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Interest-driven activities, such as mathematical play, can support student agency, motivation, 
and engagement, and can foster dispositions that reflect authentic disciplinary engagement. 
However, the bulk of research on mathematical play investigates the mathematics that emerges 
in young children’s natural play or in informal spaces such as video games. We introduce the 
term “playful math” to highlight the potential of playifying classroom-based activities, and we 
explore the nature of students’ activity when engaged in playful math tasks in a teaching 
experiment. Our findings show that playful math tasks increased students’ agency, authority, 
investment, and goal selection, as well as encouraged the development of creative, challenging 
ideas. We present a case of two students’ playful engagement in the form of an Explore-
Strategize Cycle and discuss implications of playful math for student engagement. 

Keywords: Algebra and Algebraic Thinking, Cognition, Problem-Based Learning 

Motivation and engagement are critical factors in supporting students’ abilities to understand 
and persist in mathematics (e.g., Durksen et al., 2017). Students’ experiences of self-efficacy can 
foster motivation, which in turn can predict persistence in STEM fields (Simon et al., 2015). 
There remain, however, ongoing challenges with student motivation and engagement in 
mathematics (Martin & Marsh, 2006). These challenges are particularly salient in algebra, which 
represents a critical transition to secondary mathematics, and can act as a gatekeeper, with 
algebra performance often serving as the main criterion to determine a student’s readiness for 
more advanced courses (Riegle-Crumb, 2006).  

One contributing factor to these challenges is that the mathematics taught in algebra can 
emphasize routinized procedures, resulting in students reporting decreased motivation and 
engagement (Herzig, 2004). In contrast, focus on interest-driven activities such as mathematical 
play invites student agency and can increase equitable access to algebra (Widman et al., 2019). 
In fact, much of authentic disciplinary engagement involves many of the same features as play 
(Gresalfi et al., 2018; Jasien & Horn, 2018), and professional mathematicians have been shown 
to engage in mathematical play as part of their disciplinary practice (Lockhart, 2009).  

Mathematical play has the potential to support a productive environment for conjecturing and 
exploring by centering student voices and by offering opportunities to investigate novel ideas 
(Gresalfi et al., 2018). It can also offer important engagement, motivation, and conceptual 
benefits, with studies suggesting positive effects for enjoyment, attitudes, and learning outcomes 
(e.g., Barab et al., 2010; Plass et al., 2013; Wager & Parks, 2014). However, the bulk of existing 
research on mathematical play is situated either in early childhood learning, or in informal spaces 
such as video games. Mathematical play can certainly occur in classroom settings, but less is 
understood about how to incorporate play into the school mathematics that students and teachers 
navigate in classroom settings, particularly for adolescents. Therefore, this study investigates 
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what occurs when incorporating play-based elements in algebra problem-solving tasks. We use 
the term “playful math”, rather than “mathematical play”, to highlight the potential of 
“playifying” classroom mathematical activity. In particular, we address the following research 
questions: (1) What characterizes students’ mathematical activity when investigating rates of 
change within play-based activities? (2) How does playifying mathematical tasks affect the 
nature of students’ engagement, if at all?  

Background Literature: The Potential Benefits of Playful Math 
Mathematics is an area for which interest-driven engagement is not always a consideration in 

pedagogical design, and yet, focus on interest-driven activities can invite student agency and 
create spaces for students to bring in more of their whole identities (Widman et al., 2019). 
Playful math can offer multiple points of access into mathematical ideas, providing opportunities 
for students to create new challenges for themselves and experiment with ideas that go beyond 
familiar operations and connections (Featherstone, 2000). Playful engagement can also free 
students from the stigma of traditional assessment, encouraging a disposition of exploration and 
innovation (Barab et al., 2010). Research investigating children’s and adolescents’ playful math 
suggests both affective and conceptual benefits. Playful math has been shown to support 
increased enjoyment (Plass et al., 2013), increased engagement (Barab et al., 2010), positive 
social interaction and communication (Edo et al., 2009), and to engender positive attitudes 
towards mathematics (Holton et al., 2001). Playful math has also been shown to offer some 
cognitive benefits, supporting children’s geometric thinking (Levine et al., 2005), spatial skills 
(Casey et al., 2008; Levine et al., 2012), and number development and numeracy (Siegler & 
Ramani, 2008; Wang & Hung, 2010). Some studies even suggest increased learning efficacy in 
play-based environments (Barab & Gresalif, 2010; Bodrova, 2008).  

