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ABSTRACT
Solving mathematical problems is cognitively complex, involving
strategy formulation, solution development, and the application of
learned concepts. However, gaps in students’ knowledge or weakly
grasped concepts can lead to errors. Teachers play a crucial role in
predicting and addressing these difficulties, which directly influence
learning outcomes. However, preemptively identifying misconcep-
tions leading to errors can be challenging. This study leverages
historical data to assist teachers in recognizing common errors
and addressing gaps in knowledge through feedback. We present a
longitudinal analysis of incorrect answers from the 2015-2020 aca-
demic years on two curricula, Illustrative Math and EngageNY, for
grades 6, 7, and 8. We find consistent errors across 5 years despite
varying student and teacher populations. Based on these Common
Wrong Answers (CWAs), we designed a crowdsourcing platform
for teachers to provide Common Wrong Answer Feedback (CWAF).
This paper reports on an in vivo randomized study testing the ef-
fectiveness of CWAFs in two scenarios: next-problem-correctness
within-skill and next-problem-correctness within-assignment, re-
gardless of the skill. We find that receiving CWAF leads to a signifi-
cant increase in correctness for consecutive problems within-skill.
However, the effect was not significant for all consecutive problems
within-assignment, irrespective of the associated skill. This paper
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investigates the potential of scalable approaches in identifying Com-
mon Wrong Answers (CWAs) and how the use of crowdsourced
CWAFs can enhance student learning through remediation.
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1 INTRODUCTION
The intricacies of learning mathematics are cognitively complex.
Solving math problems demands students to understand the prob-
lem’s requirements and demonstrate their knowledge and com-
prehension of the topic [44]. Often, the problem-solving process
involves breaking down the task into smaller sub-tasks that span
several underlying concepts [7, 42]. This synthesis stage includes
practicing various mathematical syntaxes, rules, and operations.
The practice of synthesizing solutions reinforces students’ knowl-
edge and comprehension of the underlying concepts, thereby facili-
tating the development and consolidation of their understanding
of mathematical principles [24, 47].
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While the learning and synthesis processes may seem intu-
itive and straightforward, their analysis presents significant chal-
lenges [45]. The learner’s individual problem-solving steps are
intrinsic and can be challenging to deconstruct. Students can apply
their inherent cognitive abilities to adopt different approaches to-
wards solution synthesis [11, 46]. These approaches can vary, for
example, in the complexity of the broken-down sub-task or the
order in which the sub-tasks are solved [8].

Despite variations in approach, a fundamental understanding
of mathematical processes is essential for problem-solving. How-
ever, gaps in knowledge, misconceptions, or “slips” can lead to
incorrect responses [13]. Alternatively, insufficiently understood
concepts may prompt students to guess answers or adopt incorrect
problem-solving strategies, leading to a different set of errors [7].
Regardless of the cause, without directed feedback on how to re-
solve errors experienced during problem-solving, the errors may
impede a student’s learning progress. Understanding the common
errors that students experience as they interact with mathematical
problems is critical for guiding the design of effective instructional
practices to help students learn correct mathematical processes and
problem-solving strategies [34].

The diagnosis and examination of “Common Wrong Answers”
(CWAs) is critical to understand learning processes in the context
of mathematics. CWAs can be used to enhance educational tech-
nologies that, in conjunction with teachers, can address the needs
of individual students–educational technologies often referenced as
Computer-Based Learning Platform (CBLP), Online Learning Plat-
forms (OLP), or Intelligent Tutoring Systems (ITS). For consistency,
we will reference them as CBLP throughout this paper.

In a previous study, the authors of this paper examined the ef-
ficacy of two distinct types of Common Wrong Answer Feedback
(CWAF)–verbose and detailed versus short and concise (c.f., [18]).
The study employed a randomized control trial, where the control
was business as usual, with no CWAF. The CWAs were proactively
identified using a diagnostic model approach [7], and teachers,
alongside learning activity designers, were tasked with generating
the corresponding CWAFs. The analysis led to interesting insights
for students working on mastery-based activities. The verbose and
detailed feedback detailing both correct and incorrect steps under-
taken by the students was detrimental to the student’s likelihood
of achieving mastery. On the other hand, short and concise CWAFs,
while not significant, hinted towards a positive trend in facilitating
student mastery.

In this current paper, we build on prior research by broadening
our analysis of CWAs. We leverage historical data on a CBLP by
analyzing CWAs on Open Educational Resource (OER) curricula:
Illustrative Math (IM) and EngageNY (ENY) for students in grades 6,
7, and 8 across 5 school years. Through the analysis, we explore the
commonality of CWA across multiple academic years with shifts
in the underlying student and teacher population working on the
problems.We then extend our analysis by conducting goals and task
analysis in engineering a crowdsourcing platform that teachers can
use to write CWAFs. CWAFs aim to address student misconceptions
and gaps in knowledge by providing instructional guidance that
nudges the students towards the solution while addressing the error

in their approach. Finally, we conduct a within-subject-problem-
level randomization exploring the efficacy of CWAFs at scale by
using next-problem-correctness in a treated analysis 1.

