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Abstract

Oral reading fluency (ORF) assessments are commonly used to screen at-risk readers

and to evaluate the effectiveness of interventions as curriculum-based measurements. As

with other assessments, equating ORF scores becomes necessary when we want to

compare ORF scores from different test forms. Recently, Kara et al. (2023) proposed a

model-based equating method for ORF scores. However, they did not provide

closed-form asymptotic standard errors (SEs) of the equated ORF scores while it is

advocated to report SEs of equating in practice. Therefore, this study aims to address

this remaining question. Specifically, the delta method was adopted to derive the

asymptotic SEs of equated ORF scores. The ORF scoring was conducted using an

approach that takes into account the calibration error. Its performance was compared

to the standard practice that ignores calibration errors. It is expected that the two

scoring approaches would further have impact on the recovery of equated ORF score

SEs. A simulation study was conducted to evaluate the recovery of derived equating

SEs in various conditions. Results suggested satisfactory recovery of the derived

asymptotic SEs of equated ORF scores. In addition, taking into account the calibration

error in ORF scoring can produce more accurate and precise equated ORF score SEs

under larger sample size and longer test length.
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Asymptotic Standard Errors of

Model-based Oral Reading Fluency Score Equating

1. Introduction

Oral reading fluency (ORF) assessments are commonly used as curriculum-based

measurements to screen at-risk readers and to evaluate the effectiveness of

interventions. Kara, Kamata, Potgieter, and Nese (2020) proposed the model-based

word read correctly per minute (WCPM) scores as reliable score metric for oral reading

fluency. Same as other assessments, equating ORF scores is necessary when comparing

ORF scores from different test forms is of interest. More recently, Kara, Kamata, Qiao,

Potgieter, and Nese (2023) proposed a model-based equating method for ORF scores.

They demonstrated the benefits of the model-based equating method over traditional

observed-score approaches. However, they did not provide closed-form asymptotic

standard errors (SEs) of the equated ORF scores. Therefore, we aim to address this

remaining question in this article.

It is advocated to report SEs of equating as the standard practice in practical test

equating (American Educational Research Association, American Psychological

Association, and National Council on Measurement in Education, 2018). One common

approach to obtain SEs for the IRT equating coefficients is the delta method

(Ogasawara, 2000, 2001a, 2001b). Delta method is a general method for the calculation

of SEs for transformed parameters that are functions of some other parameters with

known asymptotic variances. It is based on Taylor series expansion and can achieve

good approximation when the parameter estimates are close to their true values and the

transformation function is differentiable at these true values with non-zero derivatives.

In the current study, the model-based ORF score is a function of passage parameters

and latent variables and delta method can be used to derive the asymptotic SEs of

equated ORF scores.

Similar to IRT equating, model-based equating for ORF scores includes two

crucial components: 1) placing passage parameters onto the same measurement scales

through concurrent calibration; and 2) equating the ORF scores. Ignoring the random
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errors in the calibration process, which is the standard practice in IRT scoring, can

affect the estimation accuracy of IRT true scores (e.g., Mislevy, Wingersky, & Sheehan,

1994; Yang, Hansen, & Cai, 2012). In our context, this may further affect the accuracy

of SEs of ORF score equating. Therefore, we are interested in investigating the impact

of ignoring calibration error in ORF equating SEs.

The purpose of the current study is two-fold: 1) to derive the SEs of equated

ORF scores using the delta method; 2) to compare the recovery of SEs of equated

scores with or without considering calibration error in quantifying the uncertainty of

latent scores and in the application of delta method. We follow the model-based

equating procedure for ORF scores focusing on a nonequivalent group anchor test

(NEAT) design proposed in Kara et al. (2023). Specifically, we assume there are two

test forms, Form V and Form U , which shared a set of external anchor items. Further,

these two test forms are administered to two groups, Group 1 and Group 2,

respectively. These two groups are nonequivalent in terms of latent variable

distributions. That is, we assume the two groups come from different populations.

