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Abstract

In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are

Deviance Information Criterion (DIC) and Watanabe–Akaike Information Criterion (WAIC). We use a

multilevel mediation model as an illustrative example to compare different types of DIC and WAIC.

More specifically, we aim to compare the performance of conditional and marginal DICs and WAICs,

and investigate their performance with missing data. We focus on two versions of DIC (DIC1 and DIC2)

and one version of WAIC. In addition, we explore whether it is necessary to include the nuisance models

of incomplete exogenous variables in likelihood. Based on the simulation results, whether DIC2 is better

than DIC1 and WAIC and whether we should include the nuisance models of exogenous variables in

likelihood functions depend on whether we use marginal or conditional likelihoods. Overall, we find that

the marginal likelihood based DIC2 that excludes the likelihood of covariate models generally had the

highest true model selection rates.
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Comparing DIC and WAIC for Multilevel Models with Missing Data

In the recent decades, Bayesian statistics have been more widely used given the development of

Markov chain Monte Carlo (MCMC) sampling techniques and computational power. As in frequentist

statistics, researchers need to compare candidate models and evaluate which model fits the data better. The

most widely used criteria of Bayesian model assessment and comparison are Deviance Information

Criterion (DIC; Spiegelhalter et al., 2002) and Watanabe–Akaike Information Criterion (WAIC;

Watanabe & Opper, 2010). Model selection usually involves models with latent variables and random

effects. More specifically, in item response theory (IRT ) models and structural equation models (SEM ),

latent variables represent latent abilities or traits. In multilevel models (MLM ), random effects represent

group differences (e.g., families, schools, and countries) when participants are grouped, or represent

individual differences in longitudinal data.

DIC and WAIC evaluate model fit using likelihood. For models with latent variables and random

effects, there are two options of likelihood calculation: marginal likelihood and conditional likelihood.

Marginal likelihood does not rely on random effects and latent variables, but considers the variances of the

random effects and latent variables. Conditional likelihood is conditional on random effects and latent

variables without directly using their variances. Comparing marginal and conditional likelihood

information criteria is widely discussed in DIC, but only a few researchers pay attention to the marginal

likelihood version of WAIC (e.g., Li et al., 2016; Merkle et al., 2019; Millar, 2018; Vehtari et al., 2016).

There are two perspectives in choosing between marginal and conditional likelihoods. First, theoretically

and conceptually, Merkle et al. (2019) suggest that if we want to make predictions for new observations

within the same groups as in the original data, the conditional likelihood is more appropriate; whereas if

predictions are for new observations in groups outside of the original data, the marginal likelihood is more

appropriate. The latter application is usually what we anticipate because we can generalize the model to

new clusters (e.g., schools and countries) that are not in the original data. Spiegelhalter et al. (2002)
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suggest that if the focal parameters of interest include latent variables and random effects, we need to use

the conditional likelihood; otherwise, we can use the marginal likelihood. Second, recent studies (e.g.,

Merkle et al., 2019; Tong et al., 2022; Zhang et al., 2019) have found that marginal likelihood information

criteria have smaller Monte Carlo errors and better model selection than conditional likelihood information

criteria in various models (e.g., multi-group confirmatory factor analysis, mixture growth curve model,

multilevel item response theory model). When comparing DIC and WAIC, the conclusion also depends

on marginal and conditional likelihood information. DIC and WAIC performed more similarly with

marginal likelihoods compared to conditional likelihoods (Tong et al., 2022).

Although there is a big distinction between marginal and conditional likelihood information criteria,

substantive researchers do not necessarily notice that there are two versions of information criteria because

they usually rely on the default settings of software. Merkle et al. (2019) summarized that Stan (Carpenter

et al., 2017), BUGS (Spiegelhalter et al., 1996), and jags (Plummer et al., 2003) report conditional

likelihood information criteria, whereas blavaan (Merkle & Rosseel, 2015) reports marginal likelihood

information criteria. Mplus (Muthén & Muthén, 1998–2017) reports conditional likelihood or marginal

likelihood information criteria depending on the specified model (if integrating the random effects is easy,

marginal likelihood information criteria are reported).

Besides marginal likelihood versus conditional likelihood, missing data are another important issue

in DIC and WAIC computation. Bayesian information criteria with missing data has not received

widespread attention. Especially, when predictors/covariates are incomplete, we need to estimate the

missing predictors/covariates. As exogenous variables, we cannot directly estimate predictors but need to

specify models for predictors. Although SEM software such as Mplus and lavaan allows users to treat

predictors/covariates as random and a multivariate normal distribution f (X, Y ) is specified for all

exogenous and endogenous variables, this approach is not suggested when the model contains nonlinear

covariate effects, such as quartic terms and interaction effects, random slopes, or categorical variables (e.g.,
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Bartlett et al., 2015; Enders et al., 2018; Erler et al., 2016; Grund et al., 2018; Kim et al., 2015; Seaman et

al., 2012; Van Buuren et al., 2006). In these cases, the joint distribution of all exogenous and endogenous

variable is not a multivariate normal distribution (Du et al., 2022; Enders et al., 2020, 2018). Due to the

misspecification, estimation and inference will be misleading.1

To solve the misspecification issue, researchers have proposed various

substantive-model-compatible covariate models f (X) that specify the relationship between missing

predictors/covariates and help impute their missing values. The first option is the

substantive-model-compatible joint modeling that specifies a joint model (usually a multivariate normal

distribution) for f (X) and the joint distribution of all variables is given by f (Y |X) f (X) where

f (Y |X) is the model implied distribution of the substantive analysis model. However, when the relation

between the exogenous variables are nonlinear or with random slopes, f (X) is not normal or any familiar

distribution. The second option is the substantive-model-compatible fully conditional specification (Grund

et al., 2021) and is referred by us as the separate specification to emphasize that the covariate model

f (XK |X−k) (the kth predictor regressed on all other predictors) only computes the (marginal or

conditional) likelihood of each predictor without considering the joint distribution. When f (XK |X−k) is

specified to be normal, the assumption is the same as the substantive-model-compatible joint modeling and

as a consequence f (X) is misspecified when the relation between the exogenous variables are nonlinear or

with random slopes. The third option is the sequential specification that computes the joint (marginal or

conditional) likelihood of all variables by factoring the joint distribution of predictors into a sequence of

univariate regression models (i.e., f (X) = f (XK) f (XK−1|XK) f (XK−2|XK , XK−1) ...f (X1|X>1);

Ibrahim et al., 1999). Then the joint distribution may or may not be normal. Different from the joint

modeling approach, the sequential approach can ensure the existence of a distribution (i.e., compatibility;

Bartlett et al., 2015; Du et al., 2022; Enders et al., 2018; Erler et al., 2016). Therefore, the sequential

specification can accommodate nonlinear terms or random slopes between the exogenous variables.
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Regardless of the specific covariate models employed, it is important to recognize that these models

are nuisance models. The nuisance models lack substantive interest, but they incorporate likelihood

functions and may contribute to evaluating the fit of the overall model. Although these nuisance models

help impute missing data, it is unclear whether they play an important role in assessing model fit. To the

best of our knowledge, whether to include nuisance models in information criteria computation has not

been studied yet. In comparing the aforementioned two competing frameworks, the sequential factorization

naturally incorporates all models in fit summaries via f (X). On the other hand, the separate specification

uses f (XK |X−k) and does not directly offer f (X), and thus excludes the possibility of including

nuisance models in the likelihoods. In parameter estimation and inference, when the compatibility

assumptions are satisfied (Du et al., 2022; Grund et al., 2021), both methods are similar. However, they can

differ significantly in terms of information criteria. Surprisingly, this issue has not yet been explored in the

existing literature. Thus, the primary objective of our paper is to provide preliminary insights into this

problem. We will elaborate on the compatibility issue later and explore whether it is critical to include the

nuisance models in information criteria.