1.1 Research Questions
Toward the exploration of “How common are CWAs?” and “Can we
remediate them?”, the paper addresses the following main research
questions:

RQ 1 Do students commonly make similar errors when working
on math problems?

RQ 2 What fundamental goals and tasks must a crowdsourcing
platform provide when facilitating the generation of CWAF?

RQ 3 Does the remediation of CWAs with CWAFs lead to better
learning outcomes?

2 BACKGROUND
2.1 CommonWrong Answers
Wrong answers are mistakes or errors that students typically make
due to buggy rules, misconceptions about the topic, or gaps in
knowledge. These CWAs have been the subject of substantial re-
search in the fields of cognitive science and mathematical learn-
ing [7–9, 35, 57, 58].

Prior research [12, 43] has explored the correction of these com-
mon errors through instructional strategies. For instance, Brown
et al., (1978) [7] analyzed frequent student errors when solving
multi-digit subtraction problems and developed a diagnostic model
that detects and elucidates these errors. Building on this, Brown et
al., (1980) [8] introduced the “generative theory of bugs,” a set of for-
mal principles devised to explain the prevalent errors in procedural
skills.

In their study, Sison et al., (1998) [48] proposed student model-
ing techniques to identify common errors in student work. They
emphasized the need to assemble a “bug library,” a collection of the
most common misconceptions or errors made by a specific student
population. However, they acknowledged the challenges in creating
these libraries, as misconceptions vary depending on the student
population, and different student groups may demonstrate unique
types of misconceptions when solving mathematical problems.

In addition to the principles of learning theory and cognitive
skill acquisition, research has also investigated the potential of
algorithmically identifying common student misconceptions to
rectify incorrect and buggy processes in students’ work [36, 43].
Selent et al., (2014) [43] employed machine learning methods to
predict CWAs and their underlying causes. They examined the
effectiveness of providing buggy messages when a student makes
a CWA. Their data suggested that these buggy messages led to a
reduction in help-seeking behavior on a CBLP, indicating a possible
rectification of common errors in students’ work.

2.2 Feedback Intervention
Feedback is a significant factor influencing learning outcomes and
achievement. However, the impact of feedback is contingent on its

1The data and code used in this paper are shared through open-science practices at
https://github.com/AshishJumbo/LatS_CWAF

https://github.com/AshishJumbo/LatS_CWAF
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type and mode of delivery. Previous research on Feedback Inter-
ventions (FI) through meta-analyses has produced mixed results
regarding their effectiveness on student performance [1, 2, 20, 26, 29,
39, 49, 50]. These results have spurred further research to explore
the intricacies of FI, culminating in the development of Feedback
Intervention Theory (FIT) [26]. FIT posits that FIs aim to capture
the recipient’s attention across three hierarchically organized levels:
task learning, task motivation, and meta-task. While there are con-
cerns about the general effectiveness of FIs [20], these concerns are
less significant in an educational context as they have been found
to be more beneficial in instructional settings. In a comprehensive
synthesis of over 500 meta-analyses on the effects of schooling,
Hattie (1999) (c.f., [20]) identified FIs as among the top 10 most
influential factors on student achievement, thereby underscoring
their effectiveness in promoting learning.

Effective feedback can help learners track their progress, validate
their efforts, reinforce their progress, and impact their reactions
and behavior when working on activities [10, 19, 59]. Feedback is
indeed crucial to the student’s learning experience, but the qual-
ity of the feedback varies greatly. The effectiveness of feedback
is often influenced by student perception. Some studies have re-
ported on constructive feedback from instructors to be the most
beneficial [54]. Conversely, if the feedback was too vague or lacked
content, its usefulness would diminish. Studies, such as [28], discuss
how providing feedback in an online setting is an art and that there
are various best practices including generating positive feedback
and/or balanced feedback.

In this paper, we focus on the exploration of tailored feedback for
the remediation of common errors, CWAs, in students’ work. We
adopt the Hattie et al. (2007) [21] conceptualization of feedback2,
that expanded upon the generalized FIT model and proposed a
theoretical model aiming to reduce the discrepancy between the
current and desired understanding of learners in an educational
context. Figure 1 presents the theoretical feedback model proposed
by Hattie et al. [21] for enhancing learning. The model posits that
the feedback must answer three major questions: (1) What are the
goals? (2) What progress is being made toward the goal? (3) What
activities need to be undertaken to make better progress?

The FIs address these questions by operating across four levels
of instruction: (a) task level, (b) process level, (c) self-regulation
level, and (d) self-level. Therefore, effective feedback should recog-
nize if the task requirement is understood, demonstrate the correct
processes required to complete the task, include instructions that
direct the learner towards the next productive actions, and include
evaluation and affect (usually positive) to personalize the instruc-
tion.

