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ABSTRACT
Due to the precautionary measures during the COVID-19
pandemic many universities offered unproctored take-home
exams. We propose methods to detect potential collusion
between students and apply our approach on event log data
from take-home exams during the pandemic. We find groups
of students with suspiciously similar exams. In addition, we
compare our findings to a proctored comparison group. By
this, we establish a rule of thumb for evaluating which cases
are “outstandingly similar”, i.e., suspicious cases.

Keywords
collusion detection, unproctored online exams, clustering al-
gorithms

1. INTRODUCTION
During the COVID-19 pandemic many universities, e.g., in
Germany, were forced to switch to online classes. More-
over, most final exams were held online. In pre-pandemic
times, computer-based final exams have already proven their
worth, but with the difference that they were proctored in
the classroom. During the pandemic this was mostly unfea-
sible and students had to take the exam from a location of
their choice.

There exists a wide range of supervisory measures for take-
home exams. E.g., one could use a video conference software
to monitor students. At many universities, however, this is
legally prohibited due to data protection regulations. The
exams are therefore conducted as open-book exams, i.e., stu-
dents are allowed to use notes or textbooks. Yet, students
must not cooperate with each other. Any form of coopera-

tion or collusion is regarded as attempted cheating.

To our knowledge, it exists no universally-applicable method
for proctoring take-home exams. It is therefore hardly fea-
sible to stop students from illegally working together. How-
ever, one can attempt to identify colluding students post-
exam. The attempt alone could have a deterring effect on
students. Research in this area, however, is scarce. [3]
present a method for comparing exam event logs to detect
collusion. They use a simple distance measure for time se-
ries, i.e., the event logs of two different students, to quantify
the similarity of these student’s exams. Building on this,
we propose an alternative distance measure, as well as the
use of hierarchical clustering algorithms, to detect groups
of potentially colluding students. We find that our method
succeeds in finding groups of students with near identical
exams. Furthermore, we present an approach to categorise
student groups as “outstandingly similar”, by providing a
proctored comparison group.

The remainder of this paper is organised as follows: Sec-
tion 2 provides a brief overview of related work. Section 3.1
describes the available data. Section 3.2 presents our method,
including the calculation of the distance matrices. Section 4
discusses the empirical results. Section 5 concludes.

2. RELATED WORK
Due to the limited relevance of unproctored exams at uni-
versities before the pandemic, there exists little research
about this topic. Recent work from [3] presents a method
for analysing exam event logs for the detection of collusion
in unproctored exams. They visually compare the event
logs of pairs of students and quantify these by calculating a
distance measure. They find some suspicious pairs of stu-
dents with very similar event logs. Still, the authors remark
that these findings might be purely coincidental. We en-
hance their approach by including a comparison group for
drawing the line between “normal degree of similarity” and
“outstandingly similar”.

In other contexts, collusion in exams has been a relatively
well studied topic. [9, 14] quantify the similarity of pro-
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gramming exams. For this, they calculate distance mea-
sures based on student’s keyboard patterns. [13] further
provide an overview of relevant work in educational data
mining in programming exams. Complementary, our work
does not focus on keyboard patterns in programming but
on the submissions of answers and achieved points in intro-
ductory statistics classes. Thus, our calculation of distance
measures follows a different approach.

Furthermore, a major body of related literature focuses on
a different methodology. E.g., [1, 10, 16, 18, 21] use sur-
veys or interviews with students to collect data. Due to
issues inherent to surveys and interviews, like nonresponse
or incorrect responses, there is little knowledge on student
collusion based on actual student behaviour. We attempt to
bridge this gap by directly using student’s exam data.

Generally, there exists a wide range of proctoring options
during take-home exams. [6, 12] introduce and compare
some of these options. A supervisor could, for example,
use video conference software to observe students during the
exam. This provides conditions similar to those at classroom
exams and thus prevents students from colluding. Such ac-
tions have two drawbacks: First, [4] argue that proctoring
take-home exams is relatively costly, so that the costs exceed
the potential benefits. Second, as mentioned before, most
proctoring options are strictly illegal in some countries, e.g.,
Germany.

