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ABSTRACT
Automatically identifying struggling students learning to pro-
gram can assist teachers in providing timely and focused
help. This work presents a new deep-learning language model
for predicting“bug-fix-time”, the expected duration between
when a software bug occurs and the time it will be fixed by
the student. Such information can guide teachers’ attention
to students most in need. The input to the model includes
snapshots of the student’s evolving software code and ad-
ditional meta-features. The model combines a transformer-
based neural architecture for embedding students’ code in
programming language space with a time-aware LSTM for
representing the evolving code snapshots. We evaluate our
approach with data obtained from two Java development en-
vironments created for beginner programmers. We focused
on common programming errors which differ in their diffi-
culty and whether they can be uniquely identified during
compilation. Our deep language model was able to outper-
form several baseline models that use an alternative embed-
ding method or do not consider how the programmer’s code
changes over time. Our results demonstrate the added value
of utilizing multiple code snapshots to predict bug-fix-time
using deep language models for programming.

Keywords
computer programming, predict bug fix time, deep learning
language models

1. INTRODUCTION
Programming courses have become an essential component
of many STEM degrees and are attracting students from
diverse backgrounds. Many beginners struggle with learn-
ing fundamental principles of programming [20]. Addition-
ally, previous studies suggest that compiler messages have
an imperfect mapping to errors which can confuse the stu-
dents [24]. Providing students with personalized support
can significantly aid their learning. The time spent by pro-
grammers to fix bugs is known to be a proxy for the difficulty

they encounter and can be used as an indicator for finding
struggling students [14, 3]. Thus, predicting the bug-fix-
time of errors for students can help teachers identify those
students requiring additional attention and support. Such
prediction can also support hint generation systems for bet-
ter inferring when a hint is needed [11, 23].

Past work has estimated the bug-fix-time for different errors
based on bug error reports. These are reports created by
the quality assurance team in organizations to describe and
document the bugs found in computer programs [15, 33,
18]. These studies ignored the personal variations between
programmers, predicting a single value per a specific bug.

We address this gap by providing a personalized approach
for predicting bug-fix-time for programming errors. Our un-
derlying assumption is that if the student’s fix time for a
bug is longer than a threshold, it may indicate a struggling
student requiring assistance and guidance. Specifically, our
method predicts if the error fix time will be“short”or“long”,
with the median used as the cutoff value. The median is cho-
sen as threshold to focus on the lower half of students that
may benefit from some level of assistance. This is a standard
approach in other works studying bug-fix-time [5, 15].

Our approach is personalized per student and per bug type
and uses snapshots of the evolving student’s code. Errors
vary in whether the compiler can identify the error, and
whether the compiler’s error message is unique to the specific
error type. The proposed method is based on CodeBert[13],
a state-of-the-art transformer-based neural architecture for
embedding students’ programming code, and combines an
LSTM-based architecture which is used to capture multiple
time dependant code snapshots.

We compared our approach to three baselines for predicting
the fixed time of the different errors in two datasets (1) A
method that is based on the Halstead Metrics [16]. This ap-
proach computes features based on operators and operands
in the code. (2) A code embedding-based approach using
Code2Vec [2], which is a common framework for learning
representations of natural language and code, and has been
used previously in an educational context. This approach
considered the student’s code which produced the bug as
well as the prior code submissions of the same program. (3)
A language model-based approach using CodeBert which
considered only the student’s code that produced the bug
(4) Our approach: A language model-based approach using
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CodeBert which considered the student’s code which pro-
duced the bug as well as the previous code snapshots saved
by the system while the student was evolving their code.

We evaluated our approach on code and compilation in-
stances obtained from thousands of students’ code submis-
sions, sampled from two different programming environments.
The first environment was the BlueJ Java development en-
vironment [21], a programming environment designed for
beginner programmers and used in a large number of edu-
cational institutions. We obtained 241,418 code submission
instances containing errors that were generated by students
when learning to program. The prediction task focused on
4 common types of novice errors that differ in complexity.