This paper presents a multilevel mediation model as an illustrative example to address our research

questions. First, the multilevel mediation model as a multilevel model allows us to compare conditional

likelihood information criteria (conditional on random effects) and marginal likelihood criteria (conditional

on the level-2 variances). Second, this model encompasses essential elements that lie at the core of the

marginal vs. conditional likelihood debate. It incorporates random intercepts, random slopes, latent cluster

means, and missing data. Therefore, this model serves as a foundation for comprehending various

multilevel path models of interest. This model is more complex than a large proportion of multilevel

models with univariate outcomes in the literature. The insights gained from this fundamental model

naturally generalize to more complex models, which may exhibit similar issues and features explored in

this study. Third, we are careful in selecting the magnitudes of the effects based on real data. We aim to
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design scenarios that could generate realistic misspecifications. These misspecifications encompass both

overfitting and underfitting scenarios. Given the meticulous determination of effects, a smaller model was

necessary.

Overall, in this paper, we aim to compare the performance of conditional and marginal DICs and

WAICs in multilevel modeling. More specifically, we are interested in their performance with missing

data. To the best of our knowledge, WAIC with missing data has not been studied yet. In addition, we

want to explore whether it is necessary to include the nuisance models of incomplete exogenous variables

(i.e., the aforementioned covariate models) in likelihood. Various versions of DIC and WAIC have been

proposed by researchers, differing in their approaches to handling missing data and marginal versus

conditional likelihood (e.g., Celeux et al., 2006; Lu & Zhang, 2022). This has resulted in challenges when

using these criteria. Our objective is to identify the best-performing option and provide guidance to

researchers utilizing these criteria.

The outline of this paper is as follows. In the “Multilevel Mediation Model” section, we introduce a

multilevel mediation model. In the “Conditional Versus Marginal Likelihoods” section, we compare

conditional and marginal likelihoods and illustrate equations for the multilevel mediation model. In the

“Likelihoods with Missing Data” section, we compare the separate and sequential specifications and

illustrate how the specification influences likelihoods. In the “DIC and WAIC Calculation” section, we

propose a new way to compute DIC, and present DIC and WAIC equations with conditional and

marginal likelihoods. In the “Simulation Study” section, we examine the performance of conditional and

marginal DICs and WAICs in model selection. In the “Real Data Example” section, we use a real data

example to compare conditional and marginal DICs and WAICs. We end the paper with some

concluding remarks in the “Discussion” section.
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Illustrative Multilevel Model

We consider a two-level mediation model with one level-1 predictor (x1ij), one level-2 predictor

(x2j), one level-1 mediator (mij), and one outcome (yij) where i indicates the ith individual and j indicates

the jth cluster (j = 1, ..., J). The mediation model consists of three sub-models: yij’s regression model,

mij’s regression model, and the regression model between two predictors (x1ij and x2j). We will estimate

all sub-models simultaneously as one big model using Bayesian statistics. yij’s regression model is in

Equation (1) where predictors do not have a direct effect on yij .

yij = βy,0j + βy,1jmij + ey,ij , ey,ij ∼ N
(
0, σ2y,e

)
(1)

βy,0j = βy,00 + uy,0j ,

βy,1j = βy,10 + uy,1j ,

 uy,0j

uy,1j

 ∼ N (0,Σy,u)

βy,0j and βy,1j indicate the cluster specific random intercept and slope in yij’s regression model,

respectively. ey,ij is the level-1 residual variance with a variance of σ2y,e. βy,00 and βy,10 are the overall

intercept and slope averaged over clusters, respectively. uy,0j and uy,0j are the level-2 residuals that

capture the intercept and slope differences between clusters with a covariance matrix of Σy,u.

mij’s regression model is in Equation (2) with a random intercept where x2j predicts the random

intercept.

mij = βm,0j + βm,1x1ij + em,ij , em,ij ∼ N
(
0, σ2m,e

)
(2)

βm,0j = βm,00 + βm,01x2j + um,0j , um,0j ∼ N
(
0, σ2m,u

)

βm,0j indicates the cluster specific intercept, whereas βm,1 indicates that the effect of x1ij on mij is fixed

across clusters. em,ij indicates the level-1 residual variance with a variance of σ2m,e. βm,00 and βm,01 are
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the overall intercept and the effect of level-2 predictor x2j on the random intercept, respectively. um,0j is

the level-2 residual on random intercepts with a variance of σ2m,u.

Nuisance Models of Incomplete Exogenous Variables

Besides the focal model in Equations (1) and (2), when x1ij and x2j are incomplete, we need to

estimate the missing values using nuisance models for x1ij and x2j . As previously mentioned, there are

two ways to specify the covariate models (we do not focus on the joint modeling approach in this paper):

sequential specification and separate specification. They have been systematically summarized and

compared in Du et al. (2022), Grund et al. (2021), and Lüdtke et al. (2020). The sequential specification

can ensure compatibility, meaning that the joint distribution of all variables exists, whereas the separate

specification has the risk of failing to ensure the existence of the joint distribution of all variables (Du et al.,

2022). More specifically, when all models are linear (i.e., without any polynomial or interactive terms)

with normally distributed errors, the implied joint distribution of variables is multivariate normal. However,

models are not necessarily linear in practice. When models contain nonlinear covariate effects, such as

quartic terms and interaction effects, or random slopes (e.g., Bartlett et al., 2015; Enders et al., 2018; Erler

et al., 2016; Grund et al., 2018; Kim et al., 2015; Seaman et al., 2012; Van Buuren et al., 2006), the

separate specification cannot guarantee the existence of the joint distribution of all variables and thus

parameter estimation and inference are wrong. The sequential specification is more flexible in dealing with

the compatibility issue.

The sequential specification factors the joint distribution of predictors into a sequence of univariate

distributions (Ibrahim et al., 1999). For the sequential specification, the covariate model can be specified as
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f (x1, x2) = f (x1|x2) f (x2) with x1ij’s and x2j’s models defined as followed.

x1ij = βx1,0j + ex1,ij , ex1,ij ∼ N
(
0, σ2x1,e

)
(3)

βx1,0j = βx1,00 + βx1,01x2j + ux1,0j , ux1,0j ∼ N
(
0, σ2x1,u

)
x2j = βx2,0 + ux2,0j , ux2,0j ∼ N

(
0, σ2x2,u

)

In x1ij’s model (i.e., f (x1|x2)), βx1,0j indicates the cluster mean of x1ij . ex1,ij indicates the level-1

residual variance of x1ij with a variance of σ2m,e. βx1,00 and βx1,01 are the intercept and the effect of level-2

predictor x2j on the cluster mean, respectively. ux1,0j is the level-2 residual on random intercepts with a

variance of σ2x1,u. In x2j’s model (i.e., f (x2)), βx2,0 and σ2x2,u indicate the mean and variance of x2j ,

respectively. When we further consider yij’s and mij’s models, we can compute the joint distribution of y,

m, x1, and x2 by multiplying Equations (1), (2), and (3),

f (y,m, x1, x2) = f (y|m) f (m|x1, x2) f (x1|x2) f (x2).