On the other hand, e.g., [17] advise against unsupervised on-
line exams. They argue that, logically, with no supvervision
there is no way to prevent students from colluding during
the exam. To date, there are only few studies examining the
impact of unattended online examinations on the integrity of
students, see, e.g., [15]. [7] use a regression model that pre-
dicts final exam scores to detect collusion in unproctored on-
line exams. Their findings suggest that collusion took place
when the final exam was not proctored. [11] compares the
Grade Point Average (GPA) of students who wrote a proc-
tored exam and students who wrote an unproctored exam.
There was no evidence of a significant difference in the mean
GPA between the two groups, which, however, does not es-
tablish that the students did not collaborate illegally. [5]
also compare the GPA in a proctored vs. an unproctored
online exam and use a regression analysis to measure stu-
dent collusion. The data used in these studies were final
exam scores or the GPA. None of them uses data collected
during the exam.

3. METHODOLOGY
In the following we give a brief overview about the data used
in our analysis. We further describe our approach to build
a suitable distance metric.

3.1 Data
The data we use stems from the introductory statistics course
“Descriptive Statistics” at the Faculty of Business Adminis-
tration and Economics at the University Duisburg-Essen,
Germany.1 The exam of our test group was taken unproc-

1All personal data was pseudonymised. The chair and
the authors have followed the General Data Protec-
tion Regulations (GDPR) by the EU as well as na-

Table 1: This table gives summary statistics for all students
considered in our empirical analysis

Year Minutes Points Subtasks Students

Comparison
Group
(18/19)

70 60 19 109

Test Group
(20/21) 70 60 17 151

tored during the global COVID-19 pandemic in the winter
term 2020/21. The exam of our comparison group took place
in the winter term 2018/19, i.e., before the pandemic.2 It
was a proctored exam located in a PC-equipped classroom
at the university. Both exams use the e-assessment platform
JACK [20].

Both exams consist mainly of arithmetical problems, where
students are expected to submit numerical results. More-
over, there exist some tasks where students are obliged to
use the programming language R [19]. The test group also
had to answer a short essay task which should contain 4-5
sentences. All but the free-text tasks are evaluated auto-
matically by JACK. The latter is manually graded by the
examiner.

During the exam, the students’ activities are stored in said
event logs. Hence, these contain the exact time for all inputs
in all tasks. For all tasks students can change and re-submit
their entries. The last submission will be evaluated. For this
reason, one task can list multiple events in the event log.

In addition to the event logs we also use the points achieved
per task for our analysis.

Table 1 displays the basic data for both exams. Namely,
these are the duration and maximum points to achieve, as
well as the number of subtasks and participants per group.
The wide disparity in student participants between both ex-
ams can be explainend by a change in examination regu-
lations. During the COVID-19 pandemic, ergo in the test
group, students were allowed to fail exams without any penal-
ties. In order to prevent this from biasing our results, we
removed students who attended the exam for only a few
minutes and those who achieved merely a fraction of the
maximum points.3 We also removed twelve students from
the test group who reported internet problems during the
exam.

tional law. Reproducible Code and toy data can be
found at https://github.com/Janine-Langerbein/EDM_
Detecting_Collusion_Unproctored_Online_Exams. For
information on access to the actual dataset, please contact
the Dean of the Faculty of Business Administration and Eco-
nomics at the University of Duisburg-Essen (dekanat@wiwi-
essen.uni-due.de).
2The course is jointly offered by two chairs and therefore
held on a rotating basis. Hence, the exam data is only com-
parable every two years.
3We also conducted the analysis without the removal of
these students, with no effect but a reduced interpretabil-
ity of the following clustering algorithms.
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From our perspective, the setup is reasonably comparable in
both groups. Although the lecture of the comparison group
was held in presence and the lecture of the test group was
held online, both groups shared the same content and learn-
ing goals. Both times students were given the opportunity to
ask questions during the lecture. The amount of those ques-
tions remained approximately stable. Due to the sheer size
of the course, with more students attending classes than par-
ticipating in the exam, direct discussions were sparse even
pre-pandemic.