The remainder of the article is organized as follows. We first present the

derivation of the asymptotic SEs of equated ORF scores. Then, we present the

simulation study design and results. Lastly, we provide conclusions and

recommendations on the usage of equated ORF scores in practice.

2. Asymptotic Standard Errors of Equated ORF Scores

In this section, we present the derivation of asymptotic SEs of equated ORF

scores. We first review the model-based estimation of ORF scores introduced by Kara

et al. (2020). Then, we describe the equating of ORF scores based on a NEAT design

with a focus on model parameter estimation. Lastly, asymptotic SEs of the equated

ORF scores are obtained based on the delta method.

ORF Score Estimation

The estimation of ORF scores is based on a joint model consisting of an binomial

model for number of words read correctly per passage and a lognormal model for
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response times (RTs) used for reading each passage (Kara et al., 2020).

Binomial Model for Count Data. We assume reading each word by person j

is an independent trial within total number of trials being Ni ∈ N0, the total number of

words in the passage i. Thus, the number of words read correctly in each passage uij

follows a binomial distribution:

P (uij|Ni, pij) =
(

Ni

uij

)
p

uij

ij (1 − pij)Ni−uij , (1)

with success probability defined as the two-parameter normal-ogive model

pij = Φ(aiθj − ci), where θj ∈ R is the latent ability of person j and ai > 0 and ci ∈ R

are discrimination and intercept parameters of passage i, respectively.

Lognormal Model for Response Time Data. We adopt the lognormal

model (van der Linden, 2006) where RTs are assumed to have a lognormal distribution:

f(tij|τj, βi, αi) = αi

tij

√
2π

exp(−1
2[αi(logtij − (βi − τj))]2), (2)

in which tij denotes RT (in seconds) for passage i and person j; τj ∈ R is the latent

speed for person j; βi ∈ R is the time intensity for item i, indicating the labor required

for that passage; and αi > 0 represents the time discrimination parameter. We further

parameterize βi = β0i+log(Ni/10) where Ni is the number of words in passage i and β0i

is the rescaled time intensity parameter in the scale of reading time per 10 words.

Higher-order Model. The latent ability θ and latent speed τ are further

assumed to follow a bivariate normal distribution in the population:θj

τj

 ∼ MV N

µθ

µτ


 σ2

θ

σθτ σ2
τ

 (3)

The diagonal of the matrix indicates the variances of the latent variables. The

off-diagonal of the matrix indicates the covariance between latent variables. For the

model identification purpose, we constrain µθ = µτ = 0 and σ2
θ = 1.

Model-based ORF Scores. Given the parameter estimates from the above

joint model of accuracy and speed, we calculate the WCPM scores sj as a rate of

accurate reading per minute. For person j who read a total of I passages, sj is
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calculated as the expected number of words read correctly E[U.j] divided by the total

reading time in seconds E[T.j] and further multiplied by 60:

sj = E[U.j]
E[T.j]

× 60, (4)

where

E[U.j] =
I∑

i=1
Nipij (5)

and

E[T.j] =
I∑

i=1
exp(β0i + log(Ni/10) − τj + 1

2α2
i

). (6)

ORF Score Equating

Detailed descriptions of the four-step model-based equating method for ORF

scores in a NEAT design can be found in Kara et al. (2023). In the current study, we

follow the same steps and we focus on describing the estimation methods in the

following paragraphs.

Step 1. Concurrent Calibration. In the equating scenario, we assume Group

1 read Form V while the Group 2 read Form U and both groups read some common

external anchor passages given the NEAT design. We equate all passage parameters,

including Form V , Form U and anchor passages, by conducting concurrent calibration.

