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Abstract

In this article, the beta-binomial model for count data is proposed and demonstrated in

terms of its application in the context of oral reading fluency (ORF) assessment, where

the number of words read correctly (WRC) is of interest. Existing studies adopted the

binomial model for count data in similar assessment scenarios. The beta-binomial

model, however, takes into account extra variability in count data that has been

neglected by the binomial model. Therefore, it accommodates potential overdispersion

in count data compared to the binomial model. To estimate model-based ORF scores,

WRC and response times were jointly modeled. The full Bayesian Markov Chain Monte

Carlo (MCMC) method was adopted for model parameter estimation. A simulation

study showed adequate parameter recovery of the beta-binomial model and evaluated

the performance of model fit indices in selecting the true data-generating models.

Further, an empirical analysis illustrated the application of the proposed model using a

dataset from a computerized ORF assessment. The obtained findings were consistent

with the simulation study and demonstrated the utility of adopting the beta-binomial

model for count-type item responses from assessment data.
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Beta-binomial Model for Count Data: An Application in Estimating Model-based Oral

Reading Fluency

1. Introduction

Assessments consisting of many simple, similar and often repetitive tasks where

aggregation of successes or errors is used for scoring are commonly seen in educational,

psychological and neurocognitive contexts. For example, in the testing of psychomotor

skills, the same task is attempted for a limited number of times and counts of successes

are recorded (Spray, 1990). In addition, in oral reading assessments, counts of errors or

successes on several items are used for scoring (Jansen, 1997; Rasch, 1960). In these two

types of assessments, the Binomial Trials Model (Rasch, 1972) and the Rasch Poisson

Counts Model (RPCM, Rasch, 1960) are typically used to model the count variables,

respectively. Both models belong to the Rasch family and have the same algebraic basis

(Masters & Wright, 1984). Mathematically, if we consider number of successes u out of

n trials with probability of success on each trial as p, the binomial model becomes the

Poisson model in the limit when p becomes small and n becomes large with the

expected number of successes np being constant (Masters & Wright, 1984). Therefore,

the Poisson model is usually used for rare events while the binomial model is used for

count data with the upper limit and the probability of success for each trial being large.

There has been extensive development related to the applications of the Poisson

model but much less attention has been paid to the binomial model in the literature on

psychometric modeling of count data. For example, the RPCM has been extended to

the negative binomial regression model to accommodate the overdispersion in response

data from a reading accuracy test (Hung, 2012). In addition, Liu, Liu, Shi, and Jiang

(2022) has adapted the RPCM into a diagnostic classification model with discrete latent

variables for response data from an English recognition assessment. In these two

examples among many other applications related to the RPCM, the number of reading

errors (i.e., misread words) was modeled even when the success of events was clearly

defined, which led to less straightforward interpretations of latent ability parameters.

In this article, we argue that the binomial family models should be considered for



BETA-BINOMIAL COUNT MODEL 4

modeling count-type item response data when appropriate. There are several benefits of

modeling count data with binomial family distributions. First, unlike the Poisson family

models, count data with an upper bound can be modeled by adopting a binomial family

distribution. This is thought to be more in line with typical psychological assessments,

where a natural limit on the tasks exists. For example, in reading tasks consisting of a

fixed number of words, it is reasonable to consider each attempt (i.e., reading a word)

as a binomial trial, where the maximum number of attempts is bounded by the total

number of words. Second, the binomial family models can model the number of

successes directly when successes are common, thus, providing more straightforward

model parameter interpretations. In fact, large success probabilities are very likely

given the simplicity of the repetitive tasks. For example, empirical data have shown

that a majority of students can recognize most words correctly in the English

recognition assessment (Liu et al., 2022).