3.2 Model
We adopt an exploratory approach for finding clusters of stu-
dents with similar event patterns and points achieved during
the exam. For this, we use agglomerative, i.e., bottom-up,
hierarchical clustering algorithms. The results are depicted
in a dendrogram. We build on previous work by [8] and [2].

In general, clustering algorithms attempt to group N objects
according to some predefined dissimilarity measure. Those
objects have measurements xij for i = 1, 2, . . . , N , on at-
tributes j = 1, 2, . . . , h. The global pairwise dissimilarity
D(xi, xi′), with xi being xij over all j, between two objects
i and i′ is defined as

D(xi, xi′) =
1

h

h∑

j=1

wj · dj(xij , xi′j);
h∑

j=1

wj = 1, (3.1)

with dj(xij , xi′j) the pairwise attribute dissimilarity between
values of the jth attribute and wj the weight of the attribute.
The clustering algorithm therefore takes a distance matrix
as input.

In our case, the students are the objects to be clustered, with
N = 151 students. As attributes we use the dissimilarities in
the student’s event patterns and the dissimilarities in their
points achieved. Both need to be calculated differently, but
over all subtasks. Hence, we split dj(xij , xi′j) into two parts.

We call the attribute dissimilarity for the points achieved
dPj (sij , si′j) with wPj its corresponding weight. sij denotes
the points achieved by student i in the jth subtask. Since
there are 17 subtasks we obtain a total of h = 34 attributes.
To receive a dissimilarity measure we calculate the absolute
differences

dPj (sij , si′j) = |sij − si′j |. (3.2)

Next, dLj (vij , vi′j) describes the dissimilarities in the event
patterns per subtask. To calculate these we divide the ex-
amination time into m = 1, . . . ,K intervals of one minute.
Since both exams each took 70 minutes, we obtain K = 70
intervals. We count each student’s answer per interval. The
count is denoted with vijm.4 To obtain a pairwise attribute
dissimilarity measure for all subtasks, we calculate the Man-
hattan metric over all counted quantities

dLj (vij , vi′j) =

K=70∑

m=1

|vijm − vi′jm|. (3.3)

4We consider this an enhancement of the distance measure
used in [3], as it enables us to analyse exams with more than
one answer per task.

The corresponding weight is denoted by wLj . To ensure bet-
ter transparency, we provide a detailed explanation of each
variable in Appendix A.

Finally, we modify (3.1) so that

D(si, si′ , vi, vi′) =
1

h

h∑

j=1

(
wPj · dPj (sij , si′j)

+ wLj · dLj (vij , vi′j)
)

with

h∑

j=1

wPj + wLj = 1. (3.4)

The attribute weights wj control the influence of each at-
tribute on the global object dissimilarity. If all 34 attributes
are to be weighted equally, each attribute would be assigned
a weight of 1

34
. Here, however, we weight the attributes with

regard to our research question. Specifically, we observe that
students submit entries more often in the case of R-tasks,
viz. subtasks 6a, 6b and 6c. One possible interpretation of
this is that students submit their code more often to check
its executability. Furthermore, task 7 demands the answer
to be a short text which was corrected manually. This could
lead to insufficient comparability between students due to
accidental arbitrariness during correction. Based on these
aspects, it appears reasonable to reduce the weight of said
subtasks.

