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Abstract: Text comprehension is an essential skill in today’s information-rich world, and self- 1

explanation practice helps students improve their understanding of complex texts. This study 2

is centered on leveraging open-source Large Language Models (LLMs), more specifically FLAN-T5, to 3

automatically assess the comprehension strategies employed by readers while understanding STEM 4

texts. The experiments rely on a corpus of 3 datasets (N = 11,833) with self-explanations annotated on 5

4 dimensions: 3 comprehension strategies (i.e., bridging, elaboration, and paraphrasing) and overall 6

quality. Results improved with fine-tuning, using a larger LLM model, and providing examples via 7

the prompt. Besides FLAN-T5, we have also considered GPT3.5-turbo to establish a stronger baseline. 8

Our best model considers a pre-trained FLAN-T5 XXL model and obtained a weighted F1-score of 9

0.721, surpassing the 0.699 F1-score previously obtained using smaller models (i.e., RoBERTa). 10

Keywords: Language Models, Large Language Models, Self-explanation, Self-explanation Strategies 11

1. Introduction 12

Reading and learning from text is a critical skill for learners to acquire new knowledge 13

which is essential for educational and career success. To comprehend text, the reader 14

constructs a mental model of the text while they read. This mental model can be represented 15

at three levels: 1) surface-level knowledge of the exact words in the text, 2) textbase-level 16

semantic representation of ideas, and 3) the situation model that combines the textbase with 17

the reader’s prior knowledge. The ability to leverage strategies that support comprehension 18

is a critical skill that readers need in the absence of the essential prior knowledge necessary 19

to develop a coherent situation model. Proficient readers are more likely to spontaneously 20

employ strategies while reading to help them comprehend difficult texts than students who 21

are less skilled readers [1]. Fortunately, students can learn when and how to implement 22

these reading comprehension strategies through direct instruction and deliberate practice. 23

One such strategy, with considerable evidence supporting its use by students with limited 24

prior knowledge or lower reading skills, is self-explanation. 25

Self-explanation (SE) is the practice of explaining the meaning of portions of a text 26

to oneself while reading. Engaging in self-explanation encourages students to generate 27

inferences, in which they connect sentences or idea units between sections of the text or 28

between texts. Similarly, students may generate elaborative self-explanations in which they 29

connect their own prior knowledge to new information they read in the text. Generating 30

bridging and elaborative self-explanations supports readers’ inference making, which, in 31

turn, supports the development of their mental representation of the text. 32

Developed by McNamara [2], Self-explanation Reading Training (SERT) teaches read- 33

ers the strategies they can use to enhance text comprehension. The training guides students 34
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through each strategy in increasing order of difficulty, starting with comprehension moni- 35

toring. The purpose of comprehension monitoring is to help students understand when 36

they need to implement the remaining strategies to support their comprehension. This 37

work focuses on the three remaining strategies: paraphrasing, bridging inference, and 38

elaboration. Paraphrasing refers to reformulating a sequence of text in one’s own words. 39

SERT can help develop readers’ text comprehension skills by forcing them to access their 40

vocabulary to translate the ideas into a more familiar language. Bridging involves linking 41

multiple ideas across a text or across multiple texts (e.g., two different articles about the 42

same topic). Generating bridging inferences requires the reader to find connections between 43

the ideas and to structure them in a coherent way; this serves to support the development 44

of their mental representation of the text. Elaboration involves linking information in the 45

text and the reader’s knowledge base; this helps the reader integrate new information with 46

existing knowledge. 47

Considerable evidence indicates that these strategies support readers’ comprehension 48

of complex texts. However, additional benefit can be realized when the reader receives 49

feedback about the accuracy or quality of their self-explanation [3]. One way readers can 50

receive feedback is from instructors who review and score self-explanations based on a 51

rubric [4]. This method is time-consuming and does not provide readers with the feedback 52

they need in real time. To alleviate this challenge, students can practice their reading and 53

self-explaining using an intelligent tutoring system where they both have the opportunity to 54

engage in deliberate practice of reading and self-explaining, but they also receive essential 55

guiding feedback [5]. Thus, refining and improving software applications that can detect the 56

presence of these strategies in the readers’ productions can be helpful for both evaluation 57

and training. Natural Language Processing (NLP) [6] techniques and Machine Learning can 58

be used to develop such models, given a large enough dataset containing labeled examples 59

of the presence and absence of these strategies in readers’ self-explanations. Previous work 60

[7] has shown that such automated models can be built to reliably assess self-explanation 61

reading strategies. The recent release of more sophisticated and readily accessible large 62

language models further supports the expansion of this previous work. 63

1.1. Large Language Models 64

Chatbots have become increasingly prevalent in various domains, including customer 65

service, social media, and entertainment. Their popularity increased even further with 66

the launch of ChatGPT last year, followed shortly by other competitors such as Google 67