To our knowledge, the only recent applications of the binomial model for

count-type item response data are in Potgieter, Kamata, and Kara (2017) and Kara,

Kamata, Potgieter, and Nese (2020) in the context of oral reading fluency (ORF)

assessments. These studies jointly modeled counts of words read correctly (WRC) and

response times (RTs) for reading each passage to estimate words read correctly per

minute (WCPM) scores as the measure of latent ability. The purpose of the current

study is to extend previous work and propose the beta-binomial model to accommodate

potential overdispersion in count data that has been neglected by the binomial model.

In this article, we refer to the binomial model in Kara et al. (2020) as JRT-Bin and our

proposed beta-binomial model as JRT-BetaBin, where JRT stands for joint modeling of

responses and response times. Through a simulation study, we aim to evaluate the

impact of ignoring overdispersion in the binomial modeling of count data on parameter

recovery and the performance of model fit indices in selecting the true data-generating

model. Then, we illustrate the application of the proposed model in the context of ORF

assessments. It is worth noting that passages in the ORF contexts are analogous to the

concepts of items in traditional assessments. Thus, we use the terms items and passages
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interchangeably in this article.

The rest of the article is organized as follows. First, we present the formulation,

assumptions, and parameter estimation of the proposed model. Second, we describe the

simulation study design and present our findings. Third, we conduct an empirical data

analysis to demonstrate the use of the proposed model and compare its performance

with the JRT-Bin. Lastly, conclusions and future directions are discussed.

2. The Proposed Model

Similar to van der Linden (2007), the proposed model JRT-BetaBin is a joint

model consisting of the accuracy component and the speed component. Specifically, the

accuracy and speed components are measurement models for count data and response

time data, respectively.

Beta-binomial Model for Count Data

We adopt the beta-binomial distribution as the link function for count data. The

probability mass function for the beta-binomial distribution with number of trials

n ∈ N0 and parameters ϕ > 0, ψ > 0 is given by:

P (U = u|n, ϕ, ψ) =
(
n

u

)
B(u+ ϕ, n− u+ ψ)

B(ϕ, ψ) , (1)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function and u ∈ 0, ..., n. In the context of ORF

assessment, we denote Uij as a random variable describing the count of WRC for person

j in passage i that has a total of ni words. We further parameterize

ϕij = pij(ni − νi)
νi − 1 (2)

and

ψij = (1 − pij)(ni − νi)
νi − 1 , (3)

where pij = Φ(ai(θj − bi)) is the success probability following the same parameterization

as the two-parameter normal-ogive IRT model with passage discrimination parameter

ai > 0, passage difficulty parameter bi ∈ R, and reading accuracy ability θj ∈ R; νi > 1
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denotes the dispersion parameter for passage i. In summary, the beta-binomial model is

expressed as:

uij|θj ∼ BetaBin
(
ni,

pij(ni − νi)
νi − 1 ,

(1 − pij)(ni − νi)
νi − 1

)
. (4)

Given this model formulation, we have nipij as the conditional mean and

nipij(1 − pij)νi as the conditional variance of the counts of WRC given a specific latent

reading accuracy level and a specific passage. It can be seen that the conditional mean

based on the beta-binomial model is the same as that based on the binomial model,

while the conditional variance is νi times of that indicated by the binomial model.

Therefore, ν indicates overdispersion and takes into account extra variability in the

count data that is ignored by the binomial model.

Lognormal Model for Response Time Data

We adopt the lognormal model as in (van der Linden, 2006), where passage RTs

(in seconds) are assumed to have a lognormal distribution:

f(tij|τj) = αi

tij
√

2π
exp(−1

2[αi(logtij − (βi − τj))]2), (5)

in which tij denotes RT for passage i and person j; τj ∈ R is the latent speed ability for

person j; βi ∈ R is the time intensity for item i, indicating the labor required for

reading that passage; and αi > 0 represents the time discrimination parameter that

reflects the variance of logtij.