We further reduce the influence of the points achieved dur-
ing the exam by decreasing their weight. This follows from
the fact that prior to the exam we must define all (partially)
correct answers in JACK. In doing so, it is not feasible to an-
ticipate all types of mistakes resulting from, e.g., calculation
errors made by students.5 Students might receive no points
due to careless mistakes, while still having employed a cor-
rect solution strategy. In our view, this might impede the
detection of colluding students, e.g., if there exist large dif-
ferences in points as one student makes more frequent care-
less mistakes due to the random numbers in the tasks. On
this account, we assign smaller weight to the points achieved.
For greater clarity, an overview with all exact final weights
for all attributes can be found in Appendix B.6

The influence of each attribute on object dissimilarity fur-
ther depends on its scale. We therefore normalise each at-
tribute.

From these pairwise object dissimilarities, we create the dis-
tance matrices. We then apply agglomerative hierarchical
clustering. This builds a hierarchy by merging the most simi-
lar pairs of students, viz. those with the lowest object dissim-
ilarity D(xi, xi′), into a cluster. This is repeated N−1 times,
until all students are merged into one single cluster. The
merging process is implemented with different linkage meth-
ods. These differ in their definition of the shortest distance
between clusters. Here, we use single, average and complete

5The tasks are randomised, i.e., there exist variations so that
sharing exact results is not expedient for the students.
6A robustness check regarding the object weights can be
found in Appendix D. In this analysis, the weights of the
objects are equal. The results are basically identical.
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Figure 1: Dendrogram produced by average linkage clustering for the test group 2020/21. The dissimilarity of each group’s node
is displayed on the y-axis. Its value corresponds to the dissimilarity of the group’s left and right member. A - F denotes the six
lowest dissimilarity clusters. Of these especially, clusters A, B, and E are notable.

linkage. The former merges clusters with the closest mini-
mum distance, the latter uses the closest maximum distance.
The average linkage method (here: unweighted pair group
method with arithmetic mean) defines the distance between
any two clusters as the average distance among all pairs of
objects in said clusters.

4. EMPIRICAL RESULTS
We present the results of the hierarchical clustering algo-
rithms in a dendrogram. This provides a complete visual
description of the results from the agglomerative hierarchi-
cal clustering algorithm. A dendrogram resembles a tree
structure where each object is represented by one leaf. In a
bottom-up approach, the objects are merged into groups one
by one according to their dissimilarity. Hence, each level of
the tree corresponds to one step of the clustering algorithm.
The junction of a group is called a node.

There exist various hierarchical clustering algorithms. Each
has a different definition of the distance between groups of
observations as a function of the pairwise distances. We
calculate the cophenetic correlation coefficent to assess how
faithfully each algorithm represents the original structure
in the data. Appendix C, Table 5 gives an overview of
the cophenetic correlation coefficient for the different link-
age methods for the test and comparison groups. Based on
this, we deem average linkage clustering the most suitable
algorithm. Figure 1 shows the corresponding dendrogram.
The dissimilarity of each group’s node is plotted on the ver-
tical axis. Its value corresponds to the dissimilarity of the
group’s left and right member.

It is important to note that a dendrogram only gives an

indication of clusters which best fit the data. It is up to
the analyst to decide which are to be examinated in further
detail.

The dendrogram has a slightly elongated form. Still, com-
pact clusters were produced at medium dissimilarities. This
general shape is typical for the underlying algorithm, as av-
erage linkage clustering combines the long form of single
linkage clustering with the smaller, tighter clusters of com-
plete linkage clustering. Additionally, we observe three no-
table clusters (A, B and E) which form at a significantly
lower height. Each of these three clusters consists of two
students. Prima facie, this indicates the absence of collu-
sion in larger groups.

As explained above, the hierarchical algorithm does not clus-
ter the data itself, but imposes a structure according to the
students’ dissimilarities. There exist various formal meth-
ods to decide on an optimal number of clusters given this
established hierarchy. Since our primary interest lies in the
detection of clusters at low dissimilarities, instead of the gen-
eral structure of the data, we exemplary investigate the six
lowest clusters (A - F) in Figure 1.

