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Describing and measuring instructional quality of mathematics lessons is a common goal 
amongst mathematics education researchers. Such work takes several forms such as classifying 
and coding instructional moves and student activity or providing high-level rubric-based scores 
in relation to categories. In this work, we share an innovative mixed methods approach to 
analyzing lesson data that includes both a time-based classification of instruction and an overall 
scoring component. Using the Math Habits framework, our project team analyzed a set of 97 
fourth-eighth grade mathematics lessons including overall scores. From this qualitative analysis, 
we developed quantitative models to predict overall scores and better understand the ways that 
individual codes do or do not contribute to overall lesson score characterizations. 

Keywords: Research Methods, Instructional Activities and Practices 

In this report, we share recent work aiming to further both our approach to classroom 
observation tool measures and our understanding of which elements of a classroom are salient in 
a coding process. This work is situated in a larger validation study focused on the Math Habits 
Tool (Melhuish, et al., 2020). The Math Habits Tool decomposes a mathematics classroom into 
four types of codeable activities:  teaching routines, catalytic teaching habits, student habits of 
mind, and student habits of interaction (each of which will be expanded in the next section.) The 
categories capture teacher and student activity that characterize student-centered, conceptually-
oriented classrooms. As in many instruments (e.g., Mathematical Quality of Instruction, Hill, 
2014), qualitative coders analyze the lesson at two levels: during the lesson and holistically at the 
end of the lesson. While coding during the lesson involves identifying time-stamped, individual 
occurrences, the holistic codes use a rubric-based approached to make a subjective judgement 
call as to the quality of the teacher and student activity.  

We frame our contribution as two-fold. First, we make a methodological contribution -- the 
development of a quantitative models to estimate overall lesson scores after a qualitative coding 
process. Notably, we go beyond just using occurrence counts for codes to characterize a class, 
but also introduce a measure of spread (the degree these occurrences are found at different times 
in the lesson). We conjectured that although spread was not an explicit portion of the coder’s 
rubrics, it was likely to inform the qualitative evaluations at the lesson level. For example, 
consider this extreme version. Suppose a classroom has ten rich student contributions, but all 
occurred within the first five-minute interval. Then the remainder of the class was a lecture. 
Contrast this situation with a class where student and teachers are interacting, and ten rich 
student contributions occur throughout the lesson. A frequency-based approach would 
characterize these two classrooms in the same manner; however, it is unlikely that we would 
want such classes to be equivalent.  
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Second, in order to estimate overall lesson scores, we confronted issues of which codes 
“mattered” and in what ways. Specifically, whether a code occurred spread throughout a lesson 
sometimes mattered more than how often (and vice versa, along with other combinations). These 
findings have implications for researchers interested in teaching practices and students’ 
classroom activity.  

Background and Framing 
Broadly, we take a social cultural approach to the mathematics classroom focusing on social 

interactions between people in the classroom. Knowledge is co-constructed in these interactions 
between students and between teacher and students. While we largely assume that individual 
cognition and social interactions are interrelated (as in Cobb & Yackel, 1996) where individual 
understanding is developed via social interactions, we focus on the observable social side. 
Further, we specifically attend to components of classroom interactions that may promote sense-
making and mathematical argumentation inclusive of justifying and generalizing. Justifying and 
generalizing can support the co-construction of mathematical meaning (Brown & 
Renshaw, 2000; Simon & Blume, 1996) and students’ development of conceptual understanding 
(Staples et al., 2012). Instruction aligned with such goals reflects a standards-based instructional 
approach (defined in Rubel, 2017 and reflected in standards documents such as the Common 
Core, National Governors Association, 2010) 

We use the instructional triangle (Hawkins, 2002) to situate our analytic framing focusing on 
relationships between teachers, students, and content. We incorporate both Lampert (2001) and 
Cohen et al.’s (2003) expansion to capture the mediating role a teacher plays in the student-
content relationship and the relationships between the students themselves. Figure 1 reflects the 
components of the BI Framework overlayed on the instructional triangle. 

