the words with values
computed based on the remainder of the text [55]. This mechanism is primarily used in
question answering, but it can also be applied to summarization tasks by comparing the
summary with the original text. However, the added weights may render the network
too complex for this dataset, therefore reducing accuracy. In addition, the results might
be improved by adjusting the hyper-parameters of the network using a grid-search
method that performs cross-validations on the training set.
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In sum, there are multiple ways in which this work can be validated and improved
upon. However, this study demonstrates important promise in the use of recurrent neural
networks to assess the quality of natural language.
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