Figure 2 shows the exact course of events for the described
selection of clusters. Each scatterplot plots all answers of
the students in the cluster against their time of submission.
We expect students’ chronology to be more similar if their
cluster’s node is a lower height, i.e., lower dissimilarity. We
also add the points achieved on top in a barchart.

As expected, all scatterplots show some kind of similarity. In
particular, clusters A, B and E bear a striking resemblance.
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Figure 2: Comparison of the event logs and achieved points for each of the test group’s (2020/21) six lowest dissimilarity clusters
(A - F). The letters of the sub-figures correspond to the marked clusters in Figure 1. The number behind the letters refers to
the node’s left and right arm, respectively. At the bottom of each sub-figure, the sub-tasks are plotted against the clock time.
Above the scatterplot, a bar chart is added to compare the points per subtask.
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Their respective barchart further reveals these students to
almost always achieve an equal number of points per sub-
task. In direct comparison, the plots of the remaining clus-
ters C, D and F look less similar. This shows that clusters
with lower node heights indeed contain more similar exams.

To assess whether these similarities are the result of collusion
or coincidence, we repeat our approach on the comparison
group, the final exam of the same course from two years ago.
The plots were created analogously to the plots of the test
group.

For the comparison group we also focus on average link-
age clustering. The associated dendrogram, however, has a
slightly different shape (see Figure 3). The most prominent
difference, in contrast to the test group, is the absence of
any visually outstanding clusters. We rather observe most
nodes at a comparatively similar height.

Figure 4 shows the scatter- and barplots of the six lowest
clusters in the comparison group. We find there to be signif-
icantly less similarities not only in the chronological aspect,
but also in the points achieved.

The results from the comparison group support our assump-
tion that widespread collusion over the entire exam is hardly
achievable in presence. Moreover, the clear visual differences
between comparison- and test group indicate that our find-
ings in the latter might not be coincidental.

In the test group it is relatively simple to identify at least
three suspicious clusters. In the less obvious cases it can be
challenging to decide which clusters to investigate further, as
there exists no clear rule on where to draw the line between
suspicious and unsuspicious cases. We address this issue by
defining a “normal degree” of similarity, which can be used
as a bound to classify whether a pair of students is deemed
suspicious or not. For our data of the test group, there is
no indication of the existence of suspicious clusters of more
than two students. Hence, we refocus on the global pairwise
dissimilarity D(xi, xi′).

To assess the “normal degree” of similarity, we first stan-
dardise both distributions to improve their comparability.
For the comparison group, we define a lower bound below
which we categorise observations as extreme outliers. This
bound is then used on the lower tail of the distribution of
the test group. We want to identify cases in the unproc-
tored test group which are rather extreme compared to the
proctored comparison group. For this we calculate the lower
bound as Q1 − 3 ∗ IQR with Q1 being the first quartile of
the data and IQR being the interquartile range.

The boxplots in Figure 5 show the distributions of the global
pairwise dissimilarityD(xi, xi′) of all students in the comparison-
and test group. A boxplot provides a graphic overview of
location and dispersion of a distribution. The eponymous
box marks the upper and lower quartile of the data. Out-
liers are displayed by individual points.

On the left hand side of Figure 5 we observe that both distri-
butions posess a similar shape, but a different median. The
median value of the test group is significantly lower, indi-

cating a lower average global pairwise dissimilarity in this
group. Furthermore, we discover a high number of outliers
in both groups, albeit at different positions in their respec-
tive distribution. In the test group, more outliers lie on the
lower side of the box, with a greater distance to the main
part of the distribution. We also find three observations with
extremely small values on the lower tail of the test group’s
distribution. Unsurprisingly, these belong to the clusters A,
B and E.

The right side of Figure 5 shows the normalised distribu-
tions. It is apparent that the normalised distribution of the
test group still contains more outliers.