Some benefits afforded by play may occur because playful math offers avenues for students 
to “conjecture and explore in disciplinarily authentic ways” (Jasien & Horn, 2018, p. 624). In 
fact, there are a number of features of play that mirror the forms of engagement seen in the work 
of mathematicians, including open exploration, the use of imagination, being voluntary, being 
ordered and rule governed, and exercising personal agency to determine and pursue goals 
(Gresalfi et al., 2018; Featherstone, 2000). These parallels point to the importance of intellectual 
play in learning mathematics, and suggest a need for research examining ways to make 
mathematics tasks more playful. In particular, the field needs more research exploring playful 
math with older students in middle-school, high-school, and college, particularly in terms of 
incorporating playful elements into classroom mathematics in critical domains such as algebra.  

Theoretical Frameworks: Defining Playful Math and Quantitative Reasoning 
Definitions of mathematical play vary, but all emphasize students’ agency in exploration, 

self-selection of goals, and self-direction in how to accomplish them (Jasien & Horn, 2018). For 
instance, Williams-Pierce (2019) defines mathematical play as “voluntary engagement in cycles 
of mathematical hypotheses with occurrences of failure” (p. 591), and Holton et al. (2001) 
describe mathematical play as the playful exploration that emerges when learners find 
themselves in mathematical contexts with an open goal. One challenge in characterizing play is 
that it describes both a form of activity (such as playing a video game) and a stance or orientation 
towards an activity (Malaby, 2009). We address the second aspect to define playful math as a 
particular form of engagement in mathematics, one that entails (a) agency in exploration, (b) 
self-selection or investment in mathematical goals, (c) self-direction in goal accomplishment, 
and (d) a state of immersion and/or enjoyment.  
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For the purposes of this study, we leveraged situations involving covarying quantities that 
students can manipulate and investigate in order to reason flexibly about function as a 
representation of dynamically changing events (Carlson et al., 2002). By quantities, we mean 
schemes composed of a person’s conception of an object or event, such as a rectangle; a quality 
of the object or event, such as the rectangle’s length or area; an appropriate unit, such as 
centimeters or square centimeters; and a process for assigning a numerical value to the quality 
(Thompson, 1994). By covariation, we refer to the visualization of two quantities’ values 
simultaneously, uniting the quantities’ magnitudes in order to understand that at every instance, 
both quantities have a corresponding value (Saldanha & Thompson, 1998; Thompson & Carlson, 
2017). Researchers argue that students naturally attend to coordinated changes (e.g., Blanton & 
Kaput, 2011), which is supported by studies showing that students typically first analyze 
functional situations from a coordinated change perspective (e.g., Confrey & Smith, 1995; 
Madison et al., 2015). Furthermore, we hypothesized that the visualization opportunities afforded 
by a covariation approach could potentially support the type of open exploration and agency that 
occurs in playful engagement. As we describe in the next section, we built on students’ natural 
ways of reasoning to modify a set of existing covariation activities in order to playify them.  

Methods 
Setting and Participants 

We conducted two teaching experiments (TEs) (Steffe & Thompson, 2000), which both met 
weekly for 60-75 minutes a session for 5 consecutive weeks. The first author was the teacher-
researcher (TR). Both teaching experiments were video and audio recorded, with the exception 
of Day 2 for each, when a technical error prevented video recording. After each session, we 
collected all student written work. The first teaching experiment was a paired TE with two rising 
7th-grade students, Stewie and GJ. The second TE was with three participants, Artemis (a rising 
7th-grade student) and Apollo and Francis (rising 6th grade students). (Participants chose their 
own pseudonyms.) Due to schooling interruptions from Covid-19, the students’ experiences with 
graphing and functions was largely limited to plotting points. The rising 7th graders also had 
some experience with graphing lines, but none of the students had experienced a unit on linear 
functions. For the purposes of this paper, we report on data from the first TE with Stewie and GJ. 
Task Design Principles 

Our aim was to playify existing covariation problems in order to investigate students’ 
mathematical activity when exploring rates of change within play-based tasks. By “playify”, we 
mean increasing the potential for playful math engagement, while also acknowledging that a task 
cannot dictate how students will engage with it. We drew on a set of established research-based 
activities to support understanding of linear and quadratic growth with continuously covarying 
quantities (Ellis et al., 2020; Matthews & Ellis, 2018). In these activities, students investigate 
dynamically growing shapes, determining the rate of change of a shape’s area compared to its 
changing length as it sweeps out from left to right, and then graph that relationship (Figure 1). 