On the other hand, the separate specification specify the univariate conditional distribution as

regressing each predictor on all other predictors (Bartlett et al., 2015; Enders et al., 2020). In this multilevel

mediation model, we will need f (x1|x2) and f (x2|x1). Since x1 and x2 are at different levels, x2 is

conditional on the cluster mean of x1. The covariate model is as follows.

x1ij = βx1,0j + ex1,ij , ex1,ij ∼ N
(
0, σ2x1,e

)
(4)

βx1,0j = βx1,00 + βx1,01x2j + ux1,0j , ux1,0j ∼ N
(
0, σ2x1,u

)
x2j = βx2,0 + βx2,1βx1,0j + ux2,0j , ux2,0j ∼ N

(
0, σ2x2,u

)

x1ij’s model keeps the same as the one in Equation (3), but x2j’s model is f (x2|x1) instead of f (x2).

βx2,0 and βx2,1 are the intercept and the effect of level-2 predictor’s cluster mean βx1,0j , respectively.
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ux120j is the residual with a variance of σ2x2,u. We cannot directly multiply f (x1|x2) and f (x2|x1) to

compute the joint distribution of x1 and x2, f (x1, x2), although without nonlinear terms and random

slopes we can derive f (x1, x2) based on f (x1|x2) and f (x2|x1). Hence, the separate specification cannot

directly provide a joint likelihood of y, m, x1, and x2. Instead, by multiplying Equations (1) and (2) we can

compute the joint distribution of y and m, f (y,m|x1, x2) = f (y|m) f (m|x1, x2).

Since this multilevel mediation model contains random slopes, the joint distribution of y, m, x1, and

x2 is not a multivariate normal distribution (Du et al., 2022; Enders et al., 2020, 2018). The joint modeling

approach of directly specifying a normal distribution of all variables will cause noticeable biases of

estimation.

Conditional Versus Marginal Likelihoods

As previously mentioned, conditional likelihoods and marginal likelihoods are important in order to

calculate information criterion. For each model in the multilevel mediation analysis, we can compute a

conditional likelihood and a marginal likelihood. Suppose there are J clusters. The conditional likelihood

of yij’s model is conditional on the random effects (uy,j = (uy,0j , uy,1j); see Equation 5). Let βy denote

(βy,00, βy,10), yj denote the outcome scores in the jth cluster, andmj denote the mediator scores in the

jth cluster.

f
(
y|σ2y,e,βy,m,uy

)
=

J∏
j=1

f
(
yj |σ2y,e,βy,mj ,uy,j

)
(5)

The marginal likelihood of yij’s model integrates out the random effects and is conditional on the level-2

variances (Σy,u; see Equation 6).

f
(
y|σ2y,e,βy,m,Σy,u

)
=

J∏
j=1

∫
f
(
yj |σ2y,e,βy,mj ,uy,j

)
f (uy,j |Σy,u) duy,j (6)
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The conditional likelihood of mij’s model is conditional on the random effect (um,0j ; see Equation 7). Let

βm denote (βm,00, βm,01, βm,1), x1j denote the level-1 predictor scores in the jth cluster, and x2j denote

the level-2 predictor score in the jth cluster.

f
(
m|σ2m,e,βm,x1,x2,um,0

)
=

J∏
j=1

f
(
mj |σ2m,e,βm,x1j , x2j , um,0j

)
(7)

The marginal likelihood of the mediator model integrates out βm,0j and is conditional on the level-2

variance (σ2m,u; see Equation 8).

f
(
m|σ2m,e,βm,x1,x2, σ

2
m,u

)
=

J∏
j=1

∫
f
(
mj |σ2m,e,βm,x1j , x2j , um,0j

)
(8)

× f
(
um,0j |σ2m,u

)
dum,0j

As mentioned in the previous section, we only can compute the joint distribution of x1ij and x2j with the

sequential specification but not the separate specification. Based on the sequential specification, the

conditional likelihood of x1ij and x2j’s regression model is conditional on the random effect (ux1,0j ; see

Equation 9). Let βx1 denote (βx1,00, βx1,01), x1j denote the level-1 predictor scores in the jth cluster, and

x2j denote the level-2 predictor score in the jth cluster.

f
(
x1,x2|σ2x1,e,βx1, βx2,0, ux1,0j , Ux2

)
=

J∏
j=1

f
(
x1j |σ2x1,e,βx1, ux1,0j

)
f (x2j |βx2,0, Ux2) (9)
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The marginal likelihood of x1ij and x2j’s regression model integrates out ux1,0j and is conditional on the

level-2 variance (σ2x1,u; see Equation 10).

f
(
x1,x2|σ2x1,e,βx1, βx2,0, Ux1, Ux2

)
=

J∏
j=1

∫
f
(
x1j |σ2x1,e,βx1, ux1,0j

)
f (x2j |βx2,0, Ux2) (10)

×f
(
ux1,0j |σ2x1,u

)
dux1,0j

Likelihoods with Missing Data

Celeux et al. (2006) proposed three ways to incorporate missing data in likelihoods, which lead to

different information criteria. First, we can ignore missing variables and calculate the likelihood only based

on the fully observed variables that contain no missing data (f (observed.var|θ)) where observed.var

stands for all fully observed variables. This likelihood is called observed likelihood. Second, we can

calculate the joint likelihood of missing variables and fully observed variables given parameters

(f (observed.var,missing.var|θ)) where missing.var stands for all variables that have missing data.

This likelihood is called complete likelihood. Third, we can calculate the likelihood of the fully observed

variables given the missing variables and parameters (f (observed.var|θ,missing.var)). This likelihood

is called conditional likelihood. The complete and conditional likelihoods require either estimating or

integrating out missing values of incomplete variables. Celeux et al. (2006) further proposed various DICs

within each type of likelihood. Celeux et al. (2006) considered a random effect model where the random

effects can be viewed as a variable that is completely missing. In our model, besides random effects and

latent variables, we have predictors, mediator, and outcome which are partially missing. In this paper, we

impute missing data using MCMC estimation and propose to define likelihoods based on the analysis

model. For example, in terms of the conditional likelihood of yij’s model f
(
y|σ2y,e,βy,m,uy

)
, if both m

and y have missing observations, we will define the likelihood as f
(
yo,ym|σ2y,e,βy,m

o,mm
)

where

superscript o denotes observed data and superscript m denotes missing data. Hence, our likelihood is a
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combination of Celeux’s complete and conditional likelihoods.

To impute missing data, we use a specific type of fully Bayesian imputation called the model-based

imputation that can guarantee that the conditional distribution of the incomplete variables is

mathematically correct and compatible with each other (e.g., Bartlett et al., 2015; Enders et al., 2020; Erler

et al., 2019; Goldstein et al., 2014; Kim et al., 2018). The rationale of the model-based imputation method

is that we use the substantive model and the so-called covariate models that capture the relationship among

the predictors to construct the imputation model for incomplete predictors. In this multilevel mediation

model, the substantive analysis models are yij’s regression model (Eq. 1) and mij’s regression model (Eq.

2) since these two models address the substantive mediation research question.

In terms of the covariate model, there are two options: sequential specification and separate

specification. Only the sequential specification can ensure compatibility between all the covariate models

whereas the separate specification may cause an incompatibility issue (Du et al., 2022). Without random

slopes, nonlinear terms, and nonnormal data, the sequential and separate specifications are equivalent and

provide very similar parameter estimates. Hence, in this multilevel mediation example, the sequential and

separate specifications both ensure compatibility and are safe to use. Additionally, in our pilot simulation,

we find that the sequential and separate specifications provide almost the same parameter estimates in yij’s

and mij’s regression models. In the current multilevel mediation example, the difference between the

sequential and separate specifications is that the separate specification only can provide f (y,m|x1, x2) but

not f (y,m, x1, x2) since we cannot directly obtain f (x1, x2) with the separate specification. We compare

the sequential and separate specifications in DIC and WAIC calculation to explore whether it is

necessary to include the predictor or covariate models (e.g., f (x1, x2)) in information criteria calculation.