The second environment, called CodeWorkout, was collected
from an introductory programming course in the Spring and
Fall of 2019 semesters at a public university in the U.S.
[12]. We obtained 80,013 code submission instances that
contained 75 different compilation errors, each error has a
different cause, such as: unknown variable, missing operands
etc. The CodeWorkout dataset contained simpler comput-
ing problems, with typically shorter submitted programming
solutions.

We considered two different settings for the BlueJ dataset,
one in which a different model was built for each error type
and a setting where one model was built for all error types.
The CodeWorkeout dataset was tested with one model per
all error types due to data size limitations.

For both environments, our proposed approach was able to
outperform the baseline approaches in terms of accuracy, re-
call, and F1 measures when predicting bug-fix-time. These
results demonstrate the efficiency of using transformer-based
language models developed for programming languages for
solving the bug-fix-time prediction task and the value of
adding students’ code history for such tasks. Our approach
has implications for software development education, in that
it can potentially be used by instructors to identify strug-
gling students requiring further support.

2. RELATED WORK
Our work relates to several research areas: (1) Programming
errors performed by novice programmers (2) Predicting bug-
fix-time for programming errors, and(3) Recent deep Natu-
ral Language Processing language models for programming
language representations. We elaborate on each one in turn.

2.1 Student Programming Errors
Hristova et al. [19] collected a list of common students’
Java programming errors based on reporting of teaching as-
sistants. Most of the errors identified were detected and re-
ported by the Java compiler. Nonetheless, McCall et al. [24]
investigated logical errors in students’ code and suggested
that compiler messages alone have an imperfect mapping to
student logical errors. They demonstrated that the same
logical error can produce different compiler error messages
and different logical errors can produce the same compiler
error message. Bayman et al. [8] examined errors related to
individual program statements and found that many learn-
ers possess a wide range of misconceptions about individ-
ual statements or constructs of even very simple statements,

which lead to programming errors.

Brown et al. [4] analyzed 18 students’ errors using the BlueJ
dataset and focused on two error types, those identified by
the compiler, and those that require a customized source
code analyzer that searches the source code for programming
mistakes. Errors relating to the latter type are not uniquely
identifiable by the compiler and may be more complex to
fix. We are inspired by this study and test the potential of
machine learning-based approaches to predict the bug-fix-
time of student errors for both compiler errors as well as
errors identified by static source code analysis.

2.2 Predicting Bug Fix Time of Programming
Errors

Various approaches have been used in past research to pre-
dict the time required for fixing bugs. Zhang et al. [32]
investigated the connection between bug reports and other
features and the bug fixing time. Bug reports are the re-
ports created by the quality assurance and testing team in
an organization to describe and document the bugs found
in a computer program and include attributes such as prob-
lem description and priority. Zhang et al. [33] predicted the
number of bugs to be fixed and estimated the time required
to fix a certain bug using bug report attributes only. They
estimated the time to fix a bug as “slow” or “quick” based on
several thresholds. Other studies have focused on predicting
bug fixing time using different classifications than “slow” or
“fast”. Panjer et al. [25] employed multi-classification using
various classification models to classify the time to fix bugs
into seven-time buckets, using only the bug report.

Some studies have focused on predicting the exact time to
fix the bug. Weiss et al. [29] used text similarity to predict
the bug-fixing time. Given a new bug report, they used text
similarity to search for similar, earlier reports and use their
average time as the prediction time. Recently, some deep
network-based approaches were proposed for the bug-fix-
time prediction problem. Ardimento et al. [5] used BERT,
a pre-trained deep bidirectional Transformer model, to pre-
dict bug fixing time as fast or slow from bug reports. This
approach has shown the best performance so far.