Higher-order Model

The reading accuracy θ and latent speed τ are further assumed to follow a

bivariate normal distribution in the population:θj

τj

 ∼ MVN

µθ

µτ


 σ2

θ

σθτ σ2
τ

 (6)

The diagonal of the matrix indicates the variances of the latent accuracy and

speed abilities. The off-diagonal of the matrix indicates the covariance between the

latent variables. Passage parameters are modeled as fixed effects. It is possible to treat
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passage parameters as random effects as in the hierarchical model (van der Linden,

2007). However, it is challenging to obtain unbiased parameter estimates with the

extreme short test length (i.e., less than 10 passages) in ORF assessments. Further,

treating passage parameters as fixed effects would not affect the accuracy and efficiency

of parameter estimates based on previous studies (e.g., Molenaar, Tuerlinckx, & van der

Maas, 2015).

There are several assumptions made on the proposed model. First, conditional

independence (CI) among observed variables is assumed. Similar to what is stated in

van der Linden and Glas (2010), three CI assumptions exist in the proposed model: 1)

independence between counts given θ; 2) independence between RTs given τ ; and 3)

independence between counts and RTs given θ and τ . Further, θ and τ are assumed to

be constant across passages. Lastly, similar to the binomial model, the beta-binomial

count model assumes that each attempt (e.g., reading each word in a passage) is

independent of one another and only the number of successes is recorded regardless of

the order of successes and failures (Masters & Wright, 1984).

Model Parameter Estimation

We used the full Bayesian approach with the Markov chain Monte Carlo (MCMC)

method to estimate model parameters. Specifically, we used the R2jags package to

interface with JAGS (Plummer, 2015), which implements the slice-with-Gibbs sampler

algorithm (Gelfand & Smith, 1990). For all data-fitting models, four Markov chains

using 40,000 iterations and 20,000 burn-in were run with random starting points. The

thinning was set as 4 to reduce autocorrelations among draws. Further, the potential

scale reduction factor (PSRF, Brooks & Gelman, 1998) smaller than 1.1 was used to

indicate an adequate model convergence. In addition, the effective sample size (ESS)

larger than 400 was considered as satisfactory precision of the Bayesian estimation

(Zitzmann & Hecht, 2019).

Assuming conditional independence, Uij and logTij are conditionally and

independently distributed as Uij|θj, ai, bi, νi ∼ BetaBin
(
ni,

pij(ni−νi)
νi−1 , (1−pij)(ni−νi)

νi−1

)
, where
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pij = Φ(ai(θj − bi)) and logTij|τj, βi, αi ∼ N(βi − τj,
1

α2
i
). We used noninformative

normal priors for all passage parameters as follows: ai ∼ N(0, 100)T (0,+∞),

bi ∼ N(0, 100), αi ∼ N(0, 100)T (0,+∞), βi ∼ N(0, 100), νi ∼ N(0, 100)T (1,+∞),

where T (·) indicates truncation distribution with the two values in the parenthesis as

lower and upper bounds. A Gamma distribution was used for the conditional precision

of the speed parameter as σ−2
τ |θj ∼ Gamma(0.01, 0.01). Finally, a normal prior with

zero mean and an arbitrarily large variance was assigned to the covariance between the

speed and accuracy parameters as σθτ ∼ N(0, 100).

3. Simulation Study

The purpose of the simulation study was two-fold: 1) to evaluate the parameter

recovery of JRT-BetaBin and the impact of ignoring overdispersion on parameter

recovery of JRT-Bin; 2) to evaluate the performance of model fit indices in terms of

correctly selecting the true data-generating model.

Fixed Factors

In data generation, fixed factors included: population distribution of latent

variables and population values of passage parameters. Specifically, the latent variables

(i.e., θ and τ) were drawn fromθ
τ

 ∼ MVN

0

0


 1 0.16

0.16 0.16

 .
That is, we fixed ρθτ = 0.4, σ2

τ = 0.16. We also fixed µθ = µτ = 0 and σ2
θ = 1 for model

identification purposes. We selected population values of passage parameters from a

calibrated pool as part of a previously conducted study in Potgieter et al. (2017). The

population values are presented in Table 1.