For more background on the fully Bayesian imputation specifically using Blimp (Keller & Enders, 2021),

we refer readers to Enders (2022).
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DIC and WAIC Calculation

We focus on two widely used information criteria in this paper: DIC and WAIC. In the fully

Bayesian approach, likelihoods (defined in the previous sections) and prior distributions lead to posterior

distributions via the Bayes’ rule. The Bayesian estimation views parameters as random variables and uses

MCMC sampling procedures to draw parameters from a series of posterior distributions. Therefore,

Bayesian estimation is not a single value as in maximum likelihood estimation, but a set of posterior

distribution samples. When comparing DIC and WAIC, recent research regards WAIC as an

improvement over DIC since it has multiple desirable properties and theoretical support. For example,

WAIC averages over the posterior distribution rather than only uses a point estimate, and DIC can have

negative estimates of the effective number of parameters (Gelman, Hwang, & Vehtari, 2014; Vehtari et al.,

2017). Hence, we propose DIC2 that shares the similar property as WAIC. In addition, the original

WAIC does not consider multilevel structures or missing data. Given the preference for the WAIC in the

literature, investigating the performance of the WAIC with random effects and missing data is an

important avenue for future research.

DIC is reported in all Bayesian software packages. WAIC is available in Stan (Carpenter et al.,

2017), BUGS (Spiegelhalter et al., 1996), jags (Plummer et al., 2003), and the R packages blavaan (Merkle

& Rosseel, 2015) and loo (Vehtari et al., 2023). While WAIC and DIC are primarily designed to

optimize prediction rather than selecting the true data generating model, they are still frequently employed

to identify the best fitting model from among several competitive candidates (Gronau & Wagenmakers,

2019; Spiegelhalter et al., 2014).

DIC

Spiegelhalter et al. (2002) proposed the Deviance Information Criterion (DIC). DIC is based on a

deviance D (θ) = −2logf (y|θ) where y is the data and θ is the population parameter (suppose we only
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have one parameter). f (y|θ) can be either the marginal or conditional likelihood. Since the population

parameter is unknown, we can replace θ with posterior mean, mode, or median to calculate

D
(
θ̂
)
= −2logf

(
y|θ̂
)

. Posterior mean is the most widely used in software and real data analysis and

D
(
θ̂
)

is called the posterior mean deviance. Besides focusing on point estimates, we also can average

over the parameter space to calculate the likelihood, D (θ) = Eθ [−2logf (y|θ)]. In practice, it can be

calculated as D (θ) = 1
K

K∑
k=1

−2logf
(
y|θ̂k

)
where K indicates the K iterations and θ̂k is the kth

posterior sample. The difference between D
(
θ̂
)

and D (θ) measures the effective number of parameters in

the model, pD = D (θ)−D
(
θ̂
)

. The general equation of DIC is

DIC = D (θ) + pD

= 2D (θ)−D
(
θ̂
)

(11)

We denote the widely used DIC with D
(
θ̂
)
= −2logf

(
y|θ̂
)

as DIC1.

DIC1 = −4
1

K

K∑
k=1

logf
(
y|θ̂k

)
+ 2logf

(
y|θ̂
)

(12)

We use DIC1 including the nuisance models of exogenous variables (f
(
x1j , x2j |θ̂

)
) as an example in

this multilevel mediation model. More specifically, we can calculate DIC1 in Equation (13) where θ

indicates parameters in marginal likelihoods, or parameters and random effects in conditional likelihoods,

θ̂k indicates the kth posterior sample of θ, and θ̂ indicates the posterior mean in the multilevel mediation
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model. We also can extend Equation (13) to DIC1 excluding the nuisance models.

DIC1 = −4
1

K

K∑
k=1

logf
(
y,m,x1,x2|θ̂k

)
+ 2logf

(
y,m,x1,x2|θ̂

)
(13)

= −4
J∑
j=1

{
1

K

K∑
k=1

logf
(
yj ,mj ,x1j , x2j |θ̂k

)}
+ 2logf

(
y,m,x1,x2|θ̂

)

= −4
J∑
j=1

{
1

K

K∑
k=1

log
[
f
(
yj |,mj , θ̂k

)
f
(
mj |x1j , x2j , θ̂k

)
f
(
x1j , x2j |θ̂k

)]}

+ 2
J∑
j=1

log
[
f
(
yj |,mj , θ̂

)
f
(
mj |x1j , x2j , θ̂

)
f
(
x1j , x2j |θ̂

)]

Suppose x1 andm have missing data, we impute missing data at each iteration and calculate DIC1 based

on imputed data, where x̂m
1,k, m̂m

k , and θ̂k indicate the kth posterior samples of x1,m, and θ respectively

in the multilevel mediation model, x̂m
1j,k and m̂m

j,k indicate the kth posterior samples of x1 andm in the

jth cluster, and x̂m
1 , m̂m, and θ̂ indicate the posterior means. Equation (14) includes the nuisance models,

and we also can extend Equation (14) to DIC1 excluding the nuisance models.

DIC1 = −4
1

K

K∑
k=1

logf
(
y,mo, m̂m

k ,x
o
1, x̂

m
1,k,x2|θ̂k

)
+ 2logf

(
y,mo, m̂m,xo

1, x̂
m
1 ,x2|θ̂

)
(14)

= −4
J∑
j=1

{
1

K

K∑
k=1

log
[
f
(
yj |mo

j ,m
m
j,k, θ̂k

)
f
(
mo

j ,m
m
j,k|x

o
1j ,x

m
1j,k, x2j , θ̂k

)
f
(
xo
1j ,x

m
1j,k, x2j |θ̂k

)]}

+ 2
J∑
j=1

log
[
f
(
yj |mo

j ,m
m
j , θ̂

)
f
(
mo

j ,m
m
j |x

o
1j ,x

m
1j , x2j , θ̂

)
f
(
xo
1j ,x

m
1j , x2j |θ̂

)]

There are other variants of DIC. For example, Celeux et al. (2006) proposed to calculate D
(
θ̂
)

as

D
(
θ̂
)
= −2log 1

K

K∑
k=1

f
(
y|θ̂k

)
, which employs all posterior samples instead of relying solely on

posterior means. However, f
(
y|θ̂k

)
can be small, especially when we multiply the likelihoods across

clusters. Taking the logarithm of an averaged small value can lead to inaccurate results. Follow Celeux’s

idea, in multilevel modeling, we propose to calculate the average across iterations first and compute the
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joint likelihood across clusters (denoted as DIC2). Hence, the primary distinction between DIC1 and

DIC2 lies in the calculation of D
(
θ̂
)

: DIC1 computes the likelihood based on posterior means, whereas

DIC2 calculates the average likelihood across iterations. Therefore, DIC2 shares the same property as

WAIC that it averages over the posterior distribution rather than conditioning on a point estimate. Note

that our DIC2 is following Celeux’s idea, not the alternative version of DIC in Gelman et al. (2014).

Using the likelihood including the nuisance models as an example, without missing data, D
(
θ̂
)

and DIC2

can be computed as in Equation (15). We also can extend Equation (15) to DIC2 excluding the nuisance

models (f
(
x1j , x2j |θ̂

)
) .