Our research differentiates from these past efforts in three
main manners: (1) First, all past work performed non per-
sonalized bug-fix-time prediction. I.e., the prediction was
performed per error type and not per user. In contrast,
we focus on predicting bug-fix-time per user for each error
type. (2) Second, past studies used errors of experienced
programmers and were trained on code repositories such as
GitHub and the like. In this research, we focus on errors
generated by novice student programmers and use appro-
priate datasets for this task. (3) Third, past studies did
not directly take into account the programmer’s source code
nor did they use previous code snapshots which capture the
programmer’s evolving code prior to the error generation.
Specifically, these works used only attributes from bug re-
ports and did not directly consider the code in which the bug
was found. In this paper, we hypothesize that the source
code itself as well as past code snapshots of the program-
mer’s evolving work hold strong signals for predicting the
bug-fix-time for errors generated by the programmer.
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2.3 Language Models for Programming Lan-
guage Representations

One technique for the embedding of software program meth-
ods is Code2Vec, a neural model for representing snippets of
code as continuously distributed vectors [2]. Code2Vec was
developed for the task of method name prediction and uses
paths in the program’s abstract syntax tree (AST) for its
embeddings [7]. We choose to use Code2Vec as a baseline
since it outperformed other models in past works and has
been used previously in educational contexts [26, 6].

Recently, deep language models have been developed for
code representations. One such model which demonstrated
state-of-the-art results is CodeBert [13]. CodeBert is a trans-
former based large scale language model for both natural
and programming languages. The model is trained with a
dataset that includes 6.4M unimodal source codes in dif-
ferent programming languages including Java, Python, Go,
JavaScript, PHP, and Ruby. CodeBert learns general-purpose
representations and can be fine-tuned to support downstream
natural language and programming language applications
such as source code classification tasks. We used CodeBert
for code representation in our proposed approach.

3. METHODOLOGY
In this study, we evaluated the usage of a large scale deep
learning language model combined with software code snap-
shots for the prediction of bug fix time. Specifically, our
research questions were as follows: (RQ1) Do models that
embed students’ code do better than those relying on Hal-
stead metrics features when predicting bug fix time? (RQ2)
Can deep language models built for software code represen-
tation improve such a prediction task? (RQ3) Does using
preceding snapshots of the students’ code further improves
the prediction task?

3.1 Datasets
To increase the generality of the developed approach, two
datasets were used in this study, both from development
environments created for the Java programming language.
The first dataset was obtained from the BlueJ environment
which is a general-purpose Java programming environment
designed for beginner programmers. The second dataset
was collected on the CodeWorkout environment which con-
tains assignments submitted by Java students during two
semesters. We note that the obtained data from both pro-
gramming environments did not include any personal or de-
mographic information about users. In both datasets, we
leave out errors that were not solved altogether by the stu-
dent (i.e., the bug fix time is unknown).

3.1.1 The BlueJ Dataset
BlueJ is an integrated Java programming environment de-
signed for beginners and used in a large number of institu-
tions around the world [21]. The environment has been used
for a variety of assignments designed to support and exploit
pedagogical theories of programming. The BlueJ platform
includes an advanced capability of recording the student’s
programs (as they are being developed) in a dedicated re-
search environment called Blackbox [9]. In Blackbox, each
instance includes a timestamp of a compilation event by a
programmer, together with the code that was submitted for

Table 1: Selected Errors in the BlueJ Dataset

Bug
Type

Median
BFT(sec.)

Average
BFT(sec.)

STD
BFT(sec.)

Num.
instances

I 51 164 261 80,000
O 35 136 239 80,000
A 52 193 298 60,254
B 60 228 398 21,164

that compilation, a student ID, a session ID, and a list of
error messages reported by the compiler (if any).

Similarly to Brown et al.[4], we used a dataset representing
one year of activity in the BlueJ environment, from Septem-
ber 1st, 2013 to August 31st, 2014. In this set, we focus on
the four errors that were identified by Brown et al.[4] among
the most common errors for novice programmers:

Error I: Invoking method with a wrong argument type; the
compiler can uniquely detect this error.
Error O: Non-void method without a return statement; the
compiler can uniquely detect this error.
Error A: Confusing operator (=) with (==); the compiler
detects error, but does not output a unique error statement.
Error B: Using the operator (==) instead of (.equals); the
compiler cannot detect the error.