Manipulated Factors

We manipulated three factors in the simulation study: sample size (N), test

length (i.e., number of passages read in the ORF assessment context) (I), and
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overdispersion levels in count data. For sample size, we set factor levels as 100, 300, and

500 to represent small, medium, and large sample sizes. We expect sample size would

affect the parameter recovery of passage parameters and true WCPM scores. For test

length, we set factor levels as 3 and 6 passages to represent short and long test lengths

based on real scenarios in ORF assessments. We expect test length would affect the

parameter recovery of reading accuracy, latent speed, and true WCPM scores. For

overdispersion levels, we manipulated three global dispersion levels (i.e., ν = 1, ν = 3,

and ν = 5) and one item-specific dispersion level (i.e., ν1 = ν4 = 1, ν2 = ν5 = 3,

ν3 = ν6 = 5). Specifically, for passages with νi = 1, the true data-generating model was

JRT-bin. For passages with νi > 1, the true data-generating model was JRT-BetaBin.

The three factors were fully crossed, yielding 3 × 2 × 4 = 24 conditions.

Table 1

True Passage Parameters

Passage (i) ai bi αi βi Ni

1 0.500 -2.771 6.176 3.270 47

2 0.444 -2.923 5.747 3.357 49

3 0.557 -2.760 4.841 3.320 50

4 0.505 -2.856 5.064 3.359 50

5 0.447 -2.949 4.408 3.315 50

6 0.476 -2.877 3.936 3.341 49
Note. First three passages were used under simulation condition I = 3.

Data-fitting Models

We simulated thirty datasets (i.e., 30 replications) for each simulated condition.

Further, we fit two data-fitting models to each dataset: JRT-BetaBin and JRT-Bin

models. As mentioned earlier, the two models differed in their link functions for count

data: JRT-BetaBin included the beta-binomial model, while JRT-Bin included the

binomial model for count data, respectively. The RT model was the same lognormal

model in both JRT-BetaBin and JRT-Bin.
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Outcome Measures

We investigated the performance of both relative and absolute model fit measures.

For relative model fit, we investigated the performance of the deviance information

criterion (DIC, Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) by recording the

frequency of replications where DIC correctly identified the true data-generating model.

In addition, we conducted posterior predictive model checking (PPMC, Gelman, Meng,

& Stern, 1996; Meng, 1994; Rubin, 1984) to examine the absolute model fit and item

(i.e., passage) fit for both data-fitting models. We examined the absolute fit for the

count data model and RT model separately. Specifically, the discrepancy measure

employed for the model fit of the beta-binomial count data model is calculated as

D(uij; θj, ai, bi, νi) =
I∑

i=1

N∑
j=1

(
uij − nipij

)2

nipij(1 − pij)νi

. (7)

The discrepancy measure employed for the fit of the binomial count data model is

calculated as

D(uij; θj, ai, bi, νi) =
I∑

i=1

N∑
j=1

(
uij − nipij

)2

nipij(1 − pij)
. (8)

The discrepancy measure employed for the response time model is based on the statistic

proposed by Marianti, Fox, Avetisyan, Veldkamp, and Tijmstra (2014):

D(tij; τj, αi, βi) =
I∑

i=1

N∑
j=1

(
αi(logtij − βi + τj)

)2
. (9)

All three discrepancy measures are standardized residual-based measures. To assess

item fit, we only took summations across persons in the above equations as discrepancy

measures at the item level. A posterior predictive p (PPP, Gelman et al., 1996; Meng,

1994) value was used to summarize the information in PPMC. A PPP value near 0.5

indicates adequate model or item fit. A PPP value < 0.05 or > 0.95 indicates a model

or item misfit, which is analogous to conducting a two-tailed hypothesis testing with a

significance level of 0.1. The proportion of extreme PPP values among replications

where the data-fitting model is the same as the data-generating model is then the

empirical Type I error rate.