 

 
Figure 1: Instructional Triangle and the BI Framework  

 
The blinded framework was developed to operationalize specific instructional routines, 

moves, and student activity that can be observed within the classroom setting. The coding 
categories include: Student Habits of Mind which reflect productive ways students engage in 
mathematics, Habits of Interactions which reflect ways students engage with each other around 
the mathematics, Catalytic Teaching Habits which capture specific teaching moves that may 
engender students in engaging with mathematics and each other’s mathematical ideas, and 
Mathematical Productive Teaching Routines. The teaching routines are “recurring, patterned 
sequences of interaction teachers and students jointly enact to organize opportunities for student 
learning in classrooms” (DeBarger et al., 2011, p. 244). Unlike the other categories, teaching 
routines are not identified as instances, but rather over time intervals when they occur. Table 1 
includes the categories and subcodes. Each of these categories and subcategories are rooted in 
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the literature on promoting student-centered instruction and mathematical argumentation (e.g., 
Kazemi, 1998; Staples, 2007; Stein, et al., 2008; Thanheiser & Melhuish, 2022).  

 
Table 1: BI Framework with Variable Names in Parentheticals 

Student Habits of Mind 
Mathematical (MathHoM)  Representations; Connections; Mathematical structure 

Reflection (ReflectHoM) Metacognition; Reasoning with mistakes; Making 
meaning  

Capstone (JGHoM) Justifying; Generalizing 
Student Habits of Interaction 

Private Reasoning Time (PRHoI) Private Reasoning Time 
Explaining (ExplainHoI) Explaining my reasoning; Exploring multiple pathways 

Engage with Peer (PeerHoI) Revoicing; Comparing logic and ideas; Critiquing and 
Debating 

Question (QuestionHoI) Asking genuine questions 
Catalytic Teaching Habits 

Private Reasoning Prompt (ThinkCTH) Private Reasoning Time Prompt 
Sharing Thinking Prompts (ShareCTH) Prompt to share meaning; Prompt to share thinking; 

Prompt to share why; Prompt to share representation 
Peer Prompts (PeerCTH) Prompt to analyze strategy; Prompt to analyze mistake; 

Prompt to compare or connect across strategies; Prompt 
to revoice or make sense of strategy 

Capstone Habit Prompts (JGCTH) Prompt to justify; Prompt to notice, wonder, or 
conjecture 

Teaching Routines 
Access (AccessTR) Making meaning of tasks, contexts, and/or language 

Public Records (RecordsTR) Working with selected & sequenced student math ideas 
Teacher; Working with public records of students' 
mathematical thinking 

Discussion (DiscussionTR) Orchestrating productive whole class discussions 
Groupwork (GroupworkTR)  Structuring mathematically worthwhile student talk; 

Conferring to understand students' mathematical thinking 
& reasoning 

Methods 
Data 

This study draws on 96 video-recorded lessons (taken near the end of the school year) from 3 
school districts stemming from diverse projects. The samples include 33 lessons from District 1 
(Melhuish, et al., 2022), 31 lessons from District 2 (Sorto, et al., 2018), and 33 lessons from 
District 3 (Kane, et al., 2016).  Data on each district can be found in Table 2. 

 
Table 2: Demographic Information on Data Set Districts 

District Race/Ethnicity Socio-Economic Status Language 
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District 1 
(grades  
4 and 5) 

56% White 
19% Black/African 
American, 11% 
Latino/Hispanic 
9% Asian 

55% eligible for free and 
reduced lunch 

6% Transitional 
Bilingual 

District 2 
(grades  
6-8) 

99% Latino/Hispanic 95% “economically 
disadvantaged” 

33% Limited 
English Proficiency 

District 3 
(grades  
4 and 5) 

51% Black/African 
American, 30% White,  
13% Latino/Hispanic,  
4% Asian 

73% eligible for free and 
reduced lunch 

23% Limited 
English Proficiency 

All of these lessons had previously been analyzed with the Mathematical Quality of 
Instruction (MQI; Hill, 2014) instrument. For the larger databases, we selected a random subset 
within MQI strata. For District 2, we included all middle school teachers who had opted into 
recording. We sampled in this manner to assure a range of instructional contexts and practices. 
Qualitative Analysis  