We denote the response vector for an individual as (u, t). Further, each response vector

consists of both observed and missing observations (u, t) = (uobs, tobs,umiss, tmiss)

because each person only read K unique passages given his/her group membership and

C common passages. In this case, each pair of measurements in (umiss, tmiss) is assumed

to be missing completely at random and does not contribute to the complete data

likelihood function. With S = {1, 2, ..., I} denoting the passages read by a random

person with I = K + C, the marginal likelihood function is given by

L =
∫
ξ

[∏
i∈S

P (ui; Ni, pi(θ))f(ti|τ)
]
ϕ2(ξ; µξ, Σξ)dξ (7)

where ξ = (θ, τ)⊤ ∈ R2 and ϕ2(·;µ, Σ) denotes the bivariate normal density assumed for

the distribution of latent variables.
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To obtain the marginal maximum likelihood (MML) estimates of model

parameters ψ, including passage parameters (i.e., a, c,α,β0) and latent density

parameters (i.e., στ , σθτ ), given the above marginal likelihood function, we adopt the

Monte Carlo Expectation Maximization (MCEM) algorithm proposed in Potgieter,

Kamata, and Kara (2017). This idea is similar to the EM algorithm (Dempster, Laird,

& Rubin, 1977), where latent variables are treated as missing data and the expected

complete data log-likelihood function conditional on observed random variables (E-step)

is maximized in terms of model parameters (M-step). The iterative E-M process is

repeated until model parameters converge. However, we adopt the Monte Carlo

sampling approach for the E-step given that no closed form exists for the conditional

expectations. Specifically, in the kth iteration, we implement Mk independent draws

from ξ|uobs, tobs, S, ψ̂k−1, the distribution of latent variable vector ξ conditional on

observed observations and assumed true parameter values ψ̂k−1 from the k − 1th

iteration. Details about the MCEM algorithm can be found in Potgieter et al. (2017).

Due to the stochastic nature of MCEM, Wei and Tanner (1990) suggested to set small

Mk first and then large Mk in the last several iterations to properly approximate the

maximum likelihood solution. In this study, we implemented 200 iterations with

Mk = 1 and then 5 iterations with Mk = 10 in all analyses.

Given the MML estimates ψ̂N , we approximated the asymptotic error covariance

matrix I−1
N of these parameter estimates using a bootstrap approach. Specifically, we

randomly drew 50 samples from the original data with replacement. Then, 50 sets of

new parameter estimates for each of these 50 samples were obtained. The

variance-covariance matrix for the 50 sets of these parameter estimates was calculated

as an approximation of I−1
N . More specifically, the square root of the diagonal elements

of I−1
N is the SEs of the parameter estimates while the off-diagonal elements represent

the covariances between parameters.

Step 2. Scoring for Each Group. Then, we consider expected a posteriori

(EAP) scoring for each group separately based on K unique passages they read given

that common passages are external anchors in the current equating design. In the ideal
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case where ψ are known, we make statistical inference of ξ for an individual with

response vector (u, t) based on the following posterior:

f(ξ|u, t,ψ) = f(u, t|ξ,ψ)f(ξ)∫
f(u, t|ξ,ψ)dξ = f(u, t|ξ,ψ)f(ξ)

f(u, t|ψ) . (8)

The EAP estimator for ξ given ψ is an expectation over the posterior distribution in

Equation 8:

ξ̂ψ =
∫
ξ
ξf(ξ|u, t,ψ)dξ = 1

f(u, t|ψ)

∫
ξ
ξf(u, t|ξ,ψ)f(ξ)dξ (9)

The asymptotic SE of θ̂ψ is the square root of the posterior variance:

V (θ̂ψ) =
∫
ξ
(θ − θ̂ψ)2f(ξ|u, t,ψ)dξ = 1

f(u, t|ψ)

∫
ξ
(θ − θ̂ψ)2f(u, t|ξ,ψ)f(ξ)dξ (10)

Similarly, the asymptotic SE of τ̂ψ is the square root of the posterior variance:

V (τ̂ψ) =
∫
ξ
(τ − τ̂ψ)2f(ξ|u, t,ψ)dξ = 1

f(u, t|ψ)

∫
ξ
(τ − τ̂ψ)2f(u, t|ξ,ψ)f(ξ)dξ (11)

In real cases, ψ are most likely unknown. In this study, we consider two approaches to

estimate EAP scores and their associated SEs when ψ are unknown: 1) the standard

practice where the MML estimates ψ̂N are plugged in Equations 9 to 11 to replace ψ

and 2) the alternative multiple imputation (MI) method proposed in Yang et al. (2012).