We apply the above mentioned lower bound on the test
group’s distribution to identify groups of students which are
“outstandingly similar”. Here, the before mentioned three
cases (clusters A, B and E) fall below the lower bound for
extreme outliers. While it is no surprise that these clusters
were detected, our approach still aids us in deciding on when
to stop inspecting further groups of students, as their level
of similarity might as well occur in the comparison group.

To summarise, our approach offers a rule of thumb for nar-
rowing down the number of suspicious cases. This is partic-
ularly useful if the visual distinction of cases is not clear-cut.

5. CONCLUSIONS AND DISCUSSION
During the COVID-19 pandemic many exams at universities
had to be converted into unproctored take-home exams. We
propose a method for detecting potentially colluding stu-
dents in said exams. For this, we calculated a distance
measure based on the students’ event logs and their points
achieved from the exam. Compared to former approaches
adressing this topic, we use a distance measure which also
applies if there exist multiple events per task. Subsequently,
we use hierarchical clustering algorithms to detect clusters
of potentially colluding students. The results show that our
method is able to detect at least three clusters with near
identical exams.

To decide which degree of similarity might be more than a
coincidence we compare the normalised distributions of the
distance measures of our test and comparison group. We
find pairs of students in the test group with values below
the minimum of the comparison group. Thus, our approach
provides a basis for deciding on which clusters are to be
examined further. A limitation of this approach is that we
do not know the ground truth in our groups and only be
able to back up our reasoning on a comparison.

In summary, we have been successful in providing an op-
portunity to detect colluding students after the exam. We
cannot say if this is sufficient evidence to initialise legal con-
sequences. Nevertheless, we are confident that the higher
chance of getting caught has a deterring effect on students.
This would be an interesting direction for further research.
Moreover, one could collect complementary evidence. By
doing so, we found at least two of our suspicious students
confirmed.
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APPENDIX
A. VARIABLE DESCRIPTION

Table 2: Variable Description.

Variable Description

sij
Points achieved in the jth subtask by the
ith student.

vij
Even patterns for the jth subtask by the
ith student.

xij

Measurement for the ith object and jth
attribute. Here, xij only functions as
a variable for explaining the general
clustering approach.

B. ATTRIBUTE WEIGHTS
Below we list the attribute weights used for building the
global object dissimilarity.

14



Table 3: The weights for all attributes in the test group
(2020/21), rounded to three decimal places.

weights

(sub-)tasks event patterns points

1.1 - 5.2 0.052 0.013

6a - 6c 0.026 0.013

7 0.026 0.013

Table 4: The weights for all attributes in the comparison
group (2018/19), rounded to three decimal places.

weights

(sub-)tasks event patterns points

1.1 - 5.2 0.045 0.011

6a - 6c 0.022 0.011

C. DENDROGRAM AND COPHENETIC COR-
RELATION COEFFICIENT

Table 5: The cophenetic correlation coefficient for all three
linkage methods for the comparison (2018/19) and test
(2020/21) group.

C

Linkage method 2020/21 2019/18

single 0.6610 0.6659
complete 0.4424 0.5051
average 0.6964 0.7595

We must consider that clustering algorithms enforce a hi-
erarchical structure on the data. This structure, however,
does not have to exist. There exist a good amount of meth-
ods to assess how faithfully each algorithm represents the
original distances in the data. Here, we use the cophenetic
correlation coefficent (C). This is defined as the linear corre-
lation between the pairwise dissimilarity D(xi, xi′) from the
original distance matrix and the corresponding cophenetic
dissimilarity from the dendrogram t(xi, xi′), i.e., the height
of the node of the cluster. Let D be the mean of D(xi, xi′)
and t be the mean of t(xi, xi′). Then, C can be written as

C =

∑
i<i′

((
D(xi, xi′)−D

) (
t(xi, xi′)− t

))
√∑

i<i′
(
D(xi, xi′)−D

)2∑
i<i′

(
D(xi, xi′)− t

)2 .

(B.1)

Table 5 shows C for all three linkage methods. The cluster-
ing with the complete linkage method seems to be the most
unsuitable. The results of the single and average linkage
clustering seem to be an adequate representation, with the
latter a slightly better fit. We therefore proceed with the

average linkage method in all further steps.