BETA-BINOMIAL COUNT MODEL 11

We considered absolute bias, empirical standard error (SE), and root mean

squared error (RMSE) as outcome measures to evaluate model parameter recovery and

the recovery of model-based WCPM scores, which is a function of model parameters. A

detailed derivation of the model-based WCPM scores can be found in Kara et al.

(2020). Specifically, the absolute bias, SE, and RMSE are calculated as:

Absolute Bias(y) = 1
R

R∑
r=1

∣∣∣ŷ − ytrue

∣∣∣, (10)

SE(y) =

√√√√ 1
R

R∑
r=1

(ŷ −
∑R

r=1 ŷ

R
)2, (11)

RMSE(y) =

√√√√ 1
R

R∑
r=1

(ŷ − ytrue)2, (12)

where y is the parameter to evaluate, ŷ is the parameter estimate, ytrue is the true

parameter value, and R is total number of replications. The bias and SE quantify the

systematic and random error in the parameter estimate, respectively. The RMSE

quantifies the total error in the parameter estimate.

Simulation Study Results

Convergence and Computation Time. Convergence was achieved for all

model parameters in both data-fitting models with PSRF < 1.1 in all replications. In

addition, we found ESS > 400 for most model parameters under all conditions with

exceptions for some passage discrimination a and passage difficulty b parameters in

both data-fitting models. Given that small ESS is related to high autocorrelation, this

indicates that MCMC draws were less efficient for these parameters in both models. In

particular, the autocorrelation issue was more severe for a and b parameters in the

JRT-Bin given smaller ESS values in most cases.

Computation time for JRT-BetaBin was about 15 minutes when N = 100 and I =

3 and it was 80 minutes when N = 500 and I = 3. In addition, the computation time

was proportional to dataset sizes. The computation time for JRT-BetaBin was about 3
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times the computation time for JRT-Bin in all situations1.

Model Fit. In terms of relative model fit, DIC performed perfectly in correctly

identifying the true data-generating model in all replications under all conditions. That

is, when ν = 1, DIC values for JRT-Bin were smaller than those of the JRT-BetaBin.

Otherwise, when ν = 3 or ν = 5 or item-specific dispersion was generated, DIC values

for JRT-BetaBin were smaller than those of the JRT-Bin.

We examined both absolute model fit and item fit by summarizing PPP values

based on discrepancy measures for count data and RT data, respectively. Given that

data-generating models were the same as the data-fitting models for RT data, PPP

values were all close to 0.5 which indicated adequate model and item fit.

We found that count data model discrepancy measures detected model misfit

adequately. When the true data-generating model was JRT-Bin (i.e., ν = 1), the

empirical Type I error for the binomial model was 0 in all situations except being 0.033

when N = 500. For the beta-binomial model, proportions of extreme PPP values

ranged from 0.2 to 0.4 for small to large sample sizes when I = 6 while no larger than

0.033 when I = 3. This suggests that the beta-binomial model can fit binomial data

well especially when test length is short. When the true data-generating model was

JRT-BetaBin (i.e., ν = 3 or ν = 5) or item-specific dispersion was simulated (i.e., ν =

various), the proportion of extreme PPP values was 1 for JRT-Bin and 0 for

JRT-BetaBin under all conditions. This indicates that the discrepancy measures can

detect model misfit perfectly when the binomial model was fit to beta-binomial data.

Similar patterns were found for item fit for both models under ν = 1, ν = 3 and

ν = 5. When ν = various, however, the proportion of extreme PPP values was 0 for the

beta-binomial model, while high empirical Type I error rates ranging from 0.4 to 1 for

small to large sample sizes were found for the binomial model. This indicates that, when

some of the passage counts had overdispersions, the passage-level discrepancy measure

may mistakenly suggest that the binomial model misfit passages with no overdispersion.