2.3 CommonWrong Answer Feedback
Prior research has dedicated significant focus to the remediation of
common errors in students’ work [32, 33]. A study by Vanlehn et
al. (2003) [52], for instance, evaluated the interplay between expert

2[21] Feedback is conceptualized as information provided by an agent (e.g., teacher, peer,
book, parent, self, experience) regarding aspects of one’s performance or understanding.
A teacher or parent can provide corrective information, a peer can provide an alternative
strategy, a book can provide information to clarify ideas, a parent can provide encour-
agement, and a learner can look up the answer to evaluate the correctness of a response.
Feedback thus is a “consequence” of performance.

human tutors and physics students, specifically examining the effi-
cacy of tutor explanations in rectifying student errors. The study
reported that only certain explanations led to improved learning,
with the effectiveness of feedback heavily contingent on the con-
tent and the question at hand. Moreover, shorter and more precise
explanations were observed to be more effective than their longer,
more elaborate counterparts. Thus reinforcing our prior work ex-
ploring CWAFs, where long and verbose CWAFs were detrimental
to student mastery rates on mastery-based activities [18].

Additional studies have indicated the limitations of guided in-
structions in rectifying errors originating from misconceptions of
previously learned skills [41]. These findings suggest that deeply
ingrained misconceptions and errors might pose substantial diffi-
culties to rectify over time.

Further research has proposed the use of error analysis meth-
ods as an essential step towards understanding students’ ability to
identify and explain errors in problems [17, 27, 40]. These studies in-
volved presenting students with erroneous examples and requiring
them to identify and articulate the errors within them. In particu-
lar, Rushton et al. (2018) [40] reported that this approach to error
analysis led to better knowledge retention compared to traditional
methods of learning mathematics.

2.4 Crowdsourcing Instruction
Crowdsourcing has emerged as a prevalent method in K-12 educa-
tion for gathering feedback on instructional materials [16, 25, 55].
Leveraging various authoring tools, educators can create and dis-
seminate educational content that is more representative. A variety
of CBLPs and tools have integrated the crowdsourcing approach to
encourage instruction and teacher-authored content [4, 15, 22, 37,
53, 56].

Research underscores the potential of crowdsourcing in enrich-
ing online learning experiences. It enables on-demand teacher sup-
port, tutoring, provision of hints, and explanations [14, 23, 30, 37,
38, 56]. Moreover, several studies have explored the use of crowd-
sourcing to collect teacher-given scores and feedback messages
(instructive guidance) for students’ answers on open-ended math
problems to develop automated grading and feedback generation
using Natural Language Processing (NLP) algorithms [3, 5]. The
effectiveness of crowdsourcing in enhancing instructional materi-
als and student learning experiences on online platforms has been
well-documented [37, 38].

Building on these insights, our current study aims to crowd-
source CWAFs by developing a platform for teachers to identify
and rectify CWAs.

3 EXPLORING COMMONWRONG ANSWERS
To answer RQ 1, we explored the commonality of CWAs by ex-
amining data from students in grades 6, 7, and 8 who worked on
problems in two commonly used curricula for mathematics in the
US: Illustrative Mathematics (IM) and EngageNY (ENY) over a five-
year period from ’15-’16 to ’19-’20. The students’ data were collected
from ASSISTments [22] learning platform. A summary of the total
number of problems the students worked on across the 5 school
years from ’15-’16 to ’19-’20 is presented in table 1–the problems
were considered eligible for the count if they were worked on by
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Figure 1: A model of feedback for enhanced learning, taken from Hattie et al. (2007) [21]

more than 20 students in at least one of the 5 school years. We
observe that ENY on average is used more often than IM and on
average teachers have used the content for grade 7 ENY the most
across the 5 academic years.

In the ASSISTments platform, students are typically assigned a
sequence of problems, each of which may or may not involve the
same set of skills as defined by the Common Core Standards.

Figure 2 provides an example from the EngageNY (ENY) curricu-
lum, where two consecutive problems are associated with the same
Common Core Standards, hence demanding a similar skill set. The
first problem calls for the simplification of an equation, while the
second entails verifying the results derived from the initial problem.
Problems sharing a common skill set, like the ones mentioned, offer
a greater likelihood of knowledge transfer across them compared
to those derived from different Common Core Standards.

In our investigation of incorrect response frequency, we analyzed
each student’s initial incorrect attempt on problems, facilitating the
generation of the three most common incorrect answers (CWAs) for
each problem. To enhance the reliability of the CWAs, we added an
additional criterion: where we only considered the problems that
had been attempted by at least 20 students during the school year,
with more than 10 students producing the most common incorrect
answer.

In our analysis, we found that 1,045 problems had CWAs span-
ning at least two academic years. Table 2 provides an example of
these CWAs across academic years. For the problem depicted in ta-
ble 2, we observe that the first CWAmet the commonality threshold
in four out of the 5 academic years, showing consistency. How-
ever, the second and third CWAs demonstrated some fluctuation,
with ranks interchanging in some years, and entirely new CWAs
appearing in others.