Bard. The key innovation that accelerated the adoption of chatbots in multiple fields is 68

the development of large language models (LLMs). These models are trained on massive 69

amounts of heterogeneous text data (including news articles, web pages, social media posts, 70

and scanned books) and datasets tailored to specific tasks. 71

These models capture statistical patterns of natural language, such as syntax, seman- 72

tics, and pragmatics. Their knowledge of these patterns enables the generation of new 73

complex texts relevant to the input they have been prompted with. LLMs are highly 74

adaptable to different NLP tasks and domains and can be fine-tuned on specific data sets 75

or prompts to perform a wide variety of natural language generation tasks, including 76

summarizing, translation, text completion, and question answering. They also manifest 77

"emergent capabilities" [8], skills they were not trained explicitly on but are easy to solve 78

based on the memorized statistical patterns. 79

However, LLMs’ impressive capability to generate various relevant, cohesive, and 80

coherent texts comes with caveats. These models can sample from the most statistically 81

relevant sequences and complete a given prompt flawlessly. Still, they do not offer guar- 82

antees regarding the correctness of the generated information [9]. Furthermore, they are 83

still susceptible to a variety of attacks, such as injecting a request with a small sequence of 84

words that can deviate the flow of the interaction in a different direction from what was 85

intended initially [10]. 86
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LLMs, the backbone of such systems, are a fairly recent type of neural architecture that 87

has grown in size and performance in the past few years. They are part of a class of deep 88

learning architectures called Transformers, stemming from the original model introduced 89

by Google in 2017 [11]. Depending on their structure, modern Transformer-based models 90

can be classified into 3 categories: 91

• Encoder only. Models which understand the text and are used in classification/regression 92

tasks. An example of an encoder-only model is the BERT [12] model, followed by its 93

improved version RoBERTa [13]. 94

• Decoder only. Models that excel at text generation. The GPT (Generative Pretrained 95

Transformer) family with various versions (e.g., 3 [14] or 4 [15]) are good examples of 96

the Decoder-only architecture. 97

• Encoder-decoder.: Models capable of both understanding and generating text. They 98

are useful for translation, abstractive summarization, question answering, and many 99

other tasks. The Text-to-Text Transformer (T5) [16], followed by its improved version 100

FLAN-T5 [17] pre-trained on a large collection of datasets, are examples of such an 101

architecture. 102

1.1.1. FLAN T5 103

The T5 model is an encoder-decoder Transformer trained on a combination of super- 104

vised and unsupervised tasks, all having a text-to-text format (i.e., receiving text input 105

and outputting text). The supervised training is done on tasks from the GLUE [18] and 106

SuperGLUE [19] benchmarks converted to fit the text-to-text paradigm. The unsupervised 107

or self-supervised tasks involve reconstructing the original text when receiving corrupted 108

input (e.g., by randomly removing 15% of tokens and replacing them with sentinel tokens). 109

The T5 models that have been made public cover a wide range of sizes, from the 60 million 110

parameters t5-small model to the 11 billion t5-11b model. 111

The FLAN-T5 model [17] represents an enhanced version of T5 fine-tuned on a larger 112

number of tasks while emphasizing chain-of-thought scenarios. Using the FLAN approach, 113

the authors trained both T5 and PaLM [20] models and achieved state-of-the-art perfor- 114

mance on several benchmarks with the 540 billion FLAN-PaLM model. 115

1.1.2. GPT3.5-turbo 116

The GPT-3 model was perceived as a considerable step when released in 2020 in 117

terms of performance and size (175 billion parameters). The GPT3.5-turbo model was 118

released in November 2022, with OpenAI providing scarce information regarding its 119

training. Its size is estimated to be comparable to that of GPT3.5. The model was trained 120

using Reinforcement Learning from Human Feedback (RLHF) [21] and is designed to 121

perform better in conversational settings and iterative task-solving. It gained popularity 122

as it represented the backbone of the popular free version of the ChatGPT conversational 123

agent. 124

Besides GPT3.5-turbo, OpenAI provides several other text-to-text endpoints such as 125

’text-davinci-003’ and GPT4 [15]. The former was tested on a subset of the tasks presented 126

in this article but did not perform better than the GPT3.5-turbo endpoint. The latter, GPT4, 127

is the backbone of the paid ChatGPT Plus service and is expected to provide better replies, 128

but it also is a more closed system with little detail being provided about its architecture, 129

the training dataset, and or the training setup. We opted against evaluating this alternative 130

as at the time the experiments were done, it was 20-30x more expensive than GPT3.5-turbo, 131

and our aim was to create an open-source model. 132

Table 1 displays the size of the models that were taken into consideration for this study. 133