In this research, errors I and O were identified directly from
the output messages issued by the compiler. Errors A and
B were identified by a static analyzer built using XML rep-
resentation [10] of projects’ code. In total, the dataset con-
tains 17, 682, 006 instances. From this dataset, we sample
241, 418 instances which include the four mentioned error
types. Each instance in the dataset is a code submission.

Table 1 presents the number of instances and the bug-fix-
time (BFT) median, average, and STD values for each se-
lected error in the BlueJ platform. As shown by the table,
the errors vary in average difficulty in terms of the average
fix time. An example of the distribution of bug-fix-time for
error I in BlueJ can be seen in Figure 1. As seen in the
figure, the distribution is right-skewed, with some students
exhibiting very long fix times for this error. A similar trend
was also apparent for the other bug types in the platform.

3.1.2 The CodeWorkout Environment
The CodeWorkout environment [12] is an online system for
people learning Java programming for the first time. This
open-source site contains 837 coding problems spanning top-
ics such as sorting, searching, and counting. The environ-
ment includes tests for each problem, which verifies the cor-
rectness of each student’s submission. Student submissions
are graded automatically using these tests and feedback is
returned including error messages.

The dataset includes student assignment submissions from
an introductory course of Computer Science course (“CS1”)
administered in the Spring and Fall 2019 semesters at a pub-
lic university in the U.S. During this course, 50 different
coding problems from CodeWorkout were given to students,
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Figure 1: Distribution of bug-fix-time for Error I in BlueJ

and their code submissions were collected. The coding prob-
lems used in this dataset are easy and designed for beginner
programmers. Each problem requires 10-26 lines of code
and includes basic operations such as for loops, and if / else
statements. Each submission in the CodeWorkout dataset
includes the submitted code by the user, the user ID, the
assignment ID, and the list of reported compiler errors if
any. The CodeWorkout dataset included only bugs that are
identifiable by the compiler. Overall this dataset contains
75 error types from 819 students and a total of 80,013 in-
stances. As with the BlueJ dataset, the bug-fix-time in the
CodeWorkout datasets exhibits a long tail distribution.

3.2 Computing Bug-Fix-Time
The bug-fix-time (BFT) for a given error is defined as the
length of time (in seconds) between the first compilation
submission in which the error was reported, and the near-
est compilation submission in which the error was resolved.
For the BlueJ environment, The bug-fix time is adjusted to
the periods when the user is logged into the system. For
CodeWorkout, session login information is not available, so
bug-fix-time considers only bug occurrence and bug resolu-
tion timestamps.

We note the high variance in bug fixing time as indicated
by the STD value in table 1 (also occurs for CodeWork-
out). This indicates that bug-fixing time is a personal phe-
nomenon, which may depend on specific students’ charac-
teristics. We hypothesize that such characteristics are ex-
pressed in the way that students write and evolve their
program code. Thus, we define the bug-fix-time prediction
problem, as the problem of predicting the time to fix a bug
for a specific student given the occurrence of a specific bug
in their latest compilation and considering their past code
submissions. Following past approaches, we use the median
value of bug fixing time per each bug type as the threshold
between “slow” and “fast” fixing times [5].

3.3 Predicting Bug Fix Time
We now describe the deep learning model for the prediction
task at hand. Our architecture includes three layers: (1) An
embedding layer using pre-trained deep language models for
representing programming languages, (2) A time-aware layer

Figure 2: Model Architecture

using Long Short Term Memory, and (3) A classification
layer. The architecture can be seen in Figure 2.

The input to the model is a student’s compilation submission
that includes the following:

First, the Critical Code snapshot: the code snapshot that
generated the error. Second, the Code History: the most
recent code submissions that preceded the critical code sub-
mission. We use 4 preceding code submissions as this is the
median number of available code snapshots before an er-
ror is identified, in both datasets1. If the code history was
shorter, we used zero-based representations for the empty
submissions.