1 Computation time was obtained from analyses run on a high-performance cluster featuring the

CentOS 7 operating system.
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Impact of Dispersion on Parameter Recovery. We report parameter

recovery of person and passage parameters for both data-fitting models. For person

parameters, we focus on discussing reading accuracy θ and speed τ . Given that sample

sizes did not affect much of the recovery of θ and τ , we present the absolute bias, SE,

and RMSE of θ and τ under N = 300 in combination with test lengths and dispersion

conditions in Figures 1 to 3. We found longer test lengths led to smaller estimation

errors in θ and τ , which is consistent with previous studies (e.g., Qiao & Jiao, 2021). As

expected, dispersion levels in the count data did not affect the recovery of τ . However,

when global overdispersion existed (i.e., ν > 1) or item-specific overdispersion existed

(i.e., ν = various), JRT-BetaBin tended to yield smaller absolute bias and smaller SE in

θ than JRT-Bin. As a result, JRT-Bin yielded a larger total error in θ given larger

RMSE in general. When the true data-generating model was JRT-Bin (i.e., ν = 1),

recovery of θ was similar for both data-fitting models.
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Figure 1 . Absolute Bias of θ and τ when N = 300.
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Figure 2 . Standard Error of θ and τ when N = 300.
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Figure 3 . Root Mean Square Error of θ and τ when N = 300.

Passage parameters include passage discrimination a, passage difficulty b, time
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discrimination α, and time intensity β in both models and dispersion parameter ν in

JRT-BetaBin. Given that test lengths did not affect much of the recovery of passage

parameters, we present the absolute bias, SE, and RMSE of passage parameters under

I = 6 in combination with sample sizes and dispersion conditions in Figures 4 to 6. We

found that parameter recovery for α and β were similarly adequate for both data-fitting

models in all conditions. Thus, we focus on discussing the impact of overdispersion

levels and sample sizes on the recovery of a, b, and ν. These parameters in both

data-fitting models recovered well when JRT-Bin was the true data-generating model

(i.e., ν = 1). However, parameters a and b in JRT-Bin had larger absolute bias and

RMSE on average as the overdispersion level in count data increased and smaller SE on

average as sample size increased. While recovery of a and b in JRT-BetaBin was not

affected by overdispersion levels, ν had larger estimation errors as the magnitude of ν

increased. This is reasonable because the magnitude of true parameters is usually

proportional to estimation errors. As expected, recovery of passage parameters

improved as sample size increased on average based on bias, SE, and RMSE.
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Figure 4 . Average Absolute Bias of Passage Parameters when I = 6.
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Figure 5 . Average Standard Error of Passage Parameters when I = 6.
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Impact of Dispersion on WCPM Estimates. We examined the recovery of

model-based WCPM scores in terms of absolute bias, SE, and RMSE. We observed

similar patterns of WCPM score recovery under different sample sizes. Therefore, we

present only conditions of N = 300 in combinations with test lengths and overdispersion

levels in Figures 7 to 9. In general, longer tests (i.e., more passages) resulted in better

recovery of WCPM scores for both data-fitting models. In addition, when the true

data-generating model was JRT-Bin (i.e., ν = 1), we observed comparable recovery

levels of WCPM scores for JRT-Bin and JRT-BetaBin. When ν > 1, JRT-BetaBin

yielded smaller absolute bias and RMSE values for WCPM score estimates on average

especially for larger true WCPM scores. More specifically, when true WCPM scores

were small (< 50), JRT-BetaBin exhibited either similar or smaller median absolute

bias and RMSE values but with larger variability comparing to those obtained from

JRT-Bin. As true WCPM scores became larger, absolute bias and RMSE values

obtained from JRT-BetaBin became smaller than those from JRT-Bin in terms of both

medians and ranges. JRT-Bin, on the other hand, tended to have larger SEs in WCPM

score estimates, especially when overdispersion levels increased in the count data.