The FLAN small and base models were useful for fast initial experimentation, but they are 134

not featured in the results section as their small size doesn’t provide the models enough 135

expressiveness to perform well on these tasks. 136
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Table 1. FLAN and GPT3.5 model sizes

Name Type Size

FLAN small 60M
FLAN base 250M
FLAN large 780M
FLAN XL 3B
FLAN XXL 11B

GPT3.5-turbo - 150B-175B

Current Study Objective 137

The overarching objective of this study is to develop an automated model for evaluat- 138

ing the comprehension strategies (paraphrasing, elaboration, and bridging) employed by 139

readers and the overall quality of the produced self-explanations. 140

This study is focused on evaluating the extent to which open-source Large Language 141

Models (LLMs) can be leveraged to build such an automated system. The results are 142

compared to the performance of previous methods, which relied on smaller and less 143

resource-intensive machine learning models [7]. We also analyzed how the performance of 144

these LLM models scales with model and prompt size. We have a side-by-side comparison 145

between open-sourced models and the OpenAI API used as the backbone of the popular 146

ChatGPT. We release our best model on HuggingFace and the corresponding code on 147

GitHub: https://github.com/readerbench/self-explanations. 148

2. Method 149

2.1. Corpus 150

The corpus used in is study consists of three datasets containing 11,833 annotated 151

self-explanations [22]. The datasets were collected from high school and undergraduate 152

students who were asked to read one or two science texts and generate self-explanations 153

for nine to 16 target sentences. An entry consists of the target sentence, a self-explanation, 154

and categorical scores for paraphrase presence, bridging, elaboration, and overall self- 155

explanation quality. 156

The corpus was split into train/dev/test using a ratio of 54.5%/27.5%/18%. The 157

categorical scores for the four tasks ranged from 0 to 2 or 3. The problem of predicting 158

these scores was modeled as a classification task, with each score representing a class. The 159

values are codified consistently across tasks so that class 0 always represents low-quality 160

self-explanations or the absence of a particular strategy. In contrast, higher values represent 161

self-explanations of higher quality. In the case of bridge presence and elaboration presence, 162

the final 2 classes containing higher-quality examples were merged to reduce the class 163

imbalance. After these changes, the elaboration presence task had 2 classes, paraphrase, 164

and bridge presence had 3 classes, whereas the overall quality task had 4 classes. 165

2.2. LLM Prompting 166

The format of the prompt (i.e., input text for the LLM) can influence the quality of the 167

provided answer [23]. Therefore, we tried to structure the input similarly to how input was 168

structured for the tasks on which the initial FLAN-T5 model was trained. Additionally, 169

we experimented with adding a "System role" entry at the beginning of the prompt for the 170

requests made to GPT3.5-turbo, as suggested by the OpenAI GPT3.5-turbo API documenta- 171

tion [? ]. The "Context" section provides additional descriptive information regarding the 172

task to be solved. 173

Both the FLAN-T5 models and the GPT3.5-turbo API were queried in 0-shot, 1-shot, 174

and multi-shot settings to evaluate how examples can assist the model in providing better 175

answers. In the multi-shot setting, the model was provided one example per class, selected 176

from the training set. This was feasible because the tasks had a maximum of four classes. 177

https://github.com/readerbench/self-explanations
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Figure 1. Class distribution per task.

The "Target question" section contains the question that the model must answer. Since 178

answering the question involves reading the generated self-explanation and the source 179

sentence, we added them to this section and labeled them as "S1" and "S2". Preliminary 180

experiments indicated that the models performed better when using these naming conven- 181

tions rather than "Generated Sentence" and "Original Sentence" or other combinations. 182

Lastly, the "Answer options" section lists the possible answers and a short description. 183

Experiments were also performed with more detailed descriptions of the classes, but this 184

only improved performance in the case of the GPT3.5-turbo experiments. 185

2.3. LLM Fine-tuning with LoRA 186

There are multiple methods of adapting pretrained LLMs to help them perform better 187

on certain tasks. One such option is using the last set of hidden features that the model 188

produces and training a small deep-learning model to predict the expected output based 189

on the set of hidden features while freezing the updates for the LLM parameters. This 190

is efficient in terms of resources but can add latency on inference because the depth of 191

the model is increased. A second option consists of selective fine-tuning, in which only a 192

subset of the LLM’s layers are trained while the rest are kept unchanged. This approach 193

can also be efficient, but it involves manually selecting which layers to train, an operation 194

not necessarily intuitive. The third option consists of fine-tuning the entire model. Out 195

of the three approaches, this should yield the best results, but it requires the most GPU 196

memory and training resources. 197

Apart from the classical methods listed above, PEFT (Parameter Efficient Fine-Tuning) 198

methods rely on training only a subset of the LLM parameters without manually selecting 199

what parameters to train. One of the most popular PEFT techniques considered in our 200

work is LoRA: Low-Rank Adaptation of Large Language Models [24]. LoRA efficiently fine- 201

tunes LLMs by freezing the pretrained model and injecting trainable rank decomposition 202

matrices into each layer. The authors claim that LoRA can reduce the number of trainable 203

parameters by 10,000 times and the GPU memory requirement by 3 times for a 175 billion 204

parameter GPT-3 training. Furthermore, the method adds no extra inference latency. 205