Third, we added four meta features relating to the user.
These include: (a) The number of compilation submissions
performed before the error occurred. Represents how long
the user is working on this program. A higher number of
submissions may indicate a struggling or hesitant student.
(b) A binary value indicating whether the student gener-
ated this error before in any of their previous submission
in blueJ. If the student had seen this error before, it may
be easier for them to solve this error. (c) A binary value
indicating whether the compiler has detected additional er-
rors at the same compilation. Multiple errors may indicate
that the student is struggling and will need a longer time
to fix the designated error. (d) A value indicating the user
experience in the system. For BlueJ, this is the time since
the user created the account (available only on BlueJ). For
CodeWorkout this is the number of assignments the user has
submitted out of the total assignments given in the univer-
sity course used for the dataset.

We note that if a code submission generated multiple errors,
we created multiple instances, one for each error type gen-
erated by this code submission. Additionally, we have tried
meta-features b,c and d as integers and as binary values and
used the representation that had the best results.

1We explore the sensitivity of the results to the code history
length in Appendix A.
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Embedding layer. The first model’s layer encodes student’s
code submission and the history of previous code submis-
sions. We use CodeBert [13] for this embedding layer. Code-
Bert is a bimodal pre-trained language model for program-
ming languages and natural language text comments. It
is based on the RoBERTa-base [22] model architecture, a
BERT-based language model with 12 transformer layers,
768-dimensional hidden states, and 12 attention heads. The
input format to CodeBert is concatenating two data seg-
ments with a special separator token, namely [CLS]. The
first segment is natural language text representing the com-
ments in the program and the second segment is the pro-
gramming code itself. The output of CodeBert includes a
representation of the [CLS] token which works as the aggre-
gated representation for the input code snapshot. This out-
put is a 768-dimensional vector and is passed from the em-
bedding layer to the next layer. We note that the maximum
input sequence length of CodeBert is 512 tokens. Longer
snapshots are truncated to the first 512 tokens2.

Time-Aware layer. The time-aware layer is designed to re-
flect the changes in the user code over time. This layer
utilizes a Bidirectional Long Short Term Memory (LSTM)
[17]. Each code snapshot representation from the previous
layer is concatenated to additional four features about the
user added to the end of the code snapshot representation.
This results in a 772-dimensional vector fed into the Bidirec-
tional LSTM layer. The output of the Bidirectional LSTM
layer is a 1544-dimensional vector.

Classification layer. The last layer is the classification
layer designed to predict the binary bug-fix-time value (slow
or fast). This layer takes the output of the LSTM layer and
feeds it into the following layers: (a) A fully connected layer
with an output size of 128. This fully connected layer mul-
tiplies the input by a weight matrix and then adds a bias
vector, using the relu activation function (2) A fully con-
nected layer with an output size of 2 and (3) A Sigmoid
function. The output is a binary prediction score of slow or
fast time-to-fix.

3.4 Baselines
We evaluated our model against alternative approaches that
vary in how students’ code is represented and whether the
history of past code compilations is considered.

Halstead Metrics Based Method. This baseline is the
Halstead metrics method used for measuring code. The
method views a computer program as a collection of operator
and operand tokens and proposes 12 metrics as described in
[16]. In this baseline, we represent each code snapshot with a
12-dimensional vector based on Halstead metrics. This em-
bedding replaces the CodeBert embedding in figure 2. The
LSTM in this method is fed with a 16-dimensional vector
for each snapshot.

2We explore the sensitivity to other truncation approaches
in Appendix A.

Code2Vec Based Method. This baseline used Code2Vec
[2], an Abstract Syntax Tree (AST) [27] embedding model
for code. We used the pre-trained model of Code2Vecv from
[2]. The Code2Vec embedding replaces the CodeBert em-
bedding in figure 2.

Critical Code only. This baseline used a version of our
proposed model which does not consider past snapshots of
the programmer’s evolving code. For this baseline, only the
critical code submission and the 4 additional meta-features
for this submission are used and the LSTM layer is removed.