DIC2 = −4
J∑
j=1

{
1

K

K∑
k=1

log
[
f
(
yj |,mj , θ̂k

)
f
(
mj |x1j , x2j , θ̂k

)
f
(
x1j , x2j |θ̂k

)]}
(15)

+ 2

J∑
j=1

log

[
1

K

K∑
k=1

f
(
yj |,mj , θ̂k

)
f
(
mj |x1j , x2j , θ̂k

)
f
(
x1j , x2j |θ̂k

)]

When x1 andm have missing data, DIC2 based on the likelihood including the nuisance models is

Equation (16). We also can extend Equation (16) to DIC2 excluding the nuisance models.

DIC2 = −4
J∑
j=1

{
1

K

K∑
k=1

log
[
f
(
yj |mo

j ,m
m
j , θ̂

)
f
(
mo

j ,m
m
j |x

o
1j ,x

m
1j , x2j , θ̂

)
f
(
xo
1j ,x

m
1j , x2j |θ̂

)]}

(16)

+ 2

J∑
j=1

log

[
1

K

K∑
k=1

f
(
yj |mo

j ,m
m
j , θ̂

)
f
(
mo

j ,m
m
j |x

o
1j ,x

m
1j , x2j , θ̂

)
f
(
xo
1j ,x

m
1j , x2j |θ̂

)]

WAIC. The Watanabe–Akaike Information Criterion (WAIC; also called widely available

information criterion) is firstly proposed by Watanabe and Opper (2010). The typical equation of WAIC is

not for multilevel models, which uses individual scores as units. In multilevel models, Merkle et al. (2019)

also uses individual scores (e.g., yij) as units, whereas we propose to use cluster vector scores (e.g., yj) as

the unit. In addition, there is no literature about WAIC with missing data to the best of our knowledge.
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We extend WAIC to incorporate missing data. Similar to DIC, we need to compute the effective number

of parameters (pwaic) in WAIC. There are two ways to compute pwaic (Gelman et al., 2014), and we

extend them to multilevel models with cluster vector scores as units. First, similar to computing DIC, pwaic

can be estimated in practice as pWAIC = 2
J∑
j=1

(
log

[
1
K

K∑
k=1

f
(
yj |θ̂k

)]
− 1

K

K∑
k=1

logf
(
yj |θ̂k

))
.

Second, pWAIC =
J∑
j=1

varKk=1

(
logf

(
yj |θ̂k

))
. The second way of computing is more stable than the first

way because it computes the variance separately for each data point and sums up the variances (Gelman et

al., 2014). Hence, we will focus on the second method for computing pWAIC . We will also need to

compute the log point-wise predictive density (lppd), lppd =
J∑
j=1

log

(
1
K

K∑
k=1

f
(
yj |θ̂k

))
. Therefore, the

general equation of WAIC is as follows.

WAIC = −2 (lppd− pWAIC)

= −2
J∑
j=1

log

(
1

K

K∑
k=1

f
(
yj |θ̂k

))
+ 2

J∑
j=1

varKk=1

(
logf

(
yj |θ̂k

))
(17)

In the multilevel mediation model, without missing data, we can calculate WAIC in Equation (18)

where θ indicates parameters in marginal likelihoods, or parameters and random effects in conditional

likelihoods, θ̂k indicates the kth posterior sample of θ, and θ̂ indicates the posterior mean.

WAIC = −2
J∑
j=1

log

(
1

K

K∑
k=1

f
(
yj ,mj ,x1j , x2j |θ̂k

))
(18)

+ 2

J∑
j=1

varKk=1

(
logf

(
yj ,mj ,x1j , x2j |θ̂k

))

= −2
J∑
j=1

log
 1

K

K∑
k=1θk

(
f
(
yj |,mj , θ̂k

)
f
(
mj |x1j , x2j , θ̂k

)
f
(
x1j , x2j |θ̂k

))
+ 2

J∑
j=1

varKk=1

(
log
(
f
(
yj |,mj , θ̂k

)
f
(
mj |x1j , x2j , θ̂k

)
f
(
x1j , x2j |θ̂k

)))

Suppose x1 andm have missing data, we impute missing data at each iteration and calculate WAIC
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based on imputed data, where x̂m
1,k, m̂m

k , and θ̂k indicate the kth posterior samples of x1,m, and θ

respectively, x̂m
1j,k and m̂m

j,k indicate the kth posterior samples of x1 andm in the jth cluster, and x̂m
1 ,

m̂m, and θ̂ indicate the posterior means.

WAIC = −2
J∑
j=1

log

(
1

K

K∑
k=1

f
(
y,mo, m̂m

k ,x
o
1, x̂

m
1,k,x2|θ̂k

))
(19)

+ 2
J∑
j=1

varKk=1

(
logf

(
y,mo, m̂m,xo

1, x̂
m
1 ,x2|θ̂k

))

= −2
J∑
j=1

log
 1

K

K∑
k=1θk

(
f
(
yj |mo

j , m̂
m
j,k, θ̂k

)
f
(
mo

j , m̂
m
j,k|x

o
1j , x̂

m
1j , x2j , θ̂k

)
f
(
xo
1j , x̂

m
1j , x2j |θ̂k

))
+ 2

J∑
j=1

varKk=1

(
log
(
f
(
yj |mo

j , m̂
m
j,k, θ̂k

)
f
(
mo

j , m̂
m
j,k|x

o
1j , x̂

m
1j , x2j , θ̂k

)
f
(
xo
1j , x̂

m
1j , x2j |θ̂k

)))

Simulation Study

Simulation Design

The data generating model (i.e., true model) is given in Equations (1) to (3). We rewrite the true

model here again. The regression model for yij is yij = βy,0j + βy,1jmij + ey,ij , βy,0j = βy,00 + uy,0j ,

and βy,1j = βy,10 + uy,1j . The regression model for mij is mij = βm,0j + βm,1x1ij + em,ij and

βm,0j = βm,00 + βm,01x2j + um,0j . The model for x1ij and x2j is x1ij = βx1,0j + ex1,ij ,

βx1,0j = βx1,00 + βx1,01x2j + ux1,0j , and x2j = βx2,0 + ux2,0j .

We fitted data with the true model and four misspecified models (one more fixed effect, one less

fixed effect, one more random effect, and one less random effect). In the “one more fixed effect” model, we

wrongly assumed that y is also conditional on x1.

yij = βy,0j + βy,1jmij + βy,2x1ij + ey,ij (20)
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In the “one less fixed effect” model, we wrongly assumed that m is not conditional on x2.

mij = βm,0j + βm,1x1ij + em,ij (21)

βm,0j = βm,00 + um,0j

In the “one more random effect” model, we wrongly assumed a random slope in mij’s regression model.

mij = βm,0j + βm,1jx1ij + em,ij (22)

βm,0j = βm,00 + βm,01x2j + um,0j

βm,1j = βm,10 + um,1j

In the “one less random effect” model, we wrongly deleted a random slope in yij’s regression model.

yij = βy,0j + βy,1mij + ey,ij (23)

βy,0j = βy,0 + uy,0j

The fixed effects misspecified models led to one degree of freedom discrepancy, and the random effects

misspecified models led to two degrees of freedom discrepancy because there would be one more/less

variance and one more/less covariance.