The standard practice ignores the variability of ψ̂N as reflected by I−1
N . Thus, θ̂ψ̂N

, τ̂ψ̂N
,

V (θ̂ψ̂N
) and V (τ̂ψ̂N

) ignore this variability and may be inaccurately estimated. This

may further affect the estimation accuracy of SEs of equated ORF scores. Therefore,

we adapt the MI method proposed in Yang et al. (2012) to our context. The formal

justification of the MI procedure can be found in Yang et al. (2012). We delineate the

MI algorithm to approximate θ̂, τ̂ , V (θ̂) and V (τ̂) as follows:

1. P sets of model parameter values are drawn from a multivariate normal

distribution ψp ∼ MVN(ψ̂N , I−1
N ), p = 1, 2, ...P .

2. Plug each ψp into Equations 9 to 11 to calculate θ̂ψ̂p
, τ̂ψ̂p

, V (θ̂ψ̂p
) and V (τ̂ψ̂p

).

3. The MI EAP approximation to θ̂ and τ̂ is the empirical average, θ̄ ≈ 1
P

∑P
r=1 θ̂ψp

and τ̄ ≈ 1
P

∑P
p=1 τ̂ψp .



SES OF EQUATED ORF SCORES 9

4. The MI variance approximation is V (θ̄) ≈ Vwithin + (1 + 1
P

)Vbetween, where

Vwithin = 1
P

∑P
p=1 V (θ̂ψp) is an estimate of the within imputation variance, and

Vbetween = 1
P −1

∑P
p=1(θ̂ψp − θ̄)2 is an estimate of the between imputation variance.

Same applies to V (τ̄).

Step 3. Selecting Reference Passages. In the current study, we focus on

equating the ORF scores of Group 1 on Form V to the scale of ORF scores on Form U

from Group 2. Thus, reference passages are Form U . We use the parameter estimates of

these passages obtained from Step 1 to perform the equating.

Step 4. Equating ORF Scores. We consider the case where ORF scores from

Group 1 are equated to Group 2. This is done by plugging passage parameter estimates

â, ĉ, α̂ and β̂ for Form U and EAP scores, either based on the standard practice or the

MI method, for Group 1 into Equation 4.

Delta Method

Let γ denote the (4K + 2) × 1 vector of parameters consisting of passage

parameters λ = (a⊤, c⊤,α⊤,β0
⊤)⊤ for Form U and ξ = (θ, τ)⊤ for a random individual

in Group 1. Let se denote the equated ORF score for an individual which is a

differentiable scalar function of γ same as that shown in Equation 4. Assuming that the

estimator γ̂ fulfills
√

n(γ̂ − γ) d−→ N(0, Σγ̂) as n −→ ∞, as is the case for both the MML

estimator and the EAP estimator, and se
′(γ) ̸= 0, we can apply the delta method

(Kendall, 1946) to obtain asymptotic SE of ŝe. As n −→ ∞,

√
n(ŝe − se) d−→ N

[
0,
(∂se

∂γ

)⊤
Σγ̂

∂se

∂γ

]
, (12)

and the asymptotic SE of ŝe is the square root of:

V (ŝe) =
(∂se

∂γ

)⊤
Σγ̂

∂se

∂γ
, (13)

where ∂se

∂γ
is a (4K + 2) × 1 vector consisting of partial derivatives of function se with

respect to passage parameters and latent variables; Σγ̂ is the asymptotic error

variance-covariance matrix of these parameters. More specifically,
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∂se