Additionally, we noticed a declining trend in the number of
students across the school years. This decline can be attributed to

Figure 2: An example of two consecutive problems in a prob-
lem set that the student is working on that has the same set
of Common Core Standards associated with it.

a version upgrade to the CBLP used in our analysis. During the
’18-’19 academic year, teachers began transitioning to the newer
version. Although this change reduced the total number of students
available for our analysis in the later academic years, it did not
hinder our ability to demonstrate the prevalence of CWAs. The
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Table 1: Summary of Total Problems and Problems with CWAs. The problems with CWAs met our threshold of more than 20
students working on the problem in at least two consecutive years and more than 10 students making the same common wrong
answer in each year.

Engage NY Illustrative Math
Academic Level Total Problems Problems with CWAs Total Problems Problems with CWAs
Grade 6 1351 210 2082 254
Grade 7 1845 511 2088 518
Grade 8 1076 92 1475 267

same CWAs reappeared despite changes in the student and teacher
populations working on the problems.

Our exploratory analysis of the occurrence of CWAs revealed a
pattern of repetition across academic years. A more in-depth analy-
sis of the problems featuring CWAs indicated that the majority of
the problems belonged to “Practice Problems” (in IM) and “Problem
Sets” (in ENY)3. As the term problem set is generally used to rep-
resent a set of problems that can be assigned to students, we will
refer to both Practice Problems and Problem Sets as Practice Problems
throughout in this paper.

In the following section, we detail an iterative process of goal
and task analysis. This process guided the design and development
of a crowdsourcing tool intended for teachers. The tool’s aim is to
facilitate the creation of CWAFs that can address and remediate the
gaps in students’ understanding that resulted in the CWAs.

4 TASK ABSTRACTION
Toward answering RQ 2, in this section we detail our process for
designing and developing a crowdsourcing tool, which involved
consulting with experienced teachers, teacher trainers, domain
experts, and researchers exploring similar tools. Our analysis com-
prises two main parts: a goals analysis, which involved creating a
hierarchy of goals that the tool should facilitate, and a task analysis,
which focused on defining low-level tasks.

During the goals analysis, we broke down each goal into a series
of sub-goals that directly align with teacher needs. For instance, a
high-level goal might be: facilitate effective feedback, which could
be broken down into sub-goals such as ‘analyze student error rates’
and ‘allow teachers to easily input their feedback’. We utilize the
sub-goals to identify the visualization components needed in the
crowdsourcing tool to meet teachers’ needs effectively. We utilized
the “Nested Model for Visualization” (c.f., [31]), a common Human-
Computer Interaction (HCI) technique, to identify the fundamental
goals of a crowdsourcing tool.

Upon validating the high-level goals and sub-goals with end-
users and domain experts, we proceeded with task analysis, defin-
ing low-level tasks allowing browsing, exploring, and identifying
various aspects of the data to facilitate the sub-goals. These tasks,
derived from the Brehmer andMunzner topology (c.f., [6]), provided
a useful roadmap for designers and developers during the tool’s cre-
ation. While our crowdsourcing tool doesn’t include the elaborate
visualization components associated with common HCI projects,

3IM and ENY have different types of activities in their curricula. IM has 3 types of
activities “Practice Problems”, “Student Facing Tasks” and “Cool Down” and ENY has 2
types of activities “Problem Sets” and “Exit Tickets”

the Nested Model for Visualization, and Brehmer and Munzner’s
topology proved invaluable in identifying the tool’s fundamental
goals and tasks, which ultimately helped in enhancing teachers’
ability to formulate effective feedback.

After conducting several iterations of goal and task analyses for
further refinement of the goals and tasks, we present the final ver-
sion of the goals and tasks used to develop our tool in the following
sub-sections.

4.1 Goal Analysis
Table 3 lists the goals and sub-goals resulting from our analysis. The
overarching goal of the tool is to augment teacher ability in gaining
insight into the various processes the students might have taken
during the synthesis of a solution that resulted in the CWAs. While
the underlying mechanism that resulted in the CWAs is unknown,
we aim to leverage teacher experience and intuition to discern the
underlying cause and generate appropriate feedback to help remedy
the cause.

We identified 3 distinct goals a crowdsourcing tool needs to facil-
itate. The first two goals, G1, and G2, directly address teacher needs
in substantiating the CWAs and providing contextual insight to
help teachers formulate effective feedback. Goal 1 helps teachers un-
derstand the general student performance on the problem, provide
evidence towards the commonality of the response, and identify
the problems within a set of problems where students struggle the
most, i.e., most likely problems within a set of problems where gaps
in student knowledge will impact their performance the most.

The intent of goal 2 is to provide contextual information that
can augment teacher ability when analyzing the CWAs and their
potential causes by providing contextual information. Additionally,
information on prior problems related to the same skill component
can provide scaffolding that teachers can leverage in contextualizing
the problems and converging on a smaller subset of potential causes
for the CWAs.