 

 
Figure 1: Growing Rectangle, Stairstep, and Triangle 
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We followed four design principles to playify the tasks (Plaxco et al., 2021): (1) allow for 
free exploration within constraints; (2) allow the student to act as both designer and player; (3) 
engender anticipating within the task; and (4) provide a method for authentic feedback. These led 
to the Guess My Shape activity, in which the students created secret shapes of their choice 
(design principles #1, #2), constructed graphs comparing length and area (design principles #2, 
#3), and then challenged one another or the TR to determine the shape based on the graph alone 
(design principles #2, #3, #4). We hypothesized that the playified tasks would encourage playful 
engagement, without assuming that they would guarantee such engagement.  

For Session 1, we only used the extant covariation tasks (Figure 1), which we call standard 
tasks. For Sessions 2 - 5, we used both the standard tasks and the playified tasks. For each of 
those sessions, we spent the first two-thirds of the session working with the standard tasks and 
the last one-third implementing the playified tasks. Figure 2 shows an example of the types of 
shapes the students encountered and their associated graphs. 
 

 
Figure 2: Shapes and associated length-area graphs 

Analysis 
We employed retrospective analysis (Steffe & Thompson, 2000) in order to characterize the 

students’ conceptions throughout the teaching experiment. We first transcribed each session and 
then produced a set of enhanced transcripts that included verbal utterances, images of student 
work, and descriptions of non-verbal actions. We then analyzed the data with two lenses. With 
the first lens, we identified students’ conceptions of graphs, covariation, and rates of change, 
drawing on Thompson and Carlson’s (2017) framework of variational and covariational 
reasoning, Ellis et al.’s (in press) conceptual acts for constructing linear and quadratic growth 
through covariation, and Moore and colleagues’ graphing actions (Liang & Moore, 2020; Moore 
et al., 2019; Tasova & Moore, 2020). With the second lens, we identified aspects of playful 
mathematics, relying on a combination of a priori codes from our definition of playful math, as 
well as emergent codes that occurred during the coding process through the constant comparative 
method (Strauss & Corbin, 1990). For the purposes of this paper, we focus on the analysis 
conducted through the second lens of playful math, and we describe those codes in the next 
section. The first three authors coded each transcript independently, and then the project team 
met weekly to refine and adjust codes and resolve discrepancies; this iterative process continued 
through eight rounds of code adjustments, until all codes had stabilized.  

Results: The Explore / Strategize Cycle 
Recall that our second research question considered whether and how playifying tasks may 

affect the nature of students’ mathematical engagement. In addressing this question, we turned to 
our playful math codes to assess whether there was any difference in code frequencies across the 
two task types. We developed six playful math codes: (a) self-selection or investment in 
mathematical goals, (b) agency in exploration, (c) investment and/or enjoyment, (d) taking on 
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authority, (e) creative / unusual, and (f) harder math. The first three codes were drawn from our 
definition of mathematical play. Self-selection of goals occurred when students chose their own 
goals or showed evidence of being invested in a goal. Agency in exploration refers to instances 
of students demonstrating agency in how they explored a task or its goals, and investment and/or 
enjoyment occurred when students showed evidence of investment or immersion, and/or 
demonstrated enjoyment of their activity. The remaining three codes were emergent. Taking on 
authority refers to instances of students demonstrating mathematical authority with a task or in 
their engagement with the TR. Creative/unusual applies when students have developed an idea, 
representation, or task that we perceived as creative or novel, and harder math occurred when 
students created a goal or task that introduced challenging mathematics that surpassed the TR’s 
intended set of topics or concepts.  

Across the five sessions we implemented 18 standard and 5 playified tasks. In our initial 
rounds of coding, we applied the relevant code any time we observed a student demonstrating 
evidence of playful engagement, resulting in a total of 130 code occurrences. We then revisited 
the codes to determine how many times they occurred during the standard tasks compared to the 
playified math tasks. We found that our first three codes occurred across both tasks, but with 
greater frequency in the playified tasks, supporting our hypothesis that the playified tasks would 
in fact elicit more playful engagement. The last three codes only occurred during playified tasks 
(Figure 3). The difference in code frequencies is striking given that 78% of the tasks enacted 
during the teaching experiment were standard tasks. 