4. Empirical Data Analysis

Dataset and Analysis

In the empirical data analysis, we aim to evaluate the model fit and consistency of

parameter estimates from the JRT-BetaBin and JRT-Bin using the same dataset as in

Kara et al. (2020). The dataset consists of 4 passages with 47, 47, 80, and 86 words

read by N = 58 students. Counts of WRC and response time (in seconds) per passage

were recorded for each person. We further took the natural logarithm of the time

variables for the analysis. Descriptive statistics of the count variables and time variables

are shown in Table 2.

Two models, JRT-BetaBin and JRT-Bin, were fit to the dataset. The prior

specifications and Bayesian MCMC estimation setup for both models remained the

same as those in the simulation study. Below, we report model convergence,
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Figure 7 . Absolute Bias of Model-based WCPM Estimates when N = 300.
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Figure 8 . Standard Error of Model-based WCPM Estimates when N = 300.
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Figure 9 . Root Mean Square Error of Model-based WCPM Estimates when N = 300.

computation time, model fit, and consistency of parameter estimates from two models.

Table 2

Descriptive Statistics of the Empirical Dataset

Variable Mean SD Min Max % Missing

U1 43.552 3.803 31 47 0

U2 42.966 3.464 31 47 0

U3 71.569 8.249 43 80 0

U4 79.500 7.294 54 86 0

T1 3.227 0.336 2.670 3.935 0

T2 3.172 0.296 2.570 3.999 0

T3 3.833 0.348 3.250 4.501 0

T4 3.678 0.318 3.166 4.501 0
Note. U = Count; T = log-time; SD = standard deviation.
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Empirical Data Analysis Results

Convergence and Computation Time. Both JRT-BetaBin and JRT-Bin

converged well with PSRF < 1.05 for all estimated parameters. Consistent with the

simulation study results, most parameter estimates had adequate estimation precision

with ESS > 400 except for several passage discrimination a and passage difficulty b

parameters. Specifically, b̂1 had ESS = 300 in JRT-BetaBin and â1, â2, b̂1, and b̂2 had

ESS as 280, 330, 310, and 310 in JRT-Bin. Computation time for JRT-BetaBin and

JRT-Bin was 11.117 and 3.030 minutes, respectively.

Model Fit. Both absolute and relative model fit indices are presented in Table

3. As per the RT model, PPP values were close to 0.5, indicating adequate model fit.

The PPP value for the beta-binomial model was close to 0.5, while the PPP value for

the binomial model was 0. Passage-level PPP values showed similar patterns, as shown

in Table 4. In addition, both deviance and DIC values for the JRT-BetaBin were

smaller than those of the JRT-Bin, which indicated that JRT-BetaBin had better fit to

the empirical data. Based on the simulation study results, the model fit evidence in the

empirical analysis suggested either item-specific (ν = various) or global overdispersion

(ν > 1) in count data.

Table 3

Model Fit Results in Empirical Data Analysis

Model PPP of Count Model PPP of RT Model Deviance DIC

JRT-BetaBin 0.397 0.475 910.065 1126.724

JRT-Bin 0 0.474 970.535 1134.985
Note. Smaller values of deviance and DIC are bold face; RT = response time; PPP =

posterior predictive p-value; DIC = deviance information criterion.

Parameter Estimates. The overdispersion parameter estimates from the

JRT-BetaBin model for the four passages were ν̂1 = 1.993, ν̂2 = 2.012, ν̂3 = 5.055, and

ν̂4 = 3.775, respectively. These values can be interpreted as the number of times the

conditional variances of the passage-level count data suggested by the JRT-BetaBin



BETA-BINOMIAL COUNT MODEL 21

Table 4

Passage Fit Results in Empirical Data Analysis

Model Passage PPP of Count Model PPP of RT Model

JRT-BetaBin 1 0.537 0.491

2 0.434 0.496

3 0.439 0.479

4 0.354 0.476

JRT-Bin 1 0.006 0.485

2 0.002 0.495

3 0.000 0.472

4 0.000 0.482
Note. RT = response time; PPP = posterior predictive p-value.

were those suggested by the JRT-Bin. As a result, JRT-BetaBin suggested

overdispersion of the count data for all passages compared to JRT-Bin given all

overdispersion parameter estimates larger than 1.