While the primary objective of the tool is to facilitate the gener-
ation of CWAFs, both the teachers and domain experts on multiple
occasions throughout the task abstraction processes emphasized
the importance of goal 3 in fostering self-actualization for teach-
ers through collaborative feedback enhancement. It enriches their
participation in a generation of CWAFs through peer support and
fostering a sense of camaraderie. Such opportunities allows teachers
to contribute to and benefit from the collective knowledge.
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Table 2: Common Wrong Answer by Student Count on a problem from Illustrative Math (IM) for grade 7. The threshold for the
CWA requirement was met in 4 of the 5 academic years from ’15-’20. The threshold required more than 20 students to work on
the problem in each academic year with more than 10 students making the same CWA.

First CWA Second CWA Third CWA
School
Year

Number of
Students

Incorrect
Count

Correct
Answer Answer Count Answer Count Answer Count

’15 - ’16 214 62 30 -30 42 5 5 13 2
’16 - ’17 354 75 30 -30 44 -17 3 -13 5
’17 - ’18 332 98 30 -30 71 -17 5 0 3
’18 - ’19 243 63 30 -30 38 -15 4 -17 4

Table 3: Fundamental goals of a crowdsourcing tool.

Generic Goals
G1 Substantiate the CommonWrong Answer

a Analyze general student performance on the problem.
b Validate the common wrong answer.

G2 Contextualize the CommonWrong Answer
a Identify problems where students struggle the most.
b Identify the underlying mechanism for the common wrong answer.

G3 Facilitate Collaboration and Support.
a Facilitate alternative perspectives to edify teachers’ understanding of the problem requirements.
b Facilitate collaboration and validation through peers support.

4.2 Task Analysis
For each sub-goal presented in table 3 we generated a list of low-
level sub-tasks designed to help teachers (a) look up other problems
within the problem set, (b) explore various knowledge components
the students struggled with while working on the problems, (c)
identify the potential causes of the CWAs, and (d) produce feedback
that can effectively help remediate gaps in student knowledge that
resulted in the CWAs. These sub-tasks are related to the abstract
visualization task from Brehmer, and Munzner’s topology [6].

Table 4 illustrates high-level tasks that can guide the design and
development of features in the crowdsourcing tool, facilitating one
or more sub-goals. Together, these tasks contribute to achieving the
main goals of the crowdsourcing project. While these tasks can be
further decomposed into more specific sub-tasks, we focus only on
high-level tasks to avoid unnecessary complexity. We believe these
tasks are self-explanatory and refrain from extensive elaboration
to conserve space and prevent redundancy.

It’s worth noting that this list is not exhaustive; it’s a reference
derived from our interaction with teachers and other stakeholders
during the tool’s design and development phase. It provides insights
into what we found useful but should not be considered as an all-
encompassing guide to creating an effective crowdsourcing tool. In
fact, it is our hope that future work in the field of crowdsourcing
makes amendments or modifications to this list based on their
unique project requirements and insights.

5 CROWDSOURCING COMMONWRONG
ANSWER FEEDBACK

In this section, we briefly describe our implementation of the crowd-
sourcing tool guided by the goals and task analysis described in the

prior section. In order to facilitate the fundamental goals described
in table 3 we designed a new crowdsourcing platform within the
ASSISTments ecosystem. The tool allows teachers to identify rele-
vant CWAs, gain contextual insight into the problems associated
with the CWAs, and facilitates peer collaboration to help further
improve the quality of the CWAs.

Figure 3 displays the teacher perspective of a teacher working on
a problem set in IM curricula for grade 7, unit 8, lesson 8–based on
the common core standard for “Probability and Sampling”. As the
figure illustrates a teacher has analyzed the first CWA for the prob-
lem and provided appropriate feedback addressing the student’s
misconception. The teacher can substantiate the CWAs, Goal 1, by
examining the number of students that have worked on the problem,
the percentage of students who answered it incorrectly, identify-
ing the top 3 CWAs, and the percentage of students who made
the CWAs among students who answered it incorrectly. Besides
examining the validity of the CWAs the teacher can also explore
other problems in the problem set and their respective CWAs to
gain insight into how students have historically struggled with the
problem set. The ability to explore previous and consecutive prob-
lems in the problem set to contextualize the CWAF more effectively,
facilitating Goal 2. We posit that such insights substantiating and
contextualizing the CWAs, coupled with peer collaboration and
review, Goal 3, will enhance the generation of effective CWAFs.

The primary focus of this paper is to analyze CWAs and evaluate
the efficacy of CWAFs in addressing the underlying causes of the
CWAs. We collaborated with 24 experienced middle school teachers
using IM and ENY. These teachers were tasked to develop CWAFs
for Grade 7 Practice Problems. To ensure the feedback aligned with
curriculum language and structure, teachers received preliminary
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Table 4: Task analysis deconstructing the feature requirements of each sub-goal.

