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Abstract. Self-explanation practice is an effective method to support
students in better understanding complex texts. This study focuses on
automatically assessing the comprehension strategies employed by read-
ers while understanding STEM texts. Data from 3 datasets (N = 11,833)
with self-explanations annotated on different comprehension strategies
(i.e., bridging, elaboration, and paraphrasing) and an overall quality
score was used to train various machine learning models in both single-
task and multi-task setups. Our end-to-end neural architecture considers
RoBERTa as an encoder applied to the target and self-explanation texts,
combined with handcrafted features for assessing text cohesion and fil-
tering out low-quality examples. The best configuration obtained a .699
weighted F1-score for the overall self-explanation quality.

Keywords: Self-explanations · Language models · Multi-task learning

1 Introduction

The ability to read and comprehend text is a critical skill for learners to be
successful in their educational and future career goals. However, recent assess-
ment data suggest that only 33% of fourth-graders and 31% of eighth-graders
in the United States are at or above proficiency when reading and comprehend-
ing grade-level texts [11]. More importantly, students’ level of proficiency has
decreased significantly since the global pandemic forced instruction to occur in
online environments [1].
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Reading comprehension is the ability to obtain meaning from text. Prior to
deriving meaning from a text, readers must first decode letters and corresponding
sounds to create words, access the meaning of the words, and then combine the
words to create meaning from the text. As such, reading comprehension is a
complex phenomenon that has been described with many theoretical frameworks
[10] that vary in their explanation of these processes.

Explaining text to oneself can serve to scaffold inference generation and
improve the coherence of the reader’s mental representation of the text. As
such, considerable evidence indicates that explicit self-explanation reading train-
ing (SERT) improves comprehension, particularly for low-knowledge and less
skilled readers [8]. SERT includes instruction on five sub-strategies; comprehen-
sion monitoring, paraphrasing, bridging, prediction, and elaboration. Compre-
hension monitoring is a critical skill for students to recognize where they have
gaps in knowledge. The use of prediction has been shown to be less common
in the self-explanation of science texts. Therefore, in this study, we focus on
paraphrasing, bridging, and elaboration.

Paraphrasing involves restating text in one’s own words. This process is
important in developing the reader’s textbase level understanding by prompting
them to think about the words and select words from their own lexicon that
are more familiar and, thus, easier to understand and remember. Bridging is
a critical strategy in the development of the reader’s mental model of the text
because authors cannot include every piece of relevant information. Therefore,
readers must link ideas in the text to fill in the missing information. Elaboration
is similar to bridging in that the reader is linking ideas from the text. However,
elaborative inferences involve the reader connecting information from the text
to their own knowledge base.

The aim of this work is to develop an automated model capable of evaluating
the overall quality of self-explanations as well as the comprehension strategies
employed by the readers.

2 Method

2.1 Corpus

The present study includes three different datasets collected at a large univer-
sity in the Southwest United States. Participants in each of the studies were
provided with training that was either direct instruction or worked examples
of different methods of generating self-explanations (i.e., paraphrasing, bridg-
ing, elaboration). The direct instruction training consisted of short vignettes
with descriptions and worked examples that demonstrated each method of gen-
erating self-explanations. The worked examples for training included a target
sentence and an example response that highlighted each method participants
could use to produce a self-explanation. In some studies, the training was pre-
sented in the context of a larger study using the iSTART Intelligent Tutoring
System [9]. Following the training phase, participants were instructed to generate
self-explanations of target sentences in relatively complex science texts.
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In total, the three datasets contain 11,833 entries. Each datapoint consists of
the participant’s self-explanation, the target sentence, and scores for the presence
of a paraphrase, bridge, or elaboration, as well as overall quality. These datasets
have been split into train/dev/test by a ratio of 54.5%/27.5%/18%.

The 4 dimensions are represented as categorical variables having either 3 or
4 classes. The 0 class contains poor SEs, 1 contains acceptable SEs, whereas 2
and 3 contain good SEs. In the case of bridging and elaboration presence, the
final 2 classes (marked with bold) were merged to minimize class imbalance (see
Table 1).

Table 1. Class distribution per task.

Dimension Num classes Class 0 Class 1 Class 2 Class 3

Paraphrase presence 3 1487 1992 8354

Bridge presence 4 4869 981 4569 1414

Elaboration presence 3 9382 777 1674

Overall 4 799 4207 5093 1734

2.2 Neural Architecture

Our model consists of a combination of deep learning Natural Language Pro-
cessing (NLP) [5] techniques and feature engineering. The core component of the
model is the Transformer [13] block which processes the SE and source text pairs,
thus generating a set of contextualized embeddings. Transformer-based architec-
tures achieve state-of-the-art results in most NLP tasks. We consider both BERT
[4] and RoBERTa [6] models as building blocks for our neural end-to-end archi-
tecture. Pretrained versions were loaded using the Huggingface library [14].

The embeddings generated by the Transformer block are combined with a set
of handcrafted features that extract lexical, syntactical, and semantic informa-
tion from both the SE and the source text. The aggregated features are processed
via a fully connected layer. A smaller set of specific filtering features is gener-
ated separately to function as a mask to filter out part of the aggregated features
and, in some cases, label the entire example as a 0. The resulting set of filtered
features is used as input for the task classifiers in the multi-task learning setup,
each having a single fully-connected layer. In the case of single-task training, the
model has only one classifier.