Consistency of passage discrimination â, difficulty b̂, time discrimination α̂, and

time intensity parameters β̂ is presented in Figure 10. We observed discrepancies in â

and b̂ for all passages. In addition, we found almost identical α̂ and β̂ obtained from the

two data-fitting models. These findings are consistent with the simulation study results

where we found JRT-Bin had worse parameter recovery for a and b under overdispersion

while comparable parameter recovery for α and β compared to JRT-BetaBin under all

simulated conditions.

Lastly, the correlations between θ̂, τ̂ and WCPM score estimates between

JRT-BetaBin and JRT-Bin were 0.968, 1, and 0.997, respectively. This finding is close

to the ν = various condition in the simulation study where estimation errors of θ and

WCPM scores were slightly larger for JRT-Bin than JRT-BetaBin. Given that recovery

of τ was identical between the two models in all conditions, a perfect correlation in the

empirical analysis is expected.
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Figure 10 . Consistency of Passage Parameter Estimates in Empirical Data Analysis.

5. Discussion

Binomial family models can be good candidates for modeling count-type item

response data with an upper bound where each attempt is assumed to be independent

with large success probabilities. Observed count data that have such characteristics are

commonly seen in educational and psychological assessments such as ORF and word

recognition assessments. In this article, we proposed the beta-binomial model that

accommodates potential overdispersion in count data, which is ignored in the binomial

model. We illustrated the application of the proposed model in the context of ORF

assessments. We presented the beta-binomial model in the form of a joint model of

count-type item response data and response times. However, it is important to

emphasize that the beta-binomial model can be used as a standalone model for count

data. Moreover, the proposed model can be used to analyze count-type item response
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data from various assessment scenarios rather than limiting to ORF assessments as long

as the model assumptions can be met.

The simulation study showed adequate parameter recovery of JRT-BetaBin when

the count data was generated from the binomial model or the beta-binomial model.

Further, we provided evidence that the relative model fit index DIC performed perfectly

in selecting true data-generating models under various simulation conditions. In

addition, we employed the PPMC method to evaluate the absolute model and item fit.

Through a sum of squared residuals perspective, count data discrepancy measures can

adequately detect model misfits in terms of ignoring overdispersion. However, high

Type I error rates were observed for the binomial model when some passages had

overdispersed count data.

The empirical data analysis showed the utility of JRT-BetaBin in accommodating

overdispersion in count-type item response data in comparison to JRT-Bin. Specifically,

we observed better model fit and item fit for the JRT-BetaBin and overdispersion in the

count data with ν̂ > 1 as suggested by JRT-BetaBin. The passage parameter estimates

â and b̂ were discrepant between JRT-Bin and JRT-BetaBin given the potential

overdispersion in the count data, while person parameter estimates θ̂, τ̂ and WCPM

scores were consistent between JRT-BetaBin and JRT-Bin in general.

Based on the promising application of the beta-binomial model for modeling count

data as shown in the current study, some extensions can be made in the future. First,

the assumption that constant latent reading accuracy and reading speed across passages

need to be evaluated. It has been shown that latent speed can be variable across items

(Fox & Marianti, 2016). Similarly, it is reasonable to relax the constant reading speed

assumption in the beta-binomial model especially when item characteristics vary.

Second, we investigated discrepancy measures based on the sum of squared residuals in

the PPMC procedure. It is worth noting that PPMC examines specific aspects of

model-data fit depending on discrepancy measures being used. Therefore, more studies

on Bayesian model fit evaluation on binomial family models are needed in the future.

Lastly, we demonstrated the application of the beta-binomial model in the context of
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ORF assessments. Future studies that extend its application to various educational or

psychological assessments are needed to further explore the utilities of the

beta-binomial model in modeling count-type item response data.
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