We varied the values of four factors: the intraclass correlation coefficient of x1, m, and y

(ICC = 0.1 and 0.5), the proportion of missingness (pmiss = 0, 0.2, and 0.4), the sample size per cluster

(SZ = 5, 15 and 30), and number of clusters (J = 25, 50, and 200). More specifically, we set the ICCs to

be the same for x1, m, and y (i.e., all of them are 0.1 or 0.5). We do not directly specify fixed and random

effects in the model to simulate data; instead, we specify the proportion of explained variance and

variance/covariance of x1, x2, m, and y based on real data sets to simulate the data (Enders et al., 2023). x1
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had a mean of 0 and a within-cluster variance of 1 (the between-cluster variance would be determined by

ICC). x2 had a mean of 0, a variance of 1, and a correlation with x1’s cluster mean of 0.3. m had a mean

of 0, a total variance of 100, and the proportion of within-cluster variance explained by βm,1 was 0.1 and

the incremental proportion of between-cluster variance explained by βm,01 was 0.1. These proportions are

defined in Rights & Sterba (2019). y had a mean of 50, a total variance of 100, and the proportion of

within-cluster variance explained by βy,1 was 0.1, the proportion of within-cluster variance explained by

the random slope (uy,1j) was 0.1, and the correlation between the random intercept and slope was 0.3. We

generated missing observations of mij and x1ij based on yij . When one participant’s yij is larger than the

sample grand mean, this participant has a probability of pmiss to miss their mij and x1ij . There are

2× 2× 3 = 12 types of information criteria calculated in each condition: conditional versus marginal

likelihood, the joint likelihood of y, m, x1, and x2 based on the sequential specification (denoted as xmy

model) versus the joint likelihood of y and m based on the separate specification (i.e., excluding the

likelihood contributions of x1 and x2, such that the information criteria were computed using only the y and

m models; denoted as my model), and three criteria (DIC1, DIC2, and WAIC). We used the following

notations to distinguish different likelihoods. We denote the marginal likelihood based information criteria

with including covariate models (xmy model) as m.xmy where m indicates the marginal likelihood,

denote the marginal likelihood based information criteria with excluding covariate models (my model) as

m.my where m indicates the marginal likelihood, denote the conditional likelihood based information

criteria with including covariate models as c.xmy where c indicates the conditional likelihood, and denote

conditional likelihood based information criteria with excluding covariate models as c.my where c

indicates the conditional likelihood. We conducted 2000 replications for each condition. The burn-in

period is 30,000 and the post burn-in period is 20,000. We used version 3.1.28 of the Blimp application

(Keller & Enders, 2021) to implement the fully Bayesian estimation and obtain the likelihoods. Then, we

used R to compute DIC1, DIC2, and WAIC based on the posterior samples and likelihoods from Blimp.
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We compared DIC1, DIC2, and WAIC with m.xmy, m.my, c.xmy, and c.my likelihoods in

terms of their proportions of selecting the true model. More specifically, we count the number of times

each information criterion yields the lowest value for the true model compared to the four misspecified

models because the true model is supposed to have the best model fit and thus lowest information criterion

value. The best information criterion should have the highest detection rate of the true model (highest

proportions of yielding the lowest value for the true model).

Simulation Results

We checked the convergence of each condition. Although generally the convergence criterion is

PSRF ≤ 1.1 (Gelman et al., 2014), we use a more strict convergence criterion, PSRF ≤ 1.05

(Asparouhov & Muthén, 2010). That is, when the largest potential scale reduction factor (PSRF ) among

all parameters was larger than 1.05, we concluded that the model failed to converge. Only converged

replications were kept and the convergence rates were higher than 92.7%.

Effects of ICC, pmiss, J , and SZ. We plot the proportions of selecting the true model from different

information criteria with ICC = 0.1 and pmiss = 0 in Figure 1, ICC = 0.1 and pmiss = 0.2 in Figure 2,

ICC = 0.1 and pmiss = 0.4 in Figure 3, ICC = 0.5 and pmiss = 0 in Figure 4, ICC = 0.5 and

pmiss = 0.2 in Figure 5, and ICC = 0.5 and pmiss = 0.4 in Figure 6. In each figure, the row panel effects

reflect the influence from the number of clusters (J), the column panel effects reflect the difference

between likelihoods (m.xmy, m.my, c.xmy, or c.my), and the changes along the x-axis reflects the

influence from the sample size per cluster (SZ).

Figure 1 contains no missing data (pmiss = 0). Based on Figure 1, more clusters (J) and a larger

sample size per cluster (SZ) generally could increase the correct detection rates of information criteria

based on marginal likelihood (m.xmy and m.my) and conditional likelihood excluding covariate models

(c.my). The increase perhaps does not only due to more information in the data but also due to more
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accurate parameter estimation. For conditional likelihood including covariate models (c.xmy), more

clusters and a larger sample size fail to increase the proportion of correct detection rates in DIC1, DIC2,

and WAIC. The effect of the number of clusters and sample size did not have a noticeable difference on

DIC1, DIC2, and WAIC.

Comparing Figures 1-3 with different proportions of missing data (pmiss = 0 vs. pmiss = 0.2 vs.

pmiss = 0.4), we found that as the amount of missing data increased, this decreased the probabilities of all

information criteria detecting the true model. Additionally, missing data had a larger influence on

conditional likelihood information criteria (c.my and c.xmy) than marginal likelihood information criteria

(m.my and m.xmy). Comparing Figures 4-6, we could see the same influence pattern of missing data.

Figures 1-3 and Figures 4-6 have different ICC. Comparing Figures 1 (ICC = 0.1) versus 4

(ICC = 0.5), Figures 2 (ICC = 0.1) versus 5 (ICC = 0.5), and Figures 3 (ICC = 0.1) versus 6

(ICC = 0.5), we found that higher ICC decreased the probabilities of all information criteria detecting

the true model.

Marginal Likelihood vs. Conditional Likelihood . Within each figure, the marginal likelihood

information criteria generally had much higher detection rates than conditional likelihood information

criteria, especially with more clusters and/or a larger sample size per cluster. But when there were no

missing data, conditional likelihood information criteria could have higher detection rates than marginal

likelihood information criteria. With more missing data, the superiority of marginal likelihood over

conditional likelihood information criteria became more obvious. Furthermore, we computed Monte Carlo

errors of DIC1, DIC2, and WAIC values (the standard deviation over converged replications) within

each condition. Given the same likelihood, DIC1, DIC2, and WAIC exhibited substantially similar

Monte Carlo errors. But c.xmy based information criteria had larger Monte Carlo errors compared to those

based on m.xmy (e.g., 212 vs. 30), while c.my and x.my based information criteria did not have

noticeable differences in their Monte Carlo errors. Interesting readers can access the detailed results at
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https://github.com/hduquant/dic.git.

Including vs. Excluding Covariate Models. Within conditional likelihood information criteria, there

was a noticeable difference between including the likelihood of covariate models (c.xmy) and excluding

the likelihood of covariate models (c.my). But based on the detection rates, it was unclear whether the

covariate models as exogenous nuisance models need to be included in the model fit calculations. Including

the covariate models in the information criteria sometimes provided higher detection rates but sometimes

provided lower detection rates than the ones excluding the covariate models. We fail to find a clear pattern.

Within marginal likelihood information criteria, there were slightly higher detection rates when

excluding the likelihood of covariate models (m.my) compared to including the likelihood of covariate

models (m.xmy), however this difference was small.