The innovation that LoRA brings is the use of low-rank parametrized update matrices. 206

In a classical fine-tuning setting for a weight matrix W0 ∈ Rd×k, we would have an 207

update after backpropagation equivalent with W = W0 + ∆W with ∆W having the same 208

dimensions as the pretrained matrix. LoRA considers the following decomposition: ∆W = 209

BA with B ∈ Rd×r, A ∈ Rr×k, with rank r ≪ min(d, k). The two low-ranked matrices, A 210

and B, will be trainable throughout the run while W0 is frozen and initialized so that the 211



Version September 14, 2023 submitted to Information 6 of 15

Figure 2. Example of prompt for the elaboration task in a multi-shot setting.

initial update matrix is 0. As such, LoRA was the best alternative when fine-tuning the 212

FLAN-T5 models. 213

3. Results 214

In this section, we explore the extent to which the performances presented in previous 215

studies [7] can be surpassed by employing out-of-the-box or fine-tuned LLMs. The input 216

received by the models consisted of prompts like the ones described in section 2.2, which 217

contained the student’s self-explanation and the target sentence. Because of computational 218

constraints, we skipped the scenarios in which the target sentence was omitted or was 219

extended by including the previous sentences. The results obtained in the previous study 220

by Nicula et al. [7] for overall quality also indicated that these two changes do not positively 221

influence the results. 222

We used F1-score as the evaluation metric for the results. Because LLMs can generate 223

incorrectly formatted answers, we will consider all badly formatted answers as belonging 224

to class 0, which have been coded to contain low-quality examples. The percentage of 225

correctly formatted answers will also be reported in order to understand how well the 226

models have adapted to the task format. 227

We analyzed the percentage of correctly formed answers on the Overall task to observe 228

how well the models adapt to the task format. The FLAN-T5 large and GPT3.5-turbo models 229

conform to the expected format of answers (see Figure 3). Replies generated by FLAN-T5 230

XL and XXL versions improve (i.e., follow the correct format) when they are presented with 231

more examples in the prompt. When looking at the output of the models, we observed that 232
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the FLAN-T5 XL and XXL models tend to provide more verbose replies, not necessarily 233

incorrect, but do not match the expected format. 234

Figure 3. Percentage of correctly formed answers for the ’out-of-the-box’ evaluation

The results are grouped into two sub-sections: the first subsection focuses on the 235

’out-of-the-box’ performance of FLAN-T5 and GPT3.5-turbo, while the second subsection 236

presents the performance of FLAN-T5 after fine-tuning using the LoRA method. 237

3.1. Out-of-the-box performance 238

In this section, the ’out-of-the-box’ performance is assessed without fine-tuning. The 239

models covered in this section are FLAN-T5 large, XL, and XXL models, along with the 240

GPT3.5-turbo API. The same prompt structure was used for all FLAN-T5 models. This 241

structure was chosen after a series of experiments evaluating how small changes in the 242

prompt can affect the model’s performance. The final version of the prompt for FLAN-T5 243

did not include a context section. Also, the prompt had shortened versions for the options 244

in the Answer options section, labeled alphabetically instead of numerically (i.e., (A), (B), 245

(C), (D), instead of (0), (1), (2), (3)). The prompt for the GPT3.5-turbo model had a context 246

section, while the long answer options were labeled alphabetically. 247

The results for this task are presented in Table 2. For every task, the best result is listed 248

using bold font. In some cases, multiple examples are bolded for a single task because the 249

differences between the results are marginal. 250

The FLAN-based models performed considerably better than the GPT3.5-turbo model 251

for the three comprehension strategy tasks. Differences of 51% (Paraphrase presence), 33% 252

(Elaboration presence), and 10% (Bridging presence), in terms of weighted F1 scores, were 253

observed between the best FLAN-T5 performance and the best GPT3.5-turbo results. 254

The model size did not have a large influence in the case of the FLAN-T5 models. 255

The differences between FLAN-T5 large, XL, and XXL are unclear. The best results were 256

obtained with a FLAN-T5 XL model for the Bridging and Elaboration presence tasks (see 257

Table 2). The best performance on the Paraphrase presence task was a tie between FLAN-T5 258

large and XL, while FLAN-T5 large performed the best for the Overall task. 259

The impact of providing the model with more examples via the prompt is unclear 260

for the FLAN-T5 models as no clear pattern can be observed in this regard. In the case 261

of the GPT3.5-turbo model, the impact of adding examples is considerably clearer. We 262

can observe that the results for the three comprehension strategy tasks improve when 263

switching from 0-shot to 1-shot prompting and further on when switching to the multi-shot 264

setting. However, the reverse happens for the Overall quality task. The GPT3.5-turbo 265

model performs worse as more examples are added. 266

Further exploration was undertaken for the prompting format used to query the 267

GPT3.5-turbo API in the multi-shot scenario. The endpoint was queried using more 268

examples, the context section, and extended descriptions of the classes. Adding more 269
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Table 2. Out-of-the-box results for FLAN-T5 and GPT3.5-turbo (the best results for each task are
listed in bold).