∂γ
= (∂se

∂a

⊤
, ∂se

∂c

⊤
, ∂se

∂α

⊤
, ∂se

∂β0

⊤
, ∂se

∂θ
, ∂se

∂τ
)⊤, where

∂se

∂ai

= 60 × Niϕ(aiθ − ci)θ∑K
i=1 exp(β0i + log(Ni/10) − τj + 1

2α2
i
)

(14)

∂se

∂ci

= − 60 × Niϕ(aiθ − ci)∑K
i=1 exp(β0i + log(Ni/10) − τj + 1

2α2
i
)

(15)

∂se

∂αi

=
60 ×∑K

i=1 NiΦ(aiθ − ci) × exp(β0i + log(Ni/10) − τ + 1
2αi

2 )
(∑K

i=1 exp(β0i + log(Ni/10) − τj + 1
2α2

i
))2αi

3 (16)

∂se

∂β0i

= −
60 ×∑K

i=1 NiΦ(aiθ − ci) × exp(β0i + log(Ni/10) − τ + 1
2α2 )

(∑K
i=1 exp(β0i + log(Ni/10) − τj + 1

2α2
i
))2 (17)

∂se

∂θ
= 60 ×∑K

i=1 Niϕ(aiθ − ci)ai∑K
i=1 exp(β0i + log(Ni/10) − τj + 1

2α2
i
)

(18)

∂se

∂τ
= 60 ×∑K

i=1 NiΦ(aiθ − ci)∑K
i=1 exp(β0i + log(Ni/10) − τj + 1

2α2
i
)

(19)

and

Σγ̂ =

Σλ̂ 0

0 Σξ̂

 , (20)

where Σλ̂ and Σξ̂ can be obtained from the MML estimator and the EAP estimator,

respectively; off-diagonal elements are 0s because the two estimators are independent.

To investigate the impact of ignoring calibration error in the derivation of ORF

equating SEs, we consider four scenarios as summarized in Table 1 in the specification

of Σλ̂ and Σξ̂ in Equation 20.

Table 1

Considerations of Calibration Error

Scenario Σλ̂ Σξ̂ Abbreviation

1. No Ignoration Σλ̂ MI-based V (θ̄) and V (τ̄) MI1

2. Partial Ignoration in Σλ̂ 0 MI-based V (θ̄) and V (τ̄) MI2

3. Partial Ignotation in Σξ̂ Σλ̂ Standard practice V (θ̂) and V (τ̂) Standard1

4. Complete Ignoration 0 Standard practice V (θ̂) and V (τ̂) Standard2
Note. Σλ̂ is the error covariance matrix of model parameters; Σξ̂ is the error covariance

matrix of latent variables.
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3. Simulation Study

We conducted a simulation study to evaluate the recovery of asymptotic SEs of

equated ORF scores derived based on the delta method and to investigate the impact of

ignoring calibration error in EAP scoring and/or delta method on equating SEs. We

expect that asymptotic SEs of equated ORF scores should be more accurate and

precise when calibration error is considered especially under large samples.

Simulation Conditions

We manipulated two factors: sample size for each group n as 100 (extremely

small), 300 (small), 500 (median), or 1000 (large) and number of unique passages K as 3

(short) or 6 (long). Factor levels were fully crossed and there were 3 × 2 = 6 simulation

conditions. For each simulation condition, we calculated the equated ORF score SEs

(as shown in Equation 13) in four ways as shown in Table 1. For the EAP estimators,

numerical quadrature setup was the same with 150 nodes for each dimension, with

492 = 2401 total function evaluations. The range of quadrature nodes was from -5 to 5.

For the MI-based EAP estimator, we considered 20 imputations which was suggested as

enough in Mislevy et al. (1994). We ran 500 replications for each condition.

Data Generation

The data-generating model for all simulation conditions is the joint model of

reading counts and response times described in Equations 1 to 3. True passage

parameter values for Form V and Form U can be found in Table 2. We generated

nonequivalent groups by drawing θ and τ from two bivariate normal distributions (as

indicated in Equation 3) with different mean vectors but the same variance-covariance

matrix. For Group 1, µθ1 = 0.5 and µτ1 = 0.2, while for Group 2, µθ2 = −0.5 and

µτ2 = −0.2. That is, Group 1 had higher latent ability and speed levels than Group 2.

