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Understanding equivalence is fundamental to STEM disciplines, but many students struggle with 

the concept. We present a novel method for students to explore ideas of equivalence where 

students dynamically transform expressions from initial states to goal states in the web-based 

app Graspable Math. The structure of the goal state activities implies that any initial and goal 

state pair represent the same quantity (or varying quantity). We propose that for students, the 

physical experience of moving algebraic objects and observing how the initial state transforms 

into the goal state helps generalize notation mechanics. In fall of 2019, we will test this 

supposition in a randomized control trial of 1500 students in which student performance in pre- 

and post-tests will be compared to an online problem set control.  

Keywords: Algebra and Algebraic Thinking, Technology, Instructional Activities and Practices, 

Middle School Education 

Student misunderstandings or misconceptions about the equivalence and the equals sign have 

been noted as inhibiting success in upper-level mathematics and other STEM disciplines (Kieran, 

2007; Knuth, Stephens, McNeil, & Alibali, 2006; Stephens, Knuth, Blanton, Isler, Gardiner, & 

Marum, 2013). For example, a common misconception is when students view the equals sign as 

marking or calling for a computation, such as interpreting “4+1=5” as “four and one makes five.” 

This type of operational understanding of the equals sign has been found to be stable in middle 

school students (Alibali, Knuth, Hattikudur, McNeil, & Stephens, 2007) and is associated with 

difficulty in equation solving, even when controlled for grade level and standardized 

mathematics test scores (Knuth, et al., 2006). A robust perspective, in contrast, is what Stephens 

and colleagues (2013) describe as a relational-structural view of the equals sign - understanding 

that the equals sign expresses an equivalence relation between the two expressions on either side.  

Much of the research on students’ understanding of equivalence is embedded in work on 

students’ understanding of the equals sign (Blanton, Stephens, Knuth, Gardiner, Isler, 2015; 

Kieran, 1981, 1992, 2007; Knuth, et al., 2006; Leavy, Hourigan, & McMahon, 2013; Rittle-

Johnson, Matthews, Taylor, & McEldoon, 2011). As a case in point, Rittle-Johnson and 

colleagues (2011) talk about the distinction between numerical equivalence - the ability to match 

sets of objects on the basis of quantity, and mathematical equivalence - “understanding that the 

values on either side of the equal[s] sign are the same,” (Rittle-Johnson et al., 2011, p. 86). 

Kieran describes this formally as “the symmetric and transitive character of equality,” and 

informally as “the ‘left-right equivalence’ of the equal[s] sign,” (1992, p. 398).  
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Our work takes a different tactic by having students work through what we call goal state 

activities using the dynamic notation tool, Graspable Math (GM). In GM, algebraic objects 

(terms, expressions, and equations) operate according to the mechanics of symbolic notation. For 

example, permissible moves (such as adding 2x and 4x) transform an expression or equation, 

while impermissible moves (such as adding 2x and 4y) do not. From a perceptual learning 

perspective, students’ experience of moving algebraic objects on the screen, reinforced by the 

visual feedback of transformed expressions, helps students to generalize notation mechanics and 

attend to relevant details. In goal state activities, students are presented with two equivalent 

states: an initial state and an equivalent goal state (See Figure 1). The students’ task is to 

transform the initial expression into the goal state. These transformations can only happen 

through algebraically permissible actions. Thus, students are finding the road map of equivalence 

between the initial state and the goal state. 

Figure 1: An Example of a Goal State Activity in Graspable Math 

 

In fall of 2019, we will run a randomized control trial of 1500 students in 2 intervention 

conditions: a GM goal state condition and an online problem set control. Student performance in 

pre- and post-tests will be compared to explore how GM goal state work might be associated 

with students’ performance on equivalence-related tasks to address the research question, “How 

does experience with a transformation-based intervention affect student performance on 

equivalence items compared to a control of traditional online problem set?”  

Theoretical Framework 

The operational-relational dichotomy in students’ perspectives of the equals sign is well-

documented in the literature (Blanton et al., 2015; Carpenter, Franke, & Levi, 2003; Kieran, 

1992; Knuth et al., 2006; Leavy, Hourigan, & McMahon, 2013; McNeil, Grandau, Knuth, 

Alibali, Stephens, Krill, 2006). Stephens, et al. (2013) adds nuance to that discussion by 

differentiating between a relational-computational view, where students understand that two 

sides of the equals sign calculate to the same value, and a relational-structural view, where 

students understand that the equals sign expresses an equivalence relation between the two 

expressions on either side of the equals sign. This subtle difference is tied to a structural 

understanding of algebra (Kieran, 2007), where “[students] can see complicated things, such as 

some algebraic expressions, as single objects or as being composed of several objects" 

(CCSS.Math.Practice.MP7 http://www.corestandards.org/Math/Practice/).  

Landy, Allen, and Zednik (2014) proposed that sense making of symbolic notation happens 

through perceptual and sensorimotor systems. If the capacity for symbolic reasoning is in part 

the ability to “perceptually group, detect symmetry in, and otherwise perceptually organize 

symbolic notations,” (Landy, Allen, & Zednik, 2014, p. 1), part of the algebraic objectification 

described above could be perceptual. In other words, since “what students notice mathematically 
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has consequences for their subsequent reasoning” (Lobato, Hohensee, & Rhodehamel, 2013, p. 