Each lesson was then coded independently by two researchers according to the BI 
framework. Any discrepancies were resolved via discussion. After an initial round of coding, the 
coded lessons were then reviewed by a third member of the research team to identify any coding 
drift or inconsistences across the coded lessons. Additionally, discrepancies were identified and 
resolved via discussion. Besides coding using the framework, each coder also assigned an overall 
rubric-based score for student and teacher activity. Krippendorff’s α=0.79 and α=0.57 for overall 
student and teacher, respectively. The levels for overall teaching score are as follows: (1) No 
evidence of use of Teaching Routines or an attempted teaching routine (but without Catalytic 
Teaching Habits embedded.) (2) Use of more than one Teaching Routines; some evidence of 
Catalytic Habits; OR Use of only one Teaching Routine; but many (variety) of Catalytic Habits. 
(3) Multiple Teaching Routines; Catalytic Habits embedded; (4) Multiple Teaching Routines; 
Catalytic Habits embedded with pushes towards justifying and/or generalizing. The levels for 
overall student codes are as follows: (1) Students engaged in at most a Habit of Interaction or 
two and maybe a Habit of Mind; (2) Students engaged in some Habits of Mind and/or Habits of 
Interactions (3) Students engaged in multiple Habits of Mind and Habits of Interaction; (4) 
Students engaged in multiple Habit of Interaction or two and maybe a Habit of Mind with 
justifying and/or generalizing. As in many rubrics, the overall levels provide some guidance, but 
also rely on subjective judgements made by the coders. For this reason, consensus was reached 
through discussion. 
Quantitative Analysis 

In order to examine how individual codes are associated with the overall Teacher and Student 
codes, two summary statistics were computed for each lesson and code type: the count and the 
spread. The count is simply the total number of occurrences of the code during a lesson. To 
compute the spread, the lessons were partitioned into 10 equal intervals. The spread is the 
number of intervals in which a code occurred at least once. The two statistics capture the 
difference between number of times the behavior is observed and the consistency with which it is 
observed throughout the lesson.  

Least Absolute Shrinkage and Solution Operator (lasso) models were used to investigate the 
relationship between the individual and overall codes. Lasso (James, et al., 2013, pp. 219 - 227) 
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models use l1 regularization to prevent overfitting, reduce the variance of the coefficient 
estimates of a linear model, and perform variable selection. Unlike stepwise techniques used 
with standard least squares regression, variable selection in Lasso models does not rely on 
normality assumptions. The lasso coefficients minimize the quantity  

 
where the yi is the overall code for the ith lesson, and the xij are the corresponding scaled 
versions of the count and spread summaries for individual codes. The regularization constant, λ 
is determined separately for the Teacher and Student models via cross-validation.  

Results 
In this results section, we share estimates from our models and interpretation; however, the 

majority of the theorizing and contextualizing of these results can be found in the Discussion 
section. Recall, our goal is to create a model that can take the human coders’ individual 
timestamped BI codes to predict the human coders’ overall student and teacher codes. That is, 
can we use the detailed BI coding with a model to generate the overall codes? To this end, we 
needed to examine which (if any) of the individual BI codes were having more or less impact on 
overall codes. In this section we present what we learned about the role of BI codes in relation to 
overall codes. We begin with Overall Student codes. 

 
Table 3:  Coefficients from the LASSO model for Student Codes  

 Model Coefficients  
Code  Count  Spread  
MathHoM  -0.208  0.443  
ReflectHoM  0.143  0  
JGHoM  0  0.273  
PRHoI  0  0.045  
ExplainHoI  0.089  0.249  
PeerHoI  0  0.060  
QuestionHoI  0.120  0  

 
The coefficients for the lasso model for Overall Student code are shown in Table 3. Recall 

that these habits reflect observable ways that students engaged with the mathematics and with 
each other mathematically. The zero coefficients for the count variables for JGHoM (capstone 
habits of justifying and generalizing) and PRHoI (private reasoning time), and the spread 
variable for QuestionHoI (asking genuine questions) indicate that lasso dropped those respective 
count or spread variables from the model. We use z-scores to interpret the coefficients of the 
remaining predictors. For example, for a lesson with one standard deviation more ReflectHoM 
(reflection habits of mind) than the average lesson, the predicted overall code increases by 0.143. 
We can unpack the slightly more complex case of the mathematical habits of mind (MathHoM) 
coefficients where we see a negative relationship. Consider two lessons where the count for 
MathHoM differs by one. If the additional code occurs in an “empty” interval, the count and the 
spread both increase and the predicted overall code increases. On the other hand, if the additional 
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code occurs in an interval where MathHoM has already been observed, the predicted overall 
code decreases. That is, observing the code throughout the lesson is more beneficial than simply 
counting a total. On the other hand, some codes only mattered in terms of count. For example, 
students asking a genuine question (QuestionHoI) is associated with an increase in the overall 
code, no matter where it occurs. That is all to say, that some codes matter where they occur in a 
lesson (indicated by spread) and some only matter how often they occur (indicated by count). 