Task Model Weighted F1-score
0-shot 1-shot multi-shot

Paraphrase

FLAN-T5 large 75.23% 66.30% 68.73%
FLAN-T5 XL 28.24% 53.93% 75.26%
FLAN-T5 XXL 0.69% 1.53% 1.65%
GPT3.5-turbo 2.19% 14.39% 24.74%

Elaboration

FLAN-T5 large 50.09% 58.78% 56.94%
FLAN-T5 XL 89.9% 89.87% 89.90%
FLAN-T5 XXL 87.79% 78.52% 80.11%
GPT3.5-turbo 44.53% 55.38% 56.13%

Bridging

FLAN-T5 large 45.24% 45.39% 45.04%
FLAN-T5 XL 34.30% 51.61% 44.34%
FLAN-T5 XXL 23.06% 22.76% 22.85%
GPT3.5-turbo 19.26% 32.80% 41.18%

Overall

FLAN-T5 large 27.97% 9.73% 7.09%
FLAN-T5 XL 2.84% 7.24% 6.64%
FLAN-T5 XXL 10.68% 8.81% 12.44%
GPT3.5-turbo 30.18% 28.07% 27.87%

examples on top of the multi-shot setting did not help. However, adding the context and 270

the extended descriptions slightly improved the results for some tasks. These prompt 271

changes resulted in a slight improvement for the Overall and Bridging classes, considerable 272

improvement for the Paraphrase class, and a high drop in performance for the Elaboration 273

class. The results for the best-performing prompt are listed in Table 3. The results of these 274

prompts are referenced when presenting the confusion matrices and the qualitative analysis 275

for the GPT3.5-turbo model. 276

Table 3. GPT3.5-turbo performance after exploring prompt variations.

Task Model Weighted F1-score

Paraphrase GPT3.5 65.54%
Elaboration GPT3.5 6.80%
Bridging GPT3.5 44.07%
Overall GPT3.5 30.67%

3.2. Fine-tuning 277

In this section, we analyze the performance of fine-tuning FLAN-T5 models using 278

the LoRA method. Experiments were run using the publicly available FLAN-T5 models 279

on HuggingFace; similarly, the FLAN-T5 small and base versions were excluded in this 280

subsequent analysis, given their poor performance. 281

Three FLAN-T5 models were initially trained using a small learning rate for one epoch 282

on the four tasks in the 0-shot, 1-shot, and multi-shot settings. The same prompt structure 283

as in the ’out-of-the-box’ scenario was used. All models were trained using a mini-batch 284

size of 1. Experiments with larger mini-batch sizes lead to poorer results, probably because 285

the learning rate must be adapted depending on the batch size. 286

The performance for the Paraphrase, Bridging, and Overall quality tasks improves 287

considerably when switching from 0-shot to 1-shot and then to multi-shot settings. In the 288

case of Elaboration presence, the pattern is not as clear, but the best result is still obtained in 289

a multi-shot setting. One exception is the performance of the FLAN-T5 XXL model on the 290

Overall task, which required fine-tuning of the learning rate to get a good performance. The 291

standard learning rate for the fine-tuning experiments was 3e-4, but this model obtained its 292
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best performance using 1.5e-4; most likely, the XXL model is more sensitive to the learning 293

rate used for fine-tuning. 294

When looking at the impact of model size on performance, larger models tend to 295

perform better for all the tasks. The best result for every task is obtained using a FLAN-T5 296

XXL model, and we can also observe that the FLAN-T5 XL outperforms the large variant in 297

most scenarios. 298

Table 4. 1-epoch fine-tuned results for FLAN-T5.