Tasks
G1. a. Analyze general student performance on the problem.
T1 Identify problem properties, e.g., general difficulty, problem type, and answer.
T2 Identify student performance on a problem, e.g., total students, percent correct.
G1. b. Validate the common wrong answer.
T3 Examine the CWAs, e.g., incorrect answer, frequency of CWAs.
T4 Verify the CWAs is caused by mathematical error and not due to underlying bugs in the system.
G2. a. Identify problems where students struggle the most.
T5 Examine the problems within a problem set where students perform poorly.
T6 Identify the knowledge components required to do well on the problem set.
T7 Infer the amount of effort and attention required to solve the problem.
G2. b. Identify the underlying mechanism for the common wrong answer.
T8 Identify the cause of the CWAs, e.g., misconception, gaps in knowledge, trick question, slip, or guess.
T9 Examine if the CWAs is influenced by a prior problem or if the problem will cause CWAs in the future.
G3. a. Facilitate alternative perspectives to edify teachers’ understanding of the problem requirements.
T10 Identify opportunities for the teacher to analyze the CWAs from multiple perspectives, e.g., feedback for high-

knowledge students, feedback to teachers when their students struggle with the problem.
G3. b. Facilitate collaboration and validation through peer support.
T11 Facilitate peer collaboration, e.g., synchronous and asynchronous pair work.
T12 Enable teachers to review each other’s feedback.

training from domain experts. These experts also offered continu-
ous feedback and served as moderators to maintain the quality of
CWAFs. After the completion of CWAFs generation process, the
experts performed a final review to approve the feedback, marking
it as ready for student use.

In the following section, we detail a randomized control trial
conducted at the student problem level to evaluate the efficacy of
CWAFs at scale.

6 IMPLEMENTING COMMONWRONG
ANSWER FEEDBACK

The crowdsourced CWAFs, once approved by the moderators, were
integrated into ASSISTments. The initial implementation, which
took place in April ’22, has since evolved through various iterations.
As of now, crowdsourced CWAFs for 1,660 problems are provided
to students working on problems whenever they make a CWA.

6.1 Experimental Design
Once the students start a problem, students are randomized into
either a control group, business-as-usual (no CWAF), or a treatment
group (receiving CWAFs). Ideally, randomizing students once they
make a CWA would be more optimal; however, the process of
triggering a server request that randomizes students once they
enter a CWA can take away from the learning experience of the
student and can ultimately hamper their perception and usage of
the platform itself as such we randomize at assignment and analyze
the effectiveness of CWAFs on the treated group. We implemented
a 90:10 randomization split, providing a 90% chance of a student
being assigned to treatment and a 10% chance to control. This ratio
was strategically chosen to optimize equitable access to learning
opportunities where most students get multiple opportunities to
benefit from the CWAFs. Evenwith this skewed ratio, the large-scale

nature of our study should provides sufficient power to evaluate
the effectiveness of CWAFs.

6.2 Dataset
Since the initial implementation of the first batch in April ’22,
CWAFs have been randomized across 20,044 students working on
1,387 problems in ENY and IM a total of 623,857 times; students
were assigned 560,897 times to treatment and 62,960 times to con-
trol. While the students were assigned to treatment or control, they
only received CWAFs if their attempt was one of the top 3 CWAs for
the problem. As such, we dropped the students who did not attempt
to answer the problem with a CWA at any point while working
on the problem. After dropping the students who did not make
any attempts that identified as a CWA for both control and treat-
ment, we have 14,672 unique students who were randomized and
made at least one CWA when working across 947 problems. With
this, we have 96,398 instances of students randomized to treatment
and 10,960 to control. As we used a 90:10 randomization design,
we explored the balance across conditions by conducting a bino-
mial hypothesis test on the next problem attempt after receiving a
CWAF. Our sample failed the binomial hypothesis test indicating
an imbalance across the attrition rates for treatment and control,
as such for instances where the students dropped out without at-
tempting the next problem were scored as a 0. While this data is
for students working on problems within the same problem set,
different problems in a single problem set can have different sets of
common core standards associated with different skills. As such, we
filter the treated students to examine the effectiveness of CWAFs by
only analyzing the problems where both the intervention and the
next problem had the same common core standards. This additional
filtering requirement reduced the number of distinct students to
12,175 and the number of distinct problems to 535, where students
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Figure 3: Teacher perspective, visualization of a problem from IllustrativeMath curricula with CommonCore standard 7.SP.C.8.b
where a teacher has written feedback and a peer/moderator has reviewed it as well.

were randomized 62,688 times into treatment and 7,080 times into
control.

6.3 Evaluating the Effectiveness of Common
Wrong Answer Feedback

For answering RQ 3, in this section we analyze the efficacy of
CWAFs in the remediation of common wrong answers (CWAs).
We explore this by examining the binary correctness of the next
problem using the lme4 package in R. We use a pre-registered
logistic regression model to explore the effectiveness of CWAFs 4.
The pre-registered logistic regression model is listed in 1.