For both groups, σ2
τ = 0.16 and σθτ = 0.16.
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Table 2

True Passage Parameters

a c α β0 N

Form V 0.500 -1.384 6.176 1.723 47

0.444 -1.299 5.747 1.768 49

0.557 -1.537 4.841 1.711 50

0.505 -1.442 5.064 1.750 50

0.447 -1.318 4.408 1.705 50

0.476 -1.370 3.936 1.752 49

Form U 0.569 -1.291 5.808 1.963 47

0.569 -1.348 4.559 1.972 54

0.603 -1.250 5.566 1.879 50

0.618 -1.338 4.239 1.863 49

0.571 -1.316 3.795 1.894 49

0.588 -1.206 5.248 1.916 50

Anchor 0.575 -1.394 6.821 1.806 54
Note. First three passages in Form V and Form U were used under simulation condition

K = 3.

Evaluation Criteria

To assess the recovery of asymptotic SEs of equated ORF scores, we considered

raw bias and root mean squared error (RMSE) as outcome measures. Specifically, the

raw bias and RMSE are calculated as:

Raw Bias = 1
R

R∑
r=1

SE(ŝer) − SE(se), (21)

RMSE =

√√√√ 1
R

R∑
r=1

(SE(ŝer) − SE(se))2, (22)

where SE(ŝer) is the SE estimate (standard or MI-based) for equated ORF score in

replication r; R is total number of replications; SE(se) is the criterion SE value. We

used the empirical standard deviation (ESD) of ŝer across replications as the criterion
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SE in each simulation condition. Specifically, we used MI-based θ̄ and τ̄ calculate

criterion SEs. We expect that these are closer to the true equated ORF score SEs than

those calculated from standard EAP scores that ignore calibration errors. We used

custom codes in R language (R Development Core Team, 2018). All computations were

run on a high-performance cluster featuring the CentOS 7 operating system.

4. Results

In this section, we summarize simulation results to present the recovery of equated

ORF score SEs derived based on delta method. More specifically, we aim to compare

the recovery of equated ORF score SEs according to four considerations of calibration

error in the implementation of delta method as shown in Table 1. We refer to these four

approaches using their abbreviations shown in Table 1, i.e., MI1, MI2, Standard1 and

Standard2 in following paragraphs, figures and tables.

Figure 1 shows the distributions of equated ORF score SEs under all simulated

conditions using box plots. Box plots exhibit five important characteristics of the

distributions: minimum, maximum, median, first and third quartiles. Under each

simulation condition, the five box plots summarize the distribution of criterion SEs

(ESD), average SEs across replications based on approaches Standard1, Standard2,

MI1 and MI2, respectively.

In general, all four approaches yielded comparable equated ORF score SEs as the

criterion SEs especially under large samples. This indicates the accuracy of our

derivation of the asymptotic SEs of ORF score equating via the delta method. The

discrepancies of estimated SE distributions, on the other hand, stemmed from different

considerations of calibration error in the computation of equated ORF score SEs.

Specifically, when calibration error was considered in both latent variable scoring and

the delta method (MI1), estimated SEs were larger than the other three approaches

where calibration error was ignored in either or both steps. Further, we found that

more accurate equated ORF score SEs can be found under larger sample size and

longer test length. In fact, when n = 500 and K = 6 or n = 1000 and K = 6, we
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observed a clear pattern that MI1 yielded comparable SEs as the criterion SEs, while

Standard1, Standard2 and MI2 underestimated equated ORF score SEs given all five

distributional characteristics shown in the box plot. This is as expected given that the

delta method we employed based on the asymptotic theory and is supposed to yield

accurate SE estimates under large samples.