Task Model Weighted F1-score
0-shot 1-shot multi-shot

Paraphrase
FLAN-T5 large 21.45% 68.46% 82.53%
FLAN-T5 XL 10.63% 37.54% 85.50%
FLAN-T5 XXL 72.79% 74.98% 86.76%

Elaboration
FLAN-T5 large 83.99% 84.12% 74.26%
FLAN-T5 XL 87.66% 81.58% 84.28%
FLAN-T5 XXL 88.64% 88.63% 89.80%

Bridging
FLAN-T5 large 42.68% 45.32% 45.85%
FLAN-T5 XL 24.37% 48.22% 61.26%
FLAN-T5 XXL 53.13% 76.32% 79.06%

Overall
FLAN-T5 large 1.34% 2.15% 36.22%
FLAN-T5 XL 11.53% 25.70% 40.02%
FLAN-T5 XXL 59.68% 64.39% 61.25% 1

1 Obtained after extra hyper-parameter tuning.

As previously mentioned, the models were evaluated in a scenario, where badly 299

formatted answers were labeled as the low-quality, 0 class. For this reason, it is also 300

important to consider the percentage of correctly formed answers. Figure 4 shows that 301

the percentage of correctly formed answers increases as more examples are added to the 302

prompt. The results for FLAN-T5 large are dramatically low in the 0-shot and 1-shot 303

settings, but they considerably improve for multi-shot. The same trend is visible for the 304

FLAN-T5 XL and XXL models. We can also observe that the larger models tend to better 305

format the answers correctly. 306

Figure 4. Percentage of correctly formed answers for fine-tuned models on the Overall task

Lastly, experiments were performed to observe whether model performance improves 307

if fine-tuning for more epochs. Preliminary experiments indicated that the test loss would 308

reach a plateau after three epochs of fine-tuning. In order to reduce the number of ex- 309
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periments, we evaluated the FLAN-T5 large, XL, and XXL models only in the multi-shot 310

setting. 311

Table 5. 3-epoch fine-tuned results for FLAN-T5.

Task Model Scenario Weighted F1-Score

Paraphrase
FLAN-T5 large multi-shot 86.70%
FLAN-T5 XL multi-shot 86.76%

FLAN-T5 XXL multi-shot 86.21%

Elaboration
FLAN-T5 large multi-shot 89.33%
FLAN-T5 XL multi-shot 89.88%

FLAN-T5 XXL multi-shot 89.54%

Bridging
FLAN-T5 large multi-shot 63.72%
FLAN-T5 XL multi-shot 79.02%

FLAN-T5 XXL multi-shot 79.02%

Overall
FLAN-T5 large multi-shot 58.49%
FLAN-T5 XL multi-shot 69.85%

FLAN-T5 XXL multi-shot 72.12%

In this scenario, FLAN-T5 XL performs better in 2 out of 4 cases, while FLAN-T5 312

XXL considerably outperforms the other two on the Overall task. The FLAN-T5 large 313

model obtains good results on the Paraphrase and Elaboration tasks but has worse results 314

on the remaining two. For the three comprehension strategy tasks, the results are close 315

when comparing the XL and XXL models, with the XL model having a slight advantage. It 316

must be noted that because the FLAN-T5 XXL model was the best-performing model extra 317

hyper-parameter tuning was done to maximize its potential. In the end, this model was 318

trained for all tasks using a smaller learning rate of 1.5e-4, as opposed to the standard 3e-4 319

used for the other models. 320

The fine-tuned FLAN-T5 XXL model obtained the best performance on the Overall 321

task, surpassing even the results from previous work (see [7]). The best models in that 322

study were single-task (STL) and multi-task (MTL) neural network architectures based on 323

a pretrained RoBERTa model. The LLM-based methods obtained a better result for the 324

Overall, Paraphrase, and Elaboration presence tasks, while the MTL/STL models still hold 325

a narrow edge over them on the Bridging presence task (see Table 6). 326

Table 6. Best results across the 2 studies.

Task Previous results [7] Current study
Best

Model Scenario Best
Model Scenario Improvement

Paraphrase 84.3% STL 86.76% Fine-tuned XXL multi-shot 2.46%
Elaboration 78.50% STL 89.88% Pretrained XL 11.38%
Bridging 89.90% STL 79.02% Fine-tuned XXL multi-shot -10.88%
Overall 69.90% MTL 72.12% Fine-tuned XXL multi-shot 2.12%

4. Discussion 327

This study evaluated the performance of LLMs on scoring self-explanations using 328

multiple employed strategies in either out-of-the-box or fine-tuned setups. In the out-of-the- 329

box scenario, a comparison was made between the performance of FLAN-T5 models and 330

the GPT3.5-turbo API. The FLAN-T5 models obtained better results on three comprehension 331

strategy tasks. The model performance did not scale with the model size and the number 332

of examples listed in the prompts. The GPT3.5-turbo model obtained better results on 333

the Overall quality task and showed a clearer improvement on the other tasks with the 334

addition of more examples to the prompt. 335
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When analyzing the correctness of the responses generated by the LLMs, it was also 336

observed that GPT3.5-turbo and FLAN-T5 large were more likely to generate answers in 337

the correct format. This capability improved for all the models if more examples were 338

provided in the prompt. 339

Table 7. Confusion matrices for the ’out-of-the-box’ models on the Overall task.