 

 
Figure 3: Playful math codes across standard and playified tasks 

The difference in code frequencies led us to consider in more detail the nature of students’ 
activity within the playified tasks, addressing our first research question. We found that during 
those tasks, the students demonstrated a novel form of engagement, which we call the Explore-
Strategize Cycle (Figure 4). Within this cycle, students shift back and forth between exploration 
and strategizing. Exploration occurs when students either (a) engage in an action with little or no 
anticipation of an associated outcome, or (b) notice properties of outcomes and wonder about the 
connection between those outcomes and the actions that led to them. For example, in the Guess 
My Shape game, students engaged in exploration when they invented new shapes or when they 
plotted points arbitrarily to try to develop an unusual graph. In contrast, strategizing occurs when 
students engage in actions tied to an anticipated outcome. This could include modifying a shape 
to create a graph that will have a specific property, such as symmetry, or recognizing that a 
particular shape will be difficult to graph. Once we identified the Explore-Strategize Cycle in 
students’ activity, we revisited the entire data corpus to determine whether this cycle occurred 
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across both task types. We found no instances of the cycle in the standard tasks; instead, during 
those tasks, students engaged in repeated acts of strategizing but without associated exploration. 

 

 
Figure 4: The Explore-Strategize Cycle for A Triangle with a Square Hole 

In order to exemplify the nature of students’ playful engagement, we present one Explore-
Strategize cycle, in which Stewie and GJ collaborated on the Guess My Shape game to create a 
task that would stump the TR. Within any cycle, there are both problem spaces and solution 
spaces. As students engage in exploring and strategizing, they narrow the problem space. For 
instance, when playing Guess My Shape, the set of possible problems are determined by the 
shapes that the students draw and graph. As they consider what shape to create and how to graph 
it, they progressively narrow the problem space by exploring characteristics of their invented 
shape (such as symmetry, the inclusion of a hole, and so forth), or by strategically selecting 
aspects of the graph or shape to examine. In doing so, the students exclude shapes that do not 
meet the desired criteria. This can be seen in Figure 4 in the narrowing of the initial problem 
space, “create a shape and associated graph”, down to the final problem they chose to solve, 
“graph the area and length of this right triangle with a square hole”. Once the students have 
narrowed down to the final problem, they shift into the solution space. 

 As GJ and Stewie narrowed the problem space, they set implicit and explicit goals to guide 
their actions. The first decision they had to make was whether to start with a shape or a graph. 
Stewie suggested that they begin with the graph, “because that would be harder”, but GJ wanted 
to begin by drawing the shape. Together, the students had an implicit goal of creating a shape 
that was both feasible for them to construct and still challenging for the TR. Stewie strategically 
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negotiated these goals by suggesting that they create the shape first but give the TR the graph. In 
doing so, he anticipated that determining the shape from the graph would be more difficult than 
determining the graph from the shape. From this strategizing action, the students have now 
narrowed the problem space to shapes within their ability to graph. 

GJ and Stewie then began to explore a series of potential shapes. Each time, their exploration 
phase was followed by a strategizing phase in which they tried to anticipate what the associated 
area-length graph would be. During this process, they rejected multiple shapes as being too 
difficult to graph, including a circle, composite shapes, and shapes with spaces. They also 
rejected shapes as being too simple, such as composite shapes that would have area-length 
graphs identical to trapezoids. GJ then suggested a square with a triangular hole. However, in 
shifting to considering the associated graph (strategizing phase), the students decided that it 
would be easier to graph a shape with a square hole. They then explored a triangle shape with a 
square hole, and then when strategizing how to graph it, anticipated that they could create a 
graph by partitioning their chosen shape into squares. In exploring final shape options, GJ and 
Stewie settled on a right triangle, similar to a prior shape they had graphed, but this time with a 
square hole.  

Once the students reached the solution space, they used two different strategies. Their first 
strategy was to modify a prior graph they had made of a similar triangle without a hole. Stewie 
said, referring to the constantly-increasing area, “It’s going to be a curved line the whole way, 
and the triangle, but then, what do you do?” Stewie was anticipating that the graph would look 
different where the hole occurred, but he trailed off, becoming uncertain about how to account 
for the hole. He then shifted to the second strategy, suggesting that they consider how the area 
and length change together. In doing so, he quantified the length and area segments, writing “4 
in.” for both the length and the height of the triangle. He then suggested they determine the area 
and its change for each unit of length: “At the first point, it was half, all right. For the second 
one, was one and a half.” As he spoke, Stewie began to graph a curve for the first two points. In 
determining the area from x = 2 in. to x = 3 in., the portion of the triangle with a 1-in.2 hole, both 
students decided that the area added would be the same as the area added for the prior increment, 
from x = 1 in. to x = 2 in: 