K = 3 K = 6

n = 100
n = 300

n = 500
n = 1000

ESD Standard1 MI1 Standard2 MI2 ESD Standard1 MI1 Standard2 MI2
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Figure 1 . Summary of SEs under all simulation conditions.

Note. K = number of unique passages; n = group size; ESD = Empirical standard

deviation of WCPM scores.

Figure 2 shows the distribution of raw bias of equated ORF score SEs under all

simulated conditions using box plots. In general, distributions close to and center

around 0 indicate satisfactory recovery of equating SEs. Similar to the finding based on

Figure 1, SEs based on the MI1 approach had higher accuracy when sample size larger
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and test length longer, e.g., n = 1000 and K = 6.

K = 3 K = 6

n = 100
n = 300

n = 500
n = 1000
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Figure 2 . Raw bias of SEs under all simulation conditions.

Note. K = number of unique passages; n = group size; ESD = Empirical standard

deviation of WCPM scores.

Table 3 shows the RMSE of the equated ORF score SEs obtained from the four

approaches: Standard1, Standard2, MI1 and M2. Given the scale of equated ORF score

SEs, both approaches yielded adequate recovery based on the calculated values of all

three outcome measures. More specifically, MI1 had smaller average RMSE under

conditions with larger sample size and longer test length n = 500, K = 6 and

n = 1000, K = 6. This indicates accurate and precise equating SE estimates obtained

by the MI1 approach especially when sample size and test length increase.
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Table 3

Average RMSE Values

Standard1 MI1 Standard2 MI2

n = 100 K = 3 1.653 2.142 1.458 1.483

K = 6 1.982 2.349 2.228 1.765

n = 300 K = 3 1.383 1.473 1.340 1.351

K = 6 2.002 1.931 2.131 1.918

n = 500 K = 3 1.324 1.358 1.295 1.304

K = 6 1.999 1.920 2.080 1.955

n = 1000 K = 3 1.311 1.321 1.296 1.300

K = 6 2.045 1.991 2.088 2.022
Note. K = number of unique passages; n = group size; Standard = standard practice that

ignores calibration error in scoring; MI = multiple imputation approach that accounts for

calibration error in scoring. Smaller values are boldface.

5. Discussion

The current study provides an analytical derivation of asymptotic SEs of ORF

score equating based on the delta method. Same as other assessment scenarios,

reporting equating SEs is advocated in the usage of ORF assessment. We conducted a

simulation study that demonstrated the accuracy of our derivation given satisfactory

recovery of equated ORF score SEs. The model-based equating method we

implemented in the current study consisted of concurrent calibration and ORF score

equating. Ignoring calibration error, although the standard practice in IRT scoring,

may underestimate asymptotic SEs of ORF score equating. Therefore, the simulation

study also examined the impact of adopting either the standard practice or the multiple

imputation method proposed in Yang et al. (2012) that takes into account calibration

error in ORF scoring on recovery of equated ORF score SEs. Results indicated that

ignoring calibration error may yield larger bias and variability in equated ORF score

SEs especially under large sample size and long test length.
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There are several limitations in the current study. First, given limited

computation resource, the number of replication was 500 in the simulation study. More

accurate criterion SEs can be obtained by using larger number of replications (e.g.,

10,000). Second, although the derivation of asymptotic SEs of ORF score equating can

be generalized to different equating designs, it is limited to the specific parametric

model used in the current study. For example, count data model can be beta-binomial

instead of binomial (Qiao, Kamata, Kara, Potgieter, & Nese, submitted), in which case

the derivation should be modified accordingly. Lastly, the derived SEs of ORF score

equating are based on asymptotic theory. Therefore, applications are suggested to have

large sample size and long test length.

In practice, a researcher’s choice of calibration and scoring methods used for the

ORF model may depend on several factors such as computational resources, sample size

and test length. Given that number of passage is usually small, we suggest the use of

EAP scores. Further, although the MI approach may be inaccessible in practice, we

emphasize that equated ORF score SEs may be underestimated if calibration error is

ignored.
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