A set of handcrafted features was generated to complement the representa-
tions generated from the Transformer block. These features were computed using
the ReaderBench framework [3] for both the source text and the self-explanation
and consisted of: lexical and semantic distance metrics, lexical and part-of-speech
n-gram overlap, as well as surface, lexical, syntactic, semantic complexity indices.
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The previously developed workflows for automatic self-explanation scoring
[12] included a separate filtering step in the pipeline for poorly scored predic-
tions (label 0). Based on the zero prediction rules from this filtering step, a
smaller set of handcrafted features were generated to filter out irrelevant SEs.
The filtering rules penalize SEs that are short, or contain copy-pasted text or
frozen expressions.

RoBERTa models consistently outperformed the BERT alternatives. As such,
our final configuration considered RoBERTa. Out of the 124.8M parameters,
180,912 parameters were trained at a max learning rate of 2e−4, while the rest
of the 124.6M parameters (all related to the pretrained Transformer model) were
trained with a smaller LR of 1e−5. A linear learning rate scheduler with warmup
was used. The learning rate was gradually increased in the first five epochs up to
the maximum value of 2e-4 and then gradually decreased to 0. The model was
trained for 25 epochs using an AdamW optimizer [7] and a CrossEntropy loss
for each task. A weighted CrossEntropy loss is used in order to account for the
class imbalances present in all 4 tasks, as seen in Table 1.

Multi-task learning [2] is an approach by which a neural network can be
trained simultaneously on multiple related tasks while using a shared represen-
tation. This type of training can improve generalization and is more efficient
resource-wise than training one model per task. For the multi-task setup, mul-
tiple weighting schemes were considered for the individual task losses. Only the
best-performing weighting scheme was used in the final experiment. This scheme
considered the overall dimension to be as important as the sum of the other 3,
and the paraphrase and bridging presence dimensions being twice as important
as elaboration presence.

3 Results

The experiments done as part of this study were meant to determine the best
model for assessing the 4 tasks. A second objective was that of determining
whether a multi-task model could obtain similar or better performances than
the 4 single-task models while training with similar resource constraints. For
this reason, both the multi-task and the single-task models were trained for
the same amount of time (25 epochs), using the same batch size, learning rate
scheduler, optimizer, and regularization settings. The models are trained using
a CrossEntropy loss, or a weighted sum of CrossEntropy losses, in the case of
the multi-task model. They are evaluated throughout the run on the test set by
computing the F1-score (see Table 2).

One aspect that is made clear when looking at the results is that the weighted
Cross-Entropy loss does not completely address the issue of class imbalance. In
the case of elaboration, we see that there is a 1-to-13 ratio between class 1 and
class 0 on the test set. This offers an explanation for the large discrepancy in
F1- scores for both models on this task, with the F1-score for class 0 being close
to 0.9, while the F1-score for class 0 is barely 0.2. A similar but less extreme
phenomenon can be observed for other tasks (e.g., class 1 has considerably fewer
samples than classes 0 and 2 for bridging presence).
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Table 2. Classification results for single-task, multi-task, and legacy models.

Strategy Support Model F1-score

Weighted Class 0 Class 1 Class 2 Class 3

Paraphrase presence (90/141/1911) STL 0.843 0.32 0.14 0.92

MTL 0.818 0.21 0.23 0.89

Bridge presence (859/24/1259) STL 0.785 0.71 0.08 0.85

MTL 0.765 0.66 0.03 0.85

Elaboration presence (1996/146) STL 0.899 0.95 0.21

MTL 0.882 0.93 0.72

Overall (61/688/926/467) STL 0.694 0.24 0.73 0.69 0.71

MTL 0.699 0.25 0.73 0.7 0.71

* STL - single-task learning; MTL - multi-task learning

When looking at both per-class and weighted F1-scores, we observe that there
are very few differences between the multi-task and single-task models (i.e., the
difference between the 2 models is smaller than 0.025 F1-score in all 4 cases).
The single-task model seems to perform slightly better on the 3 tasks involving
comprehension strategies, while the multi-task model has a better performance
on the overall task.

4 Conclusions and Future Work

The aim of this paper was to develop a machine learning model to assess self-
explanations in terms of an overall quality score and three individual scores that
denote the presence of specific comprehension strategies. The model receives the
raw text of the SE and of the source sentence and computes the four scores.
Furthermore, the model is designed to automatically classify empty, illegible,
or bad examples as class zero without requiring a separate filtering stage in its
pipeline. Two separate approaches for meeting these criteria were developed.
Firstly, 4 single task models were trained, each for predicting one of the scores.
Secondly, a multi-task model was trained to solve the four tasks simultaneously,
using an analogous architecture and training regimen.

The best result when predicting the overall quality score was a 0.699 F1-
score obtained by the multi-task model, which was only slightly better than the
0.694 F1-score obtained by the single-task model. On the other three tasks, the
single-task models obtained slightly better results, but the difference between
single-task and multi-task training was never larger than 0.025.

Both single-task and multi-task models consisted of a similar number of
parameters (i.e., 124.8M) and were trained using the same optimizer, the same
learning rate scheduler, the same batch size, and an identical number of epochs.
This underlines the value of the multi-task model, which managed to obtain
similar or even better performance as the 4 single-task models while requiring
only a quarter of the resources.
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The current study is a significant advance in the ability to provide feedback
to short responses to multiple science texts (i.e., any text, any time), both in
terms of the specific strategy used by the reader, as well as the overall quality
of the self-explanation. This was achieved by leveraging a larger dataset than
available previously combined with recent advances in the field of AI.
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