4. EXPERIMENTS
To address the research questions, four different methods
were compared during the experiments:

Halstead Metric Based Method: predicts bug fix time using
the code snapshot that contains the error and four preceding
snapshots (i.e. code history). Each code snapshot is rep-
resented using the Halstead metrics and 4 additional user
features (used for RQ1).
Code2Vec Based Method: predicts bug fix time using the
snapshot that contains the error and four preceding snap-
shots. Each code snapshot was embedded using Code2Vec
and 4 additional user features (used for RQ2).
Critical code only: predicts bug fix time using the full code
snapshot that contains the error and additional 4 features
(used for RQ3).
Proposed model: predicts bug fix time using the snapshot
that contains the error and four preceding snapshots, each
one embedded using CodeBert and 4 additional meta-features.

Our experiments evaluate the above approaches in two dif-
ferent setups: (1) Error-specific: in which a prediction model
is trained and evaluated for each error type in separation,
and (2) Error-agnostic: where one prediction model is trained
and evaluated for multiple error types.

Unfortunately, the CodeWorkout dataset contains on av-
erage only 455 instances per error type, so there is not
enough data for the error-specific approach for this dataset.
Thus, only the error-agnostic model was evaluated for this
dataset. All experiments were evaluated using a 5-Fold
cross-validation setup and the recommended hyperparam-
eters values from the literature.

The metrics used include: (1) ROC-AUC: summarizes how
well the model separates the positive and negative samples
for different thresholds. (2) Recall (positive samples): the
ratio of positive samples correctly classified as positive to the
total number of positive samples. (3) F1 (positive samples):
combines the precision (i.e. number of true positive results
divided by the number of all positive results) and recall of a
classifier into a single metric by taking their harmonic mean.

We focus on the positive samples which represent struggling
students that took a long time to fix a bug. Therefore, recall
and F1 metrics are measured and reported for this class.

Statistical significance was tested for all results using the
Wilcoxon signed rank test [30]. Post-hoc corrections for
statistical tests were performed using the Holm-Bonferroni
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Table 2: BlueJ - Error Specific Results

Results for Error I

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 44 49 55

Code2Vec Based 57 56 56
Critical Code Only 64 59 55
Proposed model 74* 64* 62*

Results for Error O

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 49 52 56

Code2Vec Based 59 56 54
Critical Code Only 57 55 53
Proposed model 75* 63* 60*

Results for Error B

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 44 46 49

Code2Vec Based 53 50 49
Critical Code Only 63 56 51
Proposed model 83* 64* 54*

Results for Error A

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 42 46 50

Code2Vec Based 55 52 51
Critical Code Only 60 57 55
Proposed model 70* 64* 61*

method [1]. A star mark (”*”) in the results tables (tables
2, 3, 4) denotes a model is significantly better than the rest.

4.1 Error-Specific Results
Table 2 displays the results for error-specific models in BlueJ.
As seen in the table, the proposed model outperforms all
other approaches for all error types and for all measured
metrics. Interestingly, the Code2Vec baseline did not im-
prove over the Halstead metric method in some of the error
types on ROC-AUC metric.

4.2 Error-Agnostic Results
We compare models’ performance in the error-agnostic case:

BlueJ Dataset. On the BlueJ dataset, we combined the
four errors A, B, I and O. The dataset contained 80,000 in-
stances (sampled from the entire dataset). For each instance
in the dataset, the binary labels were determined separately
for each error type. Table 3 presents the performance of this
dataset. As seen in the table, the proposed method outper-
formed all baselines in all measured metrics. The second
performing approach was the Critical Code Only approach.
Code2Vec embedding showed better results than the method
based on the shallow Halstead metrics embedding 3.

3We evaluate feature importance for the proposed model in
Appendix B.

Table 3: BlueJ - Error Agnostic Results

Results for Errors A+B+I+O

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 47 48 48

Code2Vec Based 55 54 52
Critical Code Only 61 56 55
Proposed model 77* 64* 62*

Figure 3: Correct Prediction Using Code Text

CodeWorkout Dataset. For the CodeWorkout dataset, we
combined code submissions for all 75 error types into one
dataset that contained 80,013 instances. The binary labels
were determined based on the median bug-fix-time threshold
for each error type in separation. Table 4 presents the results
for this dataset. As seen in the table, the proposed model
outperformed all other baselines on all measured metrics.
The second performing model was the Critical Code Only
model. For this dataset, the Code2Vec-based model outper-
formed the Halstead-based model in 2 of the 3 metrics.