𝑛𝑒𝑥𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 ∼ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗
𝑝𝑟𝑖𝑜𝑟 5𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑎𝑣𝑔. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠

+ (1|𝐶𝑊𝐴𝑤𝑟𝑖𝑡𝑒𝑟 ) + (1|𝑝𝑟𝑜𝑏𝑙𝑒𝑚) + (1|𝑐𝑙𝑎𝑠𝑠)
(1)

We examine the effectiveness of CWAFs by interacting the treat-
ment with average student performance on the previous 5 problems
prior to working on the treatment problem. Rather than employ-
ing the more commonly used average prior percent correct, this
study uses the average correctness of the last 5 problems. As the
running average can be more sensitive to fluctuation in students’
4The study has been pre-registered following open-science practices at https://osf.io/
wp2a7

performance, likely attributable to the error rates that can occur
when learning a new concept. Using a running average enables
the model to effectively capture instances where the student is
optimally positioned to benefit form receiving a CWAF.

In addition, we introduce the identifiers for the CWA writer, the
specific problem being treated, and the student’s class as random
intercepts in our model. The CWA writer is included to examine
potential variations in the effectiveness of CWAFs across different
teachers who provided the feedback. The specific problem identifier
is included to control for variance at the problem level that may be
attributable to various problem related factors including difficulty,
guess and slip rates. Finally, the class identifier is used to account for
the impact of classroom-level factors, as students’ motivation and
learning behaviors are often influenced by their relative standing
among their classmates.

The analysis aims to explore our initial hypothesis that knowl-
edge transfer is more likely for consecutive problems focusing on
the same set of skills. Therefore, we conduct two separate analyses:
1) Between consecutive problems with the same set of common
core standards and 2) Between consecutive problems in the same
assignment, regardless of their common core standards.

6.3.1 Between Consecutive Problems with the same set of Common
Core Standards. For the problems within the same set of common

https://osf.io/wp2a7
https://osf.io/wp2a7
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Table 5: Exploring the effectiveness of CWAF by using next-
problem-correctness(binary) as a dependent measure for the
same set of Common Core Standards (within-skill) in con-
secutive problems.

core standards within the consecutive problems (within-skill), the
results from the regression analysis are reported in table 5. We
observe that students in the treatment condition had significantly
higher odds to answer the next problem correctly for the problems
with the same set of common core standard tags (Odds-Ratio = 1.07,
p-value = 0.028). While CWAFs do appear to have a net positive ben-
efit, there was a significant interaction between prior correctness
and treatment effect indicating a potential heterogeneous treatment
effect5.

6.3.2 Between Consecutive Problems in the same Assignment irre-
spective of Common Core Standards. For the problems irrespective
of the common core standards within the consecutive problems
(within-assignment), the results from the regression analysis are
reported in table 6. We observed similar results on the other covari-
ates; however, while leaning in the positive direction we did not
observe a significant difference between students in control and
treatment, indicating that the transfer of knowledge in consecutive
problems to be inconclusive (Odds-Ratio = 1.03, p-value = 0.188)6.

7 DISCUSSION AND FUTUREWORKS
Our analysis revealed a relative consistency in the incorrect answers
made by students across academic years. While the same CWAs

5There were 2 problems in the within-skill dataset that only had students in treatment
and none in control which resulted in the problem ids being dropped
6There were 3 problems in the entire treated dataset that only had students in treatment
and none in control which resulted in the problem ids being dropped

Table 6: Exploring the effectiveness of CWAF by using next-
problem-correctness(binary) as a dependent measure within-
assignment irrespective of the set of Common Core Stan-
dards associated with consecutive problems.

were not the most common for the same problems in every school
year, there was an obvious pattern indicating an overlap in the top
3 CWAs. We also observed that teachers using IM and ENY prefer
to assign Practice Problems over Exit Tickets, Student Facing Task
and Cool Down problem sets. While various prior works exploring
CWAs in the past have expressed concern regarding the reliability of
CWAs [7, 51], our analysis substantiates the commonality of CWAs.
A potential cause of the replication challenges encountered by prior
works [52] exploring the reliability of CWAs could be attributed to
the smaller sample size at the prevalence of CWAs is pronounced
and consistent at scale. It is important to note that our work does not
claim to provide insight into the various underlying mechanisms
students utilize when synthesizing solutions that can result in the
incorrect answer due to “bugs” in their processes, but rather through
this work, we aim to establish the reliability of the CWAs that can
be caused by gaps in student knowledge, misconceptions, guess,
slip, error, or bugs when formulating solutions.