 
Table 4: Coefficients from the LASSO model for Teacher Codes  

 Model Coefficients 
Code  Count  Spread  
GroupworkTR  0.280  0.096  
RecordsTR  0  0.241  
DiscussionTR  0  0  
AccessTR  0.253  0  
ThinkCTH  0  0.058  
ShareCTH  0  0.104  
JGCTH  0.144  0  
ReflectCTH  0.139  0  
PeerCTH  0  0  

RevoiceCTH  0.056  0.097  
 
Table 4 provides the coefficients for the lasso model for the Overall Teacher codes. Again, 

we can notice that different types of activities are differently related to the overall codes. The 
teaching routines related to groupwork (GroupworkTR) matter both in terms of how frequently 
they occur (counts) and how they spread throughout the lesson (spread). In contrast, the teaching 
routines related to public records (RecordsTR) were only significant in terms of how spread they 
were throughout the lesson and the meaning making teaching routine (AccessTR) was significant 
only in terms of frequency, not spread. If we turn to individual teaching moves (the catalytic 
teaching habits), we can see spread is significant for prompts related to private think time and to 
share thinking (ThinkCTH; ShareCTH), but overall frequency, but not spread, is significant for 
reflection prompts (ReflectCTH). For teacher revoicing (RevoiceCTH), both frequency and 
spread were small, but positive predictors of overall score. Finally, we note that the orchestrating 
discussion routine (DiscussionTR) and the prompts to engage with peers’ reasoning (PeerCTH) 
did not contribute to predicting overall teacher scores. 

We also briefly share results about how closely these models fit our overall scores. Table 4 
and Table 5 present a crosstabulation comparing the true and predicted codes. In grey, we have 
emphasized the lessons where the coder overall code matched the predicted code. For the 
students, the model correctly predicts 71.1% of our lessons. For the overall teacher score, the 
model correctly predicts 76.77% of our lessons. Further, only one lesson in each case is predicted 
more than one level off. We can calculate Krippendorf’s α, as we would when comparing coders. 
For the overall teacher scores, α=0.879 and for the overall student scores α = 0.813. Both 
numbers are over 0.80 indicating substantial agreement. That is, our models are doing a 
relatively good job predicting the overall scores arrived at by coders. 
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Table 5: Crosstabulation of Overall Student Codes: True vs. Predicted 

                                        Predicted Overall Code 
    1 2 3 4 total 
Coder Overall Code 1 16 10 0 0 26 

 2 2 24 6 0 32 
 3 0 6 13 0 19 
 4 0 1 4 15 20 

Total   18 41 23 15 97 
 

Table 6: Crosstabulation of Overall Teacher Codes: True vs. Predicted 
                                        Predicted Overall Code 
    1 2 3 4 total 
Coder Overall Code 1 24 7 0 0 31 

 2 1 26 3 0 30 
 3 0 4 12 1 17 
 4 0 1 6 12 19 

Total   25 38 21 13 97 

Discussion 
 When we code data, we often make (explicit or implicit) inferences based on quantitative 

characteristics such as frequency of a code. However, when we consider a complex setting like a 
mathematics classroom, we often rely on subjective judgement calls about other features such as 
the degree it feels like a particular activity characterizes a lesson. In fact, this sort of expert 
judgement is why qualitative coding can be powerful. Yet, we have found that it can be quite 
challenging to come to agreement on lesson level scores because, by nature, coders are not 
noticing or perhaps not weighting elements of instruction in the same way. Our goal with this 
study was to develop quantitative means to estimate overall scores. We focused on the measure 
of spread in addition to count to avoid collapsing some of the dimensionality in a classroom.  