DIC1 vs. DIC2 vs. WAIC. Across all of the 6 figures, within conditional likelihood information

criteria, DIC1 or WAIC had the highest detection rates. Within marginal likelihood information criteria,

DIC2 usually had the highest detection rates, although DIC1 also could have the highest detection rates

when there were no missing data. Considering both conditional and marginal likelihoods, DIC2 based on

the marginal likelihoods generally provided higher detection rates than DIC1 and WAIC based on the

conditional likelihoods except for a few cases with a small number of clusters (J ≤ 50) and a small sample

size per cluster (SZ ≤ 15). If we combine the discussion of including vs. excluding covariate models in the

previous section, DIC2 based on the marginal likelihoods and excluding the likelihood of covariate models

(denoted as DIC2.m.my where m indicates marginal likelihoods and my indicates the my model) was

slightly better than the DIC2 based on the marginal likelihoods and including the likelihood of covariate

models (denoted as DIC2.m.xmy where xmy indicates the xmy model), and DIC2.m.my generally

performed much better than DIC1.m.my, DIC1.c.my, DIC1.m.xmy, DIC1.c.xmy, DIC2.c.my, DIC2.c.xmy,

WAICm.my, WAICc.my, WAICm.xmy, and WAICc.xmy where m indicates marginal likelihoods, c
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indicates conditional likelihoods, xmy indicates the xmy model, and my indicates the my model.

Selected Models . We conducted an additional analysis to explore the selection patterns using

different information criteria, as the true model was not consistently chosen. The results showed that when

we utilized the marginal likelihood (m.my and m.xmy), the true model was predominantly selected. In

cases where the true model was not chosen, there was a small proportion of selections favoring either the

"one less fixed effect" or the "one less random effect" model. However, when we employed the conditional

likelihood (c.my and c.xmy), the "one more random effect" model was consistently favored, which

implied that the conditional likelihood favored more complex models.

Cain and Zhang (2019) proposed to only select a winner when the difference of DIC is larger than 7.

If the the difference of DIC is not larger than 7, we can choose the more substantively meaningful model or

the simpler model. Therefore, we summarized the average proportion of DIC differences that were larger

than 7 when the true model was selected in Table 2 (the difference is computed as DIC/WAIC of the

misspecified model - DIC/WAIC of the true model, and the proportion is computed for each condition and

averaged across conditions). Although from Table 1 we know that the conditional likelihood information

criteria (c.my and c.xmy) did not select the true model in most cases, from Table 2 we can see that once

the conditional likelihood information criteria selected the true model, the DIC/WAIC of the true model

generally was 7 points lower than the one from "one less random effect" model. The marginal likelihood

information criteria (m.my and m.xmy) were more likely to select the true model, and the proportions of

DIC/WAIC difference larger than 7 were comparable to ones from c.xmy.

Overall, based on the simulation results, we suggest the marginal likelihood based DIC2 that

excludes the likelihood of covariate models (DIC2.m.my).
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Real Data Example

We use an employee dataset to illustrate the information criteria provided in Blimp (Keller &

Enders, 2021). The data include several work-related variables (e.g., work satisfaction, turnover intention,

employee–supervisor relationship quality) for a sample of 630 employees and 105 workgroups. We focus

on three variables: employee empowerment composite (EMP), leader–member exchange (relationship

quality with supervisor) composite (LME), and work satisfaction rating (WORK). We are interested in how

LME affects WORK through the mediator EMP. 4.1% of the LME variable observations are missing,

16.2% of the EMP variable observations are missing, and 4.8% of the WORK variable observations are

missing. We assume the missingness is MAR. We utilize group mean centering to isolate within-team

variation in the regressors, but we are uncertain about whether allowing the within-team effects to vary

across teams and including group means as predictors. As a result, we have developed three comparative

models to investigate this further.

In the first model, we use group mean centering to isolate within-team variation in the regressors and

we only consider random intercepts. Group means and missing data are estimated using MCMC sampling.

The level-1 residuals (eEMP,ij and eWORK,ij) and random intercepts (βEMP,0j and βWORK,0j) follow

normal distributions.

EMPij = βEMP,0j + βEMP,1 (LMXij − µLMX,j) + eEMP,ij ,

WORK = βWORK,0j + βWORK,1 (LMXij − µLMX,j) + βWORK,2 (EMPij − µEMP,j) + eWORK,ij

In the second model, we add random slopes. The random intercepts (βEMP,0j and βWORK,0j) and random
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slopes (βEMP,1j , βWORK,1j , and βWORK,2j) follow multivariate normal distributions.

EMPij = βEMP,0j + βEMP,1j (LMXij − µLMX,j) + eEMP,ij ,

WORK = βWORK,0j + βWORK,1j (LMXij − µLMX,j) + βWORK,2j (EMPij − µEMP,j) + eWORK,ij

In the third model, we add between cluster effects. βEMP,2, βWORK,3, and βWORK,4 indicate the effect

from the cluster means of regressors.

EMPij = βEMP,0j + βEMP,1j (LMXij − µLMX,j) + βEMP,2µLMX,j + eEMP,ij ,

WORK = βWORK,0j + βWORK,1j (LMXij − µLMX,j) + βWORK,2j (EMPij − µEMP,j)

+ βWORK,3µLMX,j + βWORK,4µEMP,j + eWORK,ij

We implemented the fully Bayesian estimation in version 3.1.28 of the Blimp application (Keller &

Enders, 2021). We used R to compute DIC1, DIC2, and WAIC based on the posterior samples and

likelihoods output from Blimp. We excluded the likelihood of covariate models (c.my and m.my). The

data and code (both the Blimp and R code) are available at https://github.com/hduquant/dic.git. The burn-in

period is 5,000 and the post burn-in period is 10,000. The marginal likelihood and conditional likelihood

information criteria (DIC1.m.my, DIC2.m.my, WAICm.my, DIC1.c.my, DIC2.c.my, and WAICc.my) are

presented in Table 1. The marginal likelihood based DIC2 and WAIC (DIC2.m.my and WAICm.my) and

the conditional likelihood based DIC1, DIC2, and WAIC (DIC1.c.my, DIC2.c.my, and WAICc.my)

indicated that Model 2 had the best model fit, whereas the marginal likelihood based DIC1 (DIC1.m.my)

indicated that Model 3 had the best model fit. Since compared to DIC2.m.my, DIC1.m.my had a lower

detection rate in the simulation, we concluded that Model 2 has the best model fit.
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Discussion

It is common in applications of Bayesian estimation to compare different models. One may like to

expand the model after successfully fitting a simple model, and one may compare non-nested models with

different sets of predictors. In this case, we need to use model fit criteria to compare and select models. In

this paper, we focus on Deviance Information Criterion (DIC) and Watanabe–Akaike Information

Criterion (WAIC) in multilevel mediation models. The current study has four contributions. First, we

propose a DIC2 to compare to the traditional DIC1 and WAIC in terms of true model selection accuracy.

Second, we explore whether these information criteria with conditional likelihood or marginal likelihood

lead to higher accurate selection rates. Third, there is no literature about WAIC with missing data to the

best of our knowledge, and we extend WAIC to incorporate missing data. Fourth, we explore whether it is

necessary to include the nuisance models of exogenous variables in likelihood to compute information

criteria. We summarize our findings as follows. Note that while we anticipate that the findings presented

can be applied to other multilevel models (e.g., multilevel partial mediation and latent growth curve

models), it would be prudent to conduct simulations in order to verify these conclusions.

First, comparing conditional and marginal likelihood information criteria, the marginal likelihood

information criteria generally had higher detection rates than conditional likelihood information criteria.

This is consistent with the findings in the previous studies by Merkle et al. (2019), Tong et al. (2022), and

Zhang et al. (2019). We also find that more missing data increases the discrepancy between marginal

likelihood and conditional likelihood information criteria.