While the primary objective of this paper was to explore the
fidelity of CWAFs in this paper, we also wanted to focus on various
design and development techniques that can potentially benefit
future research. While the Learning@Scale (L@S) community at
large has designed and successfully developed systems at scale, it
is noteworthy that there has been a limited emphasis within our
community on documenting the various design and development
principles that inform the successful implementation of such sys-
tems. As such, in this paper, we leverage the design philosophy
commonly used in visualization projects to conduct goal and task
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abstraction that can elucidate the various aspects of the tool that are
fundamental in the overall successful adoption of the tool. In our
case, the objective was to develop a tool to augment teacher ability
to examine CWAs when writing CWAFs. The primary benefit of
the goals and task analysis is the ability to identify critical features
a tool should facilitate and the hierarchy of these features to ensure
the successful implementation of the tool. As such, in this paper,
we present the fundamental goals and tasks a crowdsourcing tool
needs to facilitate a successful adoption. Each goal is designed to
build on prior goals and further enhance the process of facilitating
crowdsourcing. While there is no evidence to suggest that the de-
sign philosophy used in the development of this crowdsourcing tool
led to the creation of more effective feedback, we did observe that
the CWAFs lead to positive learning outcomes across consecutive
problems focusing on the same skill set. This positive outcome is
particularly important in the domain of CWAFs research as there is
mixed evidence regarding the fidelity of CWAFs, with some report-
ing positive results [32, 33, 52]. In contrast, others have reported
on the lack of benefit in using CWAFs [41]. A well-designed system
can provide powerful affordance that can enhance the quality of
the outcome by facilitating exploration, learning, and collaboration
when leveraging crowdsourcing.

In our final analysis, we examine the effectiveness of CWAFs by
examining the transfer of knowledge on the next problem using
the binary correctness of the next problem as a dependent measure.
We explore the efficacy of CWAFs by crowdsourcing CWAFs for
Practice Problems in grade 7. We observed that the CWAFs were ran-
domized 623,857 times since their implementation in April ’22. We
explore the effectiveness of CWAFs on consecutive problems by ex-
amining the next-problem-correctness in two contexts, within-skill,
and within-assignment. Our findings reveal that students appear
to benefit from CWAFs, as evidenced by their increased likelihood
of solving consecutive problems correctly within-skill. This out-
come is noteworthy, particularly in the context of IM and ENY
curricula, where subsequent problems within a skill set tend to in-
crease in difficulty. However, we did not observe a similar benefit on
subsequent problems within-assignment, regardless of skill. These
findings suggest a contextual aspect of the effectiveness of CWAFs.
Further investigation is needed to develop our understanding of
these dynamics. For instance, while the within-skill knowledge
transfer could occur due to the CWAFs effectively addressing stu-
dent needs, it is also entirely plausible that the CWAFs are causing
shallow learning, as evidenced by the lack of knowledge transfer
within-assignments. Additionally, we aim to explore learner behav-
ior around CWAFs, replicating a prior analysis where we analyzed
hint usage through response time decomposition, which found a
correlation between learning outcomes and the time students spent
trying to understand system-provided hints [19].

Similarly, in a prior work, we analyzed the correlation between
structure, simplicity, and length of feedback with learning out-
comes [18]. In our exploration of CWAFs’ effectiveness in this pa-
per, we observed the variance in the model from the CWAFs writer
was negligible. This observation suggests that the training and use
of moderators to generate a consistent set of CWAFs, following
the principles outlined by Hattie et al. (2007) [21] as depicted in 1,
was successful. In future work, we intend to leverage the CWAFs
generated through moderated crowdsourcing as a baseline when

comparing the effectiveness of different CWAFs. As these CWAFs
were generated across 1,660 problems, this provides us with op-
portunities to test the effectiveness of different types of feedback
across different topics and subfields of mathematics, e.g., geometry,
statistics, algebra, and arithmetic.

The focus of this paper has been the exploration of CWA and the
efficacy of crowdsourced feedback. We implore fellow researchers
and developers in our L@S community to consider leveraging simi-
lar task abstraction methodologies in their own work. We believe
the insights provided in our goal analysis, presented in Table 3,
can serve as initial guardrails for informing future research aimed
at developing tools exploring similar crowdsourcing challenges.
Such methodologies can potentially streamline the process of iden-
tifying the fundamental features in crowdsourcing contexts, thus
enhancing overall efficiency and output.

8 CONCLUSION
At the onset of this research, we posited the existence and preva-
lence of CWAs in a learning context. Our findings substantiate
our initial hypothesis, revealing a remarkable persistence of CWAs
across different academic years, even with changing student popula-
tions. Utilizing this understanding, we successfully developed a new
crowdsourcing tool to facilitate the collection of Common Wrong
Answer Feedbacks (CWAFs) from educators. Our analysis demon-
strates that the integration of these teacher-generated CWAFs leads
to improved learning outcomes, particularly evidenced by the ob-
served transfer of knowledge across consecutive tasks that focus
on the same skill set (within-skill). Interestingly, the effectiveness
of CWAFs was less pronounced when consecutive tasks centered
around different skill sets (within-assignment). This distinction of-
fers a promising avenue for further investigation in future studies.
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