809), perception of notation is part and parcel of symbolic reasoning (Goldstone, Marghetis, 

Weitnauer, Ottmar & Landy, 2017). Mathematical fluency, therefore, derives not only from 

understanding the content, but also a heightened focus on relevant perceptual details. Perceptual 

learning theory suggests that training one’s perceptual and sensorimotor systems in symbolic 

notation may result in more effective reasoning about the relationships represented by the 

symbols (Kellman, Massey, & Son, 2010).  

Grounded in this theory, GM creates a learning environment where algebraic objects behave 

according to the mechanics of symbol manipulation in a virtual environment. By making moves 

on expressions or equations and observing the system response, generalized mathematical 

properties such as commutativity, distribution, and order of operations, and simplifying 

expressions or solving equations becomes experiential for students.  

For example, imagine a situation where a student is working with the expression “3 + 8 + 4x” 

(Figure 2). In the first row, the student moves the “8” to the right and drops it past the “4x,” 

experiencing the commutative property by seeing the resulting “3 + 4x + 8.” In the second row, 

the student moves the “8” to the left and drops it on top of the “3.” The terms combine, resulting 

in the expression “11 + 4x.” Thus, the student experiences addition. In third row, the student 

drops the “8” on top of “4x,” not a permissible operation since “8 + 4x” is already in simplest 

form, and the “8” snaps back to its initial location. In each case, the program responds to student 

actions, and the student has immediate feedback on the impact of their actions. Other gestures 

beyond selecting and moving allow users to enact most forms of symbolic manipulation 

including each of the four basic operations, decomposition, distribution, and factoring.  

 

Possible actions on “3+8+4x” Final State in GM Mathematical 

Description 

move “8” to the right  Commute 8 and 4x 

 

 move “8” on top of “3” 

 

   move “8” on top of “4x” 

 Add 3 and 8 

 

Not a permissible move 

(“8+4x” shakes) 

Figure 2: GM Actions and Response on the Expression “3+8+4x” 

Research Methods 

For the purposes of the 2019 PME North American conference, we will be presenting data 

from a classroom study to be run in fall of 2019. This study involves a student-level randomized 

trial of 2 conditions, using the ASSISTments platform (Heffernan & Heffernan, 2014) to 

maintain condition assignments for each student to either self-paced GM goal state problems or 

online problem set. The study itself is 3 hours of content over 6 weekly sessions covering the 

four operations, fractions, and order of operations. Students in the GM tutorials will solve goal 

state items, while the problem set control will work through similar content items compiled from 

three open-source mathematics curricula: Engage NY (2014), Utah Math Project (2016), and 

Illustrative Math (2017). A sample of questions from the control condition is in Figure 3. 

Student participants in the pilot will include approximately 1500 middle school students from 

50 to 100 classrooms across a large, urban district in the southwestern United States. Participant 

schools have student populations comprised of 20% to 50% English Language Learners and over 
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75% identified high needs students, including but not limited to such characteristics of low 

income, limited English proficiency, and identified learning disabilities. Mathematical 

performance assessment items are drawn from the Rittle-Johnson, Matthews, Taylor, and 

McEldoon (2011) and Rittle-Johnson, Star, & Durkin, (2016) assessments of mathematical 

achievement. 

  

1.  Fill in the blank.    ____ + 𝒈 − 𝒈 = 𝒌                                                                            (adapted from Engage New York) 

2.  Select all the expressions that are equivalent to 4b.                                              
a)  b+b+b+b          b)    b+4           c)   2b+2b           d)  b*b*b*b        e)   b÷4            (adapted from Illustrative Math) 

3.  Without solving completely, determine the number of solutions of the equation  3(m − 3) = 3m − 9  
a) No solution      b) one solution      c) infinitely many solutions             (adapted from Utah Middle School Math Project) 

Figure 3: Sample Items from Online Problem Set Control 

Approach to Analysis  

In line with research question, “How does experience with transformation-based intervention 

affect student performance on equivalence items compared to a control of traditional online 

problem set?” we will compare post-performance on mathematical equivalence items from the 

two conditions. We hypothesize that the immediate, experiential feedback provided in GM 

heightens student awareness of the mechanics of algebraic notation and is an aide to students’ 

generalizing those mechanics. The primary analysis testing GM for improving math achievement 

will use linear regressions to estimate mean posttest equivalence scores between students in the 

GM and the control condition, controlling for pretest scores. We will examine whether GM is 

more effective for students with lower prior knowledge by testing the condition × pretest 

interaction. We expect that GM will improve students’ knowledge of equivalency more than the 

control condition, and the effects of condition will emerge in procedural fluency, conceptual 

understanding, and mathematical flexibility items. This effect is hypothesized to be larger for 

lower performing students. 

Conclusion 

Despite major efforts in research, curricula development, and policy, students still struggle 

with understanding equivalence and the equals sign. Our session presents a novel student 

experience with equivalence: transforming expressions and equations dynamically and explicitly 

within a notation environment. Positive results from prior work using a similar arrangement of 

multiple sessions using a gamified version of GM has shown that it may be effective for 

decreasing notation errors and improving mathematical understanding (Daigle, Harrison, Braith, 

Ottmar, Hulse, & Manzo, 2019; Ottmar & Landy, 2017; Ottmar, Landy, Goldstone, Weitnauer, 

2015). What will be unique in the analyses is the focus on mathematical equivalence and 

comparison against a control condition. 
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