Second, the performance of WAIC with missing data depends on whether we use marginal

likelihoods or conditional likelihoods. If we used conditional likelihoods, WAIC could have a higher true

model selection rate than DIC1 and DIC2. If we used marginal likelihoods, WAIC failed to outperform

DIC2, but could be better or worse than DIC1. We notice that the difference between WAIC and DIC2

was larger with missing data. It is possible that missing data can influence the posterior variance, which is
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the basis for WAIC calculation.

Third, comparing DIC1, DIC2, and WAIC, our proposed DIC2 had the highest true model

selection rates with marginal likelihoods but had the lowest rates with conditional likelihoods, while

marginal likelihood based DIC2 had a higher true model selection rate than conditional likelihood based

DIC1 and WAIC. Additionally, with marginal likelihoods, the difference between DIC1, DIC2, and

WAIC was small; but with conditional likelihoods, DIC1, DIC2, and WAIC had more diverse

performance. This is consistent with the conclusion of comparing DIC1 and WAIC in Tong et al. (2022).

Fourth, in terms of whether to include the nuisance models of exogenous variables in information

criteria computation, the performance depended on the likelihood function. With marginal likelihoods, the

marginal likelihood information criteria with excluding covariate models were slightly better than the ones

including covariate models, while the difference was small. Within conditional likelihoods, including the

covariate models in the information criteria could provide higher or lower detection rates than the ones

excluding the covariate models. There was not a clear pattern.

The answer of whether DIC2 was better than DIC1 and WAIC and whether we should include the

nuisance models of exogenous variables in likelihood functions depended on whether we use marginal or

conditional likelihoods. Overall, the marginal likelihood based DIC2 that excludes the likelihood of

covariate models (DIC2.m.my) generally had the highest true model selection rates, and we recommend

utilizing it in practical applications.

Open Practices Statements

The data and code (both the Blimp and R code) are available at https://github.com/hduquant/dic.git.
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Footnotes

1lavaan does not allow treating predictors/covariates as random when the model contains nonlinear

covariate effects.
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Table 1: The Proportion of Each Model Selected with Different Information Criteria
True One less One more One less One more

fixed effect fixed effect random effect random effect

m.my
DIC1 0.70 0.11 0 0.19 0
DIC2 0.72 0.11 0 0.17 0
WAIC 0.72 0.11 0 0.17 0

c.my
DIC1 0.35 0.06 0 0.02 0.57
DIC2 0 0 0 0 1
WAIC 0.11 0.07 0 0 0.81

m.xmy
DIC1 0.72 0.11 0 0.17 0
DIC2 0.72 0.11 0 0.17 0
WAIC 0.70 0.11 0 0.19 0

c.xmy
DIC1 0.33 0 0 0 0.67
DIC2 0 0 0 0 1
WAIC 0.33 0 0 0 0.67

Note: the lowest information criteria are bolded
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Table 2: The proportion of DIC differences that were larger than 7 when the true model was selected
One less One more One less One more

fixed effect fixed effect random effect random effect

m.my
DIC1 0.42 0 0.73 0.09
DIC2 0.42 0 0.75 0.02
WAIC 0.42 0.01 0.74 0.05

c.my
DIC1 0.14 0 0.87 0
DIC2 0.17 0 0.92 0
WAIC 0.12 0.02 0.88 0.01

m.xmy
DIC1 0.41 0 0.73 0.1
DIC2 0.41 0 0.75 0.04
WAIC 0.42 0.03 0.74 0.18

c.xmy
DIC1 0.46 0.09 1 0.03
DIC2 0.03 0.1 1 0.02
WAIC 0.41 0.28 1 0.17

Table 3: The Marginal Likelihood and Conditional Likelihood Information Criteria in the Real Data
Example

Model 1 Model 2 Model 3
Marginal Likelihood

DIC1 5612.406 5604.815 5604.185
DIC2 5518.996 5507.320 5511.442
WAIC 5576.719 5566.584 5570.962

Conditional Likelihood
DIC1 5578.686 5513.055 5513.22
DIC2 5448.113 5358.068 5366.736
WAIC 5541.298 5478.100 5488.689

Note: the lowest information criteria are bolded. We excluded the likelihood of covariate models.
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Figure Captions

Figure 1. Plot of the proportions of selecting the true model when ICC = 0.1 and pmiss = 0

Figure 2. Plot of the proportions of selecting the true model when ICC = 0.1 and pmiss = 0.2

Figure 3. Plot of the proportions of selecting the true model when ICC = 0.1 and pmiss = 0.4

Figure 4. Plot of the proportions of selecting the true model when ICC = 0.5 and pmiss = 0

Figure 5. Plot of the proportions of selecting the true model when ICC = 0.5 and pmiss = 0.2

Figure 6. Plot of the proportions of selecting the true model when ICC = 0.5 and pmiss = 0.4
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Figure 1: Plot of the proportions of selecting the true model when ICC = 0.1 and pmiss = 0
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Note: ICC indicates the intraclass correlation coefficient of x1, m, and y, pmiss indicates the proportion of
missingness, J indicates the number of cluster, SZ indicates the sample size per cluster, m.xmy indicates
the marginal likelihood including covariate models, c.xmy indicates the conditional likelihood including
covariate models, m.my indicates the marginal likelihood excluding covariate models, and c.my indicates
the conditional likelihood excluding covariate models.
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Figure 2: Plot of the proportions of selecting the true model when ICC = 0.1 and pmiss = 0.2
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Note: ICC indicates the intraclass correlation coefficient of x1, m, and y, pmiss indicates the proportion of
missingness, J indicates the number of cluster, SZ indicates the sample size per cluster, m.xmy indicates
the marginal likelihood including covariate models, c.xmy indicates the conditional likelihood including
covariate models, m.my indicates the marginal likelihood excluding covariate models, and c.my indicates
the conditional likelihood excluding covariate models.
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Figure 3: Plot of the proportions of selecting the true model when ICC = 0.1 and pmiss = 0.4
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Note: ICC indicates the intraclass correlation coefficient of x1, m, and y, pmiss indicates the proportion of
missingness, J indicates the number of cluster, SZ indicates the sample size per cluster, m.xmy indicates
the marginal likelihood including covariate models, c.xmy indicates the conditional likelihood including
covariate models, m.my indicates the marginal likelihood excluding covariate models, and c.my indicates
the conditional likelihood excluding covariate models.
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Figure 4: Plot of the proportions of selecting the true model when ICC = 0.5 and pmiss = 0
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missingness, J indicates the number of cluster, SZ indicates the sample size per cluster, m.xmy indicates
the marginal likelihood including covariate models, c.xmy indicates the conditional likelihood including
covariate models, m.my indicates the marginal likelihood excluding covariate models, and c.my indicates
the conditional likelihood excluding covariate models.
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Figure 5: Plot of the proportions of selecting the true model when ICC = 0.5 and pmiss = 0.2
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missingness, J indicates the number of cluster, SZ indicates the sample size per cluster, m.xmy indicates
the marginal likelihood including covariate models, c.xmy indicates the conditional likelihood including
covariate models, m.my indicates the marginal likelihood excluding covariate models, and c.my indicates
the conditional likelihood excluding covariate models.
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Figure 6: Plot of the proportions of selecting the true model when ICC = 0.5 and pmiss = 0.4
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missingness, J indicates the number of cluster, SZ indicates the sample size per cluster, m.xmy indicates
the marginal likelihood including covariate models, c.xmy indicates the conditional likelihood including
covariate models, m.my indicates the marginal likelihood excluding covariate models, and c.my indicates
the conditional likelihood excluding covariate models.