FLAN-T5 large 0-shot Predicted 0 Predicted 1 Predicted 2 Predicted 3

Actual 0 28 7 14 12
Actual 1 283 254 30 121
Actual 2 428 130 60 308
Actual 3 182 21 54 210

GPT3.5 multi-shot Predicted 0 Predicted 1 Predicted 2 Predicted 3

Actual 0 18 10 13 20
Actual 1 274 107 109 198
Actual 2 207 134 222 363
Actual 3 47 27 104 289

When looking at the confusion matrix for the Overall task, the two best-performing 340

out-of-the-box models tend to misclassify multiple examples, not only in adjacent classes 341

but in other classes as well. Numerous instances of class 0 examples are classified as class 3 342

and vice-versa. This indicates that the models are not able to reliably identify content that 343

had been copied and pasted. In addition, high class imbalance (i.e., class 0 has almost 9 344

times fewer examples than class 2) influences the predictions. 345

In the fine-tuning scenario, only FLAN-T5 models were targeted. Initially, the models 346

were fine-tuned 1-epoch using the LoRA method. After this fine-tuning, the performances 347

drastically improved and scaled better with model size and number of examples provided. 348

When the models were trained for 3 epochs, the differences between the FLAN-T5 XL and 349

XXL models decreased. 350

Table 8. Confusion matrices for the best fine-tuned FLAN-T5 model on the Overall task.

Predicted 0 Predicted 1 Predicted 2 Predicted 3

Actual 0 18 21 18 4
Actual 1 39 512 132 5
Actual 2 1 110 735 80
Actual 3 0 5 179 283

The confusion matrix generated for the best-performing, fine-tuned model on the 351

Overall task shows improved results when compared with the out-of-the-box models. For 352

almost all classes, except the underrepresented class 0, we observe that most predictions 353

coincided with the ground truth. Furthermore, even when errors occurred, they appeared 354

in the vicinity of the correct options; only four instances of errors occurred at a distance of 355

three classes (i.e. class 0 examples evaluated as being class 3). 356

Table 9. Training time per model.

Model Num epochs Total training time (minutes) GPU type

MTL 25 20 Tesla P100
FLAN large 1 23 Tesla P100
FLAN XL 1 100 Tesla A100 40GB
FLAN XXL 1 180 Tesla A100 40GB

The FLAN fine-tuned models and the previous MTL approach can also be compared 357

in regards to training time, as reported in Table 9. We can observe that the MTL model 358

required the least training time while using less performant hardware. For the FLAN 359
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models, the training time listed is for 1-epoch, so the 3-epoch fine-tuned model would take 360

roughly 3 times more time to train. The previous MTL model performance was surpassed 361

by our best-performing 3-epoch-trained FLAN XXL, but that model required 540 minutes 362

to train (a 27x increase), and also more expensive hardware. 363

4.1. Error analysis 364

Table 10 lists 10 randomly selected inputs, at least one per class, on which the following 365

three models were evaluated: the best-performing model (FLAN-T5 XXL multi-shot), the 366

best performing out-of-the-box FLAN-T5 model (FLAN-T5 large 0-shot), and GPT3.5-turbo 367

(prompted in a multi-shot setting). Our evaluation parser considered all listed outputs 368

valid, despite GPT3.5’s extra verbosity in listing the class description along with the class 369

name or the lack of parenthesis for FLAN-T5 large on example 1. The models performed 370

better when prompted with alphabetical classes as options instead of numerical ones. For 371

this reason, the classes appear with a different naming convention in this table compared 372

to previous mentions. However, the correspondence is easy to understand as class (A) 373

corresponds to class 0, (B) to class 1, (C) to class 2, and (D) to class 3. 374

Examples 2 and 3 show all models answering correctly when classifying input belong- 375

ing to classes 2 and 3. There are also cases (examples 4 and 5) of minor errors where the 376

models classify a good example as having high quality. One possible explanation is that 377

the self-explanations were particularly verbose and the models had trouble keeping track 378

of all information and comparing it with the source text. 379

Both out-of-the-box models have an example three classes away from the ground truth 380

(see example 6). This is a classic example of copy-pasted content, labeled as low-quality 381

because the reader did not make an effort to self-explain the source text. The fine-tuned 382

FLAN-T5 XXL model manages to detect this and correctly rate the example as Poor quality. 383

The performance obtained by these models on this 10-example subset is consistent 384

with the previously presented results. The best-performing FLAN-T5 XXL model was 385

correct in 9 out of 10 situations, and it was 1 class away from the correct answer in the 386

erroneous case. The out-of-the-box models managed to correctly answer in 2 or 3 out of 387