D. ROBUSTNESS CHECK
We repeat our analysis on the same data, but we assign the
same weight to each attribute while calculating the global
object dissimilarity matrix. In simple terms, we replace the
weighted arithmetic mean in equation 3.1 in chapter 3.2 with
the ordinary arithmetic mean.

Figure 7 shows the dendrogram for the test data with equal
weights. The algorithm still manages to identify the three
suspicious clusters. Furthermore, these clusters are still
merged at a comparatively low height.
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(c) Average Linkage Clustering

Figure 6: Comparison of the dendrograms for all three linkage methods in the test group 2020/21.

0.
0

0.
1

0.
2

0.
3

0.
4

30
50

71
3

30
83

59
3

30
68

01
1

30
84

24
6

30
84

64
7

30
65

57
6

30
98

45
6

31
09

65
1

30
80

97
4

31
08

14
8

30
35

69
5

30
83

96
9

30
81

59
7

30
84

56
3

30
97

37
4

30
70

15
5

31
11

82
4

31
13

99
9

30
98

29
6

31
09

89
3

30
55

40
7

30
22

28
0

30
32

49
6

30
53

99
4

30
70

81
4

30
98

17
5

30
68

69
7

31
11

29
2

30
58

01
9

30
97

86
6

30
98

15
1

31
11

70
6

31
12

11
6

30
79

24
1

30
40

62
9

30
82

57
0

30
94

68
0

30
95

14
2

31
14

18
1

30
81

42
3

30
97

73
3

31
09

49
5

30
99

03
8

30
97

72
1

30
96

14
8

30
84

32
3

30
98

11
4

30
97

72
6

30
58

95
3

30
95

25
1

31
14

14
6

30
80

65
7

30
97

88
9 30

95
51

7
31

08
56

8
31

13
61

0
30

97
81

5
30

74
01

7
30

96
74

7
30

09
59

5
30

69
61

1
30

54
07

2
30

84
02

6
30

25
71

4
31

10
12

9
30

94
66

2
30

99
00

0
31

08
48

3
30

18
00

9
30

96
48

7
30

98
19

5
30

97
11

6
31

12
98

2
30

48
77

2
30

95
39

8 30
97

14
8

30
97

21
1

30
95

90
1

30
97

71
2

30
91

08
4

31
01

19
0

30
97

62
8

31
08

19
4

30
69

14
3

30
98

08
7

30
20

52
5

30
97

81
4

30
96

23
9

31
16

02
8

30
81

42
0

31
10

44
6

30
97

71
1

30
95

06
4

31
08

44
5

30
97

33
0

30
36

95
6

30
69

02
4

30
61

36
3

30
84

78
1

31
10

36
7

30
97

15
1

31
16

94
7

30
97

87
2

30
85

79
7

30
98

87
3

30
97

47
7

31
08

85
3

31
13

06
7

30
96

51
5

30
84

06
1

30
95

55
5

31
08

89
8

31
10

95
5

31
08

16
5

31
16

11
6

30
68

25
3

30
97

72
3

31
10

55
5

30
69

72
6

31
14

03
1

30
54

76
9

30
97

08
5

30
98

54
4

30
81

29
4

30
83

68
4

30
95

88
2

30
98

00
5

30
68

03
5

31
08

37
6

30
52

35
0

30
82

56
4

30
34

79
2

30
90

24
3

30
96

90
5

31
10

17
7

30
97

51
3

31
09

88
4 30

31
31

0
31

13
46

7
30

98
18

4
30

13
00

9
30

69
06

3
30

96
14

9
30

97
04

5
30

98
10

1
30

70
18

3
30

94
71

5
30

56
23

4
30

92
09

5
30

57
98

1
31

10
44

7

Figure 7: Dendrogram of average linkage clustering with the test data and equals weights.
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