Table 4: CodeWorkout - Error Agnostic Results

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 54 55 52

Code2Vec Based 58 55 56
Critical Code Only 65 62 65
Proposed model 70* 64* 70*

5. CASE STUDIES
To further demonstrate the performance of the proposed
method, we present two illustrative examples.

5.1 Case A: The Value of Code Text
Figure 3 presents a code submission that contains the error
”Missing Return Statement”. The user generating this error
took a long time to fix. While the model that used the
Halstead metrics was wrong in predicting a “short” label for
this snapshot, the two CodeBert-based models performed
a correct prediction. As seen in the figure, the submitted
code contains multiple if-else statements which may make it
difficult for the student to identify that yet another return
statement is missing and its location. We hypothesize that a
code-based model correctly classified this sample since it is
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Figure 4: Correct Prediction Using the Code History

using the entire code structure, while a shallow model relying
only on item counting is blind to such subtle differences.

5.2 Case B: The Value of Code History
Figure 4 presents code submissions that contain an error
that brackets are missing with a binary label of“long”. While
the model that used only the last snapshot (Critical Code
Only model) predicted a“short”fix time, the proposed model
predicted correctly that the fix time will be “long”. Looking
at the code submission history may explain why the student
is struggling and why it took them a long time to solve the
error. As shown in code submissions 1-3 in red, the student
changed the code and then changed it back. In code submis-
sion 4 they then deleted a full “if” statement and changed
an “else” statement to an “if” statement which led to the er-
ror. This behavior is most likely a behavior of a struggling
student and may indicate that when faced with a resulting
error, it will take them a long time to fix it. Such inference
can only be captured by a model which considers multiple
snapshots and tracks the student’s behavior over time.

6. DISCUSSION
The results of this study demonstrate that deep language
models built for code representation can significantly im-
prove on past models when predicting bug-fix time (RQ2).
They also show that using multiple code snapshots further
improves such results (RQ3) validating the benefits of com-
bining the latest language models built for code represen-
tation with a multi-snapshot approach. These results re-
flect the representation power of the latest language models,
which are pre-trained on vast amounts of past data. Interest-
ingly, the simpler Halstead method-based approach outper-
formed the Code2Vec approach in some cases (RQ1). This
demonstrates that earlier deep learning methods (such as
Code2Vec), which were trained on fewer data and with less
sophisticated neural network structures, lack the power in-
herited in the latest approaches. The key takeaway of these
findings is the potential and importance of harnessing such
latest language models in the educational data mining field,
as it relates to software education and beyond.

We mention some limitations of the proposed approach. First,
the computed bug fix time is only an estimation of the true,
latent value of the actual time spent by a user on fixing a
bug. Even when sign-in and sign-out information is avail-
able, such as in the BlueJ dataset, the user may have been
occupied with other activities when logged in, contrary to
our assumptions. Second, the model assumes each error is

independent even though one error can lead to another er-
ror. Third, the CodeBert model, similar to other Bert-based
models, is limited to 512 input tokens. We used truncation
approaches to accommodate this limitation. Nonetheless,
future work may consider other approaches (such as summa-
rization, hierarchical representation, etc.) to accommodate
longer code snapshots. Fourth, the rapid improvement in
language models for code representation implies that Code-
Bert is only an early bird among an increasing number of
evolving models in the field [31]. As such, additional latest
models should be investigated in future work.