10 cases, exhibited errors 2-class or 3-class away from the ground truth, and they also had 388

minor issues in correctly formatting the output. 389

4.2. Limitations 390

The class imbalance was an impediment in some cases, especially for the Elaboration 391

presence task, where class 0 accounted for roughly 93% of samples. This made it tempting 392

for the fine-tuned models to disproportionately label new examples as low quality since it 393

seemed like a sure bet. For that reason, more focus in the analysis was put on the Overall 394

quality task which, in addition to being more complex, was also one of the more balanced 395

tasks. 396

Especially in regards to the GPT models our experiments were restricted by the costs 397

of using the API. Because we sought to explore multiple scenarios (i.e. 0-shot, 1-shot, 398

multi-shot) for all four tasks, and also explore different variations of prompts, doing so for 399

multiple OpenAI endpoints, would have increased our cost, especially considering the fact 400

that the GPT4 model is roughly 20-30x more expensive than GPT3.5-turbo. 401

The experiments presented in this study have not been evaluated in an iterative setting, 402

where the request is not modeled as a monolithic prompt but as a dialogue with multiple 403

short requests. The initial requests could have provided the context and the examples, 404

while the last request could have been solely focused on the actual classification task. This 405

would have been more advantageous for the GPT3.5-turbo model which was targeted more 406

towards usage in a conversational setting. 407

5. Conclusions 408

This study, corroborated with the previous work of Nicula et al. [7], indicates that the 409

task of evaluating reading strategies and assessing overall self-explanation quality can be 410



Version September 14, 2023 submitted to Information 13 of 15

Table 10. Sample outputs.

ID Self-explanation Source sentence FLAN-
T5 XXL
multi-
shot

FLAN-
T5 large
0-shot

GPT3.5-
turbo

Ground
Truth

1 This sentence explains that the circular shape of
the red blood cells result in a big surface area,
which lets them be efficient at gas diffusion.

The disk shape of red blood
cells results in a large surface
area, which enables them to
be efficient at gas diffusion

(B) C (C)
Good
quality

(B)

2 Red blood cells gets its color from the
Hemoglobin.

Hemoglobin also contains
iron, which gives blood its
red color

(B) (B) (B) Fair
quality

(B)

3 This sentence explains how hemoglobin, a com-
plex protein in red blood cells, binds to the oxy-
gen and carbon dioxide that the red blood cells
transport.

Hemoglobin binds to the oxy-
gen and carbon dioxide that
the red blood cells transport

(C) (C) (C)
Good
quality

(C)

4 This sentence is saying that red blood cells have
essentially two jobs, the second of which being
the removal of carbon dioxide that is no longer
needed. Oxygen enters the body, and waste
carbon dioxide leaves the body with the help of
red blood cells.

They also pick up waste car-
bon dioxide for removal

(C) (C) (C)
Good
quality

(D)

5 Red blood cells carry oxygen to the cells and
remove waste. The way they are shaped allows
gas diffusion to go well. Once the red blood
cells have the oxygen and carbon dioxide waste,
hemoglobin binds them.

Hemoglobin binds to the oxy-
gen and carbon dioxide that
the red blood cells transport

(D) (C) (C)
Good
quality

(D)

6 the shape of the cells causes them to clog blood
vessels, preventing oxygen from reaching mus-
cles and other tissues

The shape of the cells causes
them to clog blood ves-
sels, preventing oxygen from
reaching muscles and other
tissues

(A) (D) (D) High
quality

(A)

7 When low amounts of oxygen are transported,
a person can feel tired or weak due to the body
not being replenished completely.The heart,
lungs, and muscles rely on oxygen to function,
so if there is a deficiency of that a person would
become fatigue.

This makes a person feel
tired and weak

(D) (C) (B) Fair
quality

(D)

8 if you have a lot of iron, it will make your blood
red

Hemoglobin also contains
iron, which gives blood its
red color

(B) (C) (A) Poor (B)

9 This means that because of the red blood cells
shape being like a disk it helps the body with
gas diffusion. Like if the body has a lot of gas
build up in it then the red blood cells help get
rid of the gas.

The disk shape of red blood
cells results in a large surface
area, which enables them to
be efficient at gas diffusion

(C) (C) (B) Fair
quality

(C)

10 As a result, the person feels sluggish and has
less energy. They are lacking the oxygen which
presumably messes up their oxygen:carbon
dioxide ratio.

This makes a person feel
tired and weak

(C) (A) (B) Fair
quality

(C)

solved using deep learning models. This work shows that, with fine-tuning, pretrained 411

LLMs surpass the performance of more specialized medium-sized neural network architec- 412

tures. The LLM models require a more expensive hardware setup for fine-tuning and can 413

have more inference latency than shallower medium-sized models, but they are easier to 414

adapt to a new task than a specialized medium-sized model. 415
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These approaches can be leveraged to develop systems that can either evaluate read- 416

ers’ existing text comprehension abilities or even gradually guide them to improve their 417

performance. 418
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