 If we consider our results, we can see that in some cases spread was more important, 
some cases count, and in yet others, they played out in more complex ways. We return to a 
couple of examples to conjecture what might account for these differences. If we turn to the 
overall teacher scores, we can see that both orchestrating discussion and prompts to engage with 
peers’ ideas did not contribute to predicting overall scores. First, these are types of codes that are 
theoretically related. In order to orchestrate discussion, we required that multiple students are 
engaged with each other’s ideas in some way. This typically occurs when teachers make related 
prompts for engagement. From a simplistic view, the rubric would reward both types of activities 
with higher overall scores. However, if we examine the data, we can note two features that may 
account for this result. First, the DiscussionTR and the PeerCTHs were only meaningfully 
different for teachers with an overall high score. For example, the mean spread for the 
DiscussionTR for overall high teachers was 3.1 (meaning, on average, discussion happened in 3 
of 10 intervals) and mean count was 6.9 (meaning on average discussion happened 7 times per 
lesson). In contrast, spread was less than one for all other levels of overall score and less than 
two for mean count. Rather than gradual increases, this routine served to discriminate between 
high level lessons from other levels. This leads to the second point, the high-level lessons all had 
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higher spreads and counts in other categories. Theoretically this makes sense. It is likely that in a 
class where a teacher orchestrates discussion, there is overlap with other teaching routines like 
using public records of students thinking – in many cases the discussion is about such a record. 
Thus, these codes are not contributing new information about the overall teaching in the lesson. 

Now let’s contrast two teaching routines that both were significant but in different ways. 
Working with public records of student thinking and selecting and sequencing (RecordTR) 
mattered in terms of spread whereas Making meaning of task and terms (AccessTR) mattered in 
terms of counts. In this case, we conjecture the way these routines operate in the classroom may 
account for the difference. Engaging students in making meaning around tasks and terms is a 
routine that comes up when students encounter an idea, task, or piece of language in which they 
may be unfamiliar. This is likely to occur at specific points in the lesson such as when a task is 
launched. In contrast, working with records of students’ ideas may be threaded throughout. Thus, 
the number of occurrences of meaning making may be more salient than the spread of meaning 
making; while the spread of record use is likely a more salient feature of overall teaching. 

If we turn to the student codes, we see the relationship between observed math habits of mind 
(including capstone habits) and overall scores are more linked to spread. These habits include 
things like reasoning with representations, structure, connections, and justifying and 
generalizing. Frequencies alone may paint a misleading picture because a single student 
contribution may embed many of these habits (e.g., justifying a result by use of a pattern within a 
table). A short span of time with high counts is not as meaningful as occurrences spaced 
throughout a lesson (reflected in spread), thus theoretically spread is likely to be more salient. A 
second explanation may be that at a certain threshold, frequency might not contribute new 
information. That is, a class with 20 instances and a class with 30 instances of habits of mind are 
both likely at a high level and the difference of 10 instances does not contribute something new. 
In contrast, the spread is capped at the interval number and any difference has the potential to 
provide meaningful information that characterizes a lesson across time.  

For space limitations, we will not unpack all of the differences in how the codes are 
operating but will spend a brief amount of time comparing the difference in the ExplainHoI 
(students explaining their thinking) and the MathHoMs.  Explaining mattered in terms of both 
count and spread, although with a relatively small coefficient for count. The threshold to explain 
one’s thinking is much lower than the threshold for that thinking to include math habits of mind 
(which reflect higher level reasoning). Explaining was by far the most frequently observed 
student activity at all levels of overall student code. The mean number of occurrences of explain 
was 6.4 for the Overall Student =1 classes and 39.8 for the Overall Student=4 classes. However, 
for lessons that received the lowest overall score, the mean spread was less than 3 intervals 
whereas in highest lessons, it was nearly 9 intervals. Both frequency and spread appear to 
provide important information to characterize a lesson. 

 This leaves several questions open for future research. First, are these relationships a 
consequence of the coders and rubrics or a consequence of how these activities unfold in the 
classroom? This is work that could be further addressed with additional qualitative analysis of 
the classrooms as well as attention to classrooms where overall codes as assigned by the model 
diverged from overall code as determined by the qualitative coders. Second, how might we 
develop more accurate models and measures when considering coding at this grainsize? Spread 
and count provided a start, but other measures such as interrelated (different types of codes 
within a timespan), existence (binary), or alternative models (such as non-linear models) could 
lead to additional insights. 
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