Stewie:    So, third one is the same as the second one pretty much.  
GJ:   It is. 
Stewie: So, so it would just be like, here. [Draws a horizontal line segment.] 
Stewie and GJ anticipated, incorrectly, that the graph would be horizontal if the amount of 

area added from x = 2 to x = 3 was the same as the amount of area added from x = 1 to x = 2. 
They were correct that the amount of area added was the same across the two increments, but 
they conflated total accumulated area with added area. When next considering the final 
increment, from x = 3 in. to x = 4 in., Stewie returned to a curve, recognizing that the amount of 
area constantly increased throughout the increment. It was later in their conversation with the TR 
that the students realized that the portion of the graph from x = 2 in. to x = 3 in. would be another 
curve, rather than a horizontal line segment.  

The students demonstrated all six playful math codes during this Explore/Strategize Cycle. 
They self-selected multiple goals in deciding what types of shapes to pursue, and they also 
demonstrated agency in exploring those shapes and their associated graphs, freely shifting across 
different potential shapes. In suggesting novel shapes such as circles, composite shapes, and 
shapes with spaces and holes, the students demonstrated ideas that were creative and unusual; 
many of their shapes were markedly different from those that had been previously introduced. 
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Furthermore, their decision to introduce a hole was not only creative, it also represented a new 
challenge (harder math), one that took the TR by surprise and brought up a set of mathematical 
ideas that the TR had not anticipated addressing. In particular, once holes are allowed, area-
length graphs no longer uniquely determine a shape, which raises new questions about the set of 
shapes with holes that can be determined by an area-length graph.  

The students also demonstrated immersion, investment, and enjoyment in the task. Their 
engagement was sustained; they spent 27 minutes on this task alone, and they considered and 
abandoned many shapes before ultimately settling on a final version. When bringing the TR in to 
determine the shape from their graph, they actually changed their minds about the accuracy of 
their graph in the moment. In doing so, the students decided to send the TR away again so that 
they could re-evaluate. Stewie told the TR, “I think I have an idea. I’m, I’m not totally confident. 
Yeah, go away.” In this moment, the students evidenced investment in their graph, as well as 
mathematical authority, deciding not only what the graph should be, but also dictating how the 
process of sharing their work should proceed.  

Discussion  
Playifying tasks did result in more playful engagement during those tasks; in fact, three 

forms of playful engagement (taking on authority, creative / unusual, and harder math) occurred 
only during the playified tasks. However, we still found evidence of playful engagement in the 
standard tasks, which underscores that playful math as a construct describes a form of 
engagement, rather than a type of task. Furthermore, although we only observed explore-
strategize cycles during the playified tasks, this may be due to the fact that the playified tasks 
were also more open-ended tasks. More research is needed to tease out the effects of playifying 
tasks that begin as open-ended tasks. The presence of playful engagement across all tasks 
suggests that playifying mathematics might support a more playful disposition in general. In our 
data, we found that one form of playful engagement, investment and/or enjoyment, increased 
throughout the sessions (occurring six times across the first two days, compared to 34 times on 
the last two days). It may be that sustained engagement in playful math supported students’ 
increased investment in subsequent tasks, regardless of their form.  

One affordance of playful math is that it has the potential to center student voices, 
particularly those voices less likely to be taken up in more traditional classroom settings. Two of 
our design principles were particularly important in this role: allow free exploration within 
constraints, and allow the student to act as both player and designer. By shifting the student’s 
role to designer and encouraging exploration in designing, we opened a space for students to 
introduce their own ideas in ways that were less constrained by pre-determined topics. Their 
resulting ideas were novel, creative, and mathematically challenging, and the students 
demonstrated autonomy and authority. We know that mathematicians, in their own disciplinary 
practice, also experience this type of autonomy and shift back and forth between exploration and 
strategizing in a manner similar to what we observed in our Explore / Strategize Cycles (e.g., 
Lockwood et al., 2016). By playifying mathematics, we set up spaces for more students to adopt 
productive mathematical dispositions. But more importantly, playful math has the potential to 
increase overall engagement and enjoyment of mathematics, particularly for students who may 
not experience traditional mathematics as engaging or enjoyable.  
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