7. CONCLUSION AND FUTURE WORK
This work provides a new approach for predicting whether
a student’s bug-fix-time will be “short” or “long” based on
a given threshold for common errors made by novice pro-
grammers. Predicting a “long” bug-fix-time is one possible
way to identify struggling students in need of teacher sup-
port. We developed and compared four approaches towards
this task (1) A model using Halstead metrics computed over
multiple code snapshots preceding a software error (2) A
model using Code2Vec for code embedding that considers
the code compilation which produced the error and previ-
ous student’s code snapshots (3) A model using CodeBert for
code embedding which considers only the code compilation
which produced the error (4) Our approach: a model using
CodeBert for code embedding which considers the code sub-
mission producing the error and previous student’s code sub-
missions. Our approach was able to outperform all baselines
for ROC-AUC, Recall, and F1. Our results demonstrate the
efficacy of CodeBert and of using multiple time-based code
snapshots in identifying struggling students by predicting
the bug-fix-time of their software errors.

In future work, we intend to cover additional common stu-
dent errors and extend this study to different programming
languages. Furthermore, during data pre-processing, we
found out that some errors are not solved by some students
altogether and we plan to extend our model to identify such
cases. Finally, we are working on developing and evaluating
a regression-based model to predict a continuous bug-fix-
time value to better estimate how long it will take students
to solve their programming errors.
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APPENDIX
A. SENSITIVITY ANALYSIS
In this section, we analyze the sensitivity of the model to
code truncation and the length of snapshot history.

A.1 Code Truncation
As explained in the Embedding layer section, code trunca-
tion is needed for some samples to accommodate to Code-
Bert’s (and Bert’s) limitation of 512 tokens. This is im-
portant for the BlueJ dataset since it contains 57.4% sam-
ples over 512 tokens, compared to the CodeWorkout dataset
which contains only 1.6% samples over 512 tokens. In this
analysis, we compare truncation to the first 512 tokens vs
truncation to the last 512 tokens. Figure 5a presents the
result of a sensitivity analysis on the BlueJ dataset. As seen
in the figure, the result of truncating the first 512 tokens
and the last 512 tokens are similar with a slight advantage
to the first 512 tokens truncation. Thus, we decided to trun-
cate the code to the first 512 tokens.

(a) Sensitivity Analysis: Code Truncation Approach

(b) Sensitivity Analysis: Code History Length

Figure 5: Sensitivity Analysis

A.2 Code History Length
Figure 5b presents an analysis of the model’s performance
when manipulating the number of preceding code snapshots
included. Specifically, we change the number of such snap-
shots from 0 to 4 and present the Recall, F1, and ROC-AUC
results for these manipulations on the CodeWorkout dataset.

As seen in the figure, the model results improve in all met-
rics as we add more preceding snapshots. Even though the
ROC-AUC metric improves only by 2.42% when we move
from zero snapshots to 4 snapshots, the recall metric that
represents how well the model detected struggling students
improve by 10.2%. This suggests not only that history helps
to predict bug-fix-time, but that adding more history may
improve the performance of the model, pending on the avail-
ability of such data.

Figure 6: Feature Importance

B. FEATURE IMPORTANCE
To evaluate feature importance, we used Integrated Gradi-
ents [28] to calculate feature attribution for the proposed
model on the BlueJ dataset. Integrated Gradients are an
explainability technique for deep neural networks that visu-
alizes the input feature importance by computing the gra-
dient of the model’s prediction output to its input features.
In this analysis, we were specifically interested in comparing
the importance of different snapshots (latest vs earliest) and
the importance of code vs metadata information. To this
end, we computed the maximal integrated gradient value
for each snapshot and for each metadata group. Calculat-
ing the maximum value of each feature group indicates the
strongest attribution generated by the group on the output
result.

Figure 6 presents the normalized 10 top max attributions.
As can be seen in the figure, the critical code snapshot
holds the strongest importance, followed by the code snap-
shot which precedes the critical snapshot (History Code 1).
These are then followed in importance by the metadata in-
formation from the Critical and History 1 code submissions.
Of lower importance are the older code snapshots (History
Code 2 and History Code 3). The metadata of Code 2 and
Code 3 snapshots and the information of the oldest snapshot
(Snapshot 4) are last in line. These results indicate the value
captured by both the code itself and the additional metadata
information, as well as the value of the information captured
from all available historical snapshots (although decreasing
as we get earlier in time).
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