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This study aims to describe how preservice secondary mathematics teachers (PSMTs) reason 
about different function representations. The study focuses on two PSMTs’ reasonings across 
static and dynamic representations of functions. Sfard’s (2008) Theory of Commognition guided 
our analysis. Findings indicate that while static representations restrict attention given to 
covariation, dynamic representations support PSMTs’ reasoning about covariation including 
making connections to how covariation is represented in static graphs. 
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The concept of function permeates all levels of mathematics and is a large focus of the high 
school curriculum. Central to the treatment of functions in high school is attention to 
characteristics of families of functions given their usefulness for mathematical modeling. This 
attention means that significant emphasis is placed on graphical representations of functions (i.e., 
static graphs on a Cartesian plane). Research has shown that when analyzing graphical 
representations of functions, students and teachers alike often attend to perceptual cues rather 
than the relationships between the variables the perceptual cues are representing (e.g., Moore & 
Thompson, 2015; Sinclair et al., 2009). The coordination of two quantities represented in a graph 
of a function and the ways they change in relation to each other is called covariational reasoning 
and has been identified as foundational for mathematical modeling as well as many calculus 
concepts (e.g., Carlson et al., 2002). Given the role that functions play in the high school 
curriculum, it is essential that preservice secondary mathematics teachers (PSMTs) develop 
covariational reasoning skills. Carlson et al. pointed to the potential of dynamic technologies to 
support those learning to apply covariational reasoning. Recent work with a particular dynamic 
representation of functions in one dimension, the dynagraph (Goldenberg et al., 1992), has 
pointed to its potential to elicit student reasoning about the ways in which independent and 
dependent variables vary and covary (e.g., Antonini et al., 2020; Sinclair et al., 2009). To that 
end, the purpose of this study was to examine the similarities and differences in the ways PSMTs 
reasoned about different representations of functions–static and dynamic. 
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Background Literature 
Reasoning about Static Graphs 

Static representations of functions include tables, lists of ordered pairs, equations, and 
graphs. There is evidence that students’ limited experience with graphical representations 
constrains them from making meaningful connections among algebraic and graphical 
representations (Knuth, 2000). Static graphical representations also conceal the dynamic aspects 
of function, such as the rate of change and relative position, that are essential for forming a 
robust understanding of function (e.g., Antonini et al., 2020; Carlson, 1998; Confrey & Smith, 
1995; Ng, 2016). Research has shown that when reasoning about static graphs, it is not unusual 
to pay attention to shape and perceptual cues rather than the ways the graph represents how the 
variables change together (e.g., Moore & Thompson, 2015; Oehrtman et al., 2008; Weber, 2012). 
Moore and Thompson (2015) have also shown that it is not uncommon for a graph to be 
interpreted as the function itself, rather than a representation of the function. They distinguished 
static shape thinking from emergent shape thinking and described static shape thinking as 
considering a graph as an object, reacting to perceptual cues and the perceived shape of the graph 
rather than perceiving a graph as a trace and a representation of covarying quantities. Students 
with emergent shape thinking interpret features of the graph as properties of covariation. 
Thompson and Carlson (2017) noted that covariational reasoning happens “most strongly when a 
person is strategizing how to keep track of quantities’ values simultaneously” (p. 438). Thus, 
dynamic representations where one can act on one quantity and track the concurrent relationship 
with another quantity might support the development of covariational reasoning skills. 
Reasoning about Dynamic Representations of Functions 

Digital technology provides many affordances related to the ways in which one can interact 
with functions and their graphs (Drijvers, 2015). Such technologies allow for the use of tables, 
expressions, and graphs to be dynamically linked to animated motion (e.g., Johnson et al., 2020; 
Kaput Center, 2016). There is evidence that engaging in activities of these types can support the 
development of reasoning about varying quantities and the ways in which they are represented in 
graphs (e.g., Johnson et al., 2020). Another way of leveraging the dynamic affordances of digital 
technologies to represent function is to use parallel axes rather than perpendicular axes, typically 
referred to as a dynagraph. Goldenberg et al. (1992) introduced dynagraphs to draw attention to 
dynamic function behavior and to help students focus on the function by eliminating complex 
information shown in a Cartesian graph. Students can test their conjectures of the relationship 
between input and output by dragging the input and observing the resulting change in the output. 
With the movement of this interactive representation, identification of invariants and covariation 
become central to one’s exploration. Antonini et al. (2020) described dynagraphs as dynamic 
interactive mediators because students can engage in discourse with a dynagraph, “asking” 
questions of the tool and engaging to receive an “answer”. Research has shown that use of 
dynagraphs can support the teaching of functions (e.g., Antonini et al., 2020) and can foster 
covariational reasoning by eliciting attention to movement, time, and space (Lisarelli, 2017).  

There is little research comparing student reasoning when engaging with static and dynamic 
representations of function (exceptions include Antonini et al., 2020; Ng, 2016, and Sinclair et 
al., 2009). Given the potential of dynagraphs to support the development of reasoning about 
variables both separately and together, it is of interest to compare the ways in which one would 
reason about static and dynamic representations of the same functions. Our aim is to describe 
how PSMTs reason about functions with different visual mediators (i.e., static and dynamic). 
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Theoretical Framework 
Sfard’s (2008) Theory of Commognition unites cognitive and communicational processes to 

explain student thinking as “an individualized version of interpersonal communication” (p. 81). 
For Sfard, communication is a back and forth (action/reaction) that includes all communication, 
including with oneself. From this perspective, Antonini et al. (2020) explained “doing 
mathematics means engaging in the type of communication defined as mathematics and learning 
means becoming able to access and express this discourse” (p. 4). So, to study students’ learning, 
we must attend to the words, visual mediators, narratives, and routines that form their discourse.  

Mathematical discourse is characterized by specific words that are used by experts in specific 
ways. In the context of this study, that might include words like function, quadratic, increasing, 
rate of change, domain, or it might include informal language that is clear enough for an expert 
to understand the mathematics one is referring to. Visual mediators are objects that can be seen 
and operated on in the communication process. In mathematics, visual mediators can include, but 
are not limited to, symbols and graphs. Visual mediators of this type are static in that they can be 
seen and operated on, but not interacted with. In contrast, Antonini et al. (2020) introduced a 
dynamic interactive visual mediator (referred to as a DIM) described as a mediator that is “both 
dynamic - they change over time - and interactive - they respond to a person’s manipulations” (p. 
5). A dynagraph is an example of a DIM. In this study, we attended to the ways students 
communicate with and about different types of visual mediators (i.e., static vs. DIM). 

 
Context of the Study 

Since our goal was to compare and contrast the ways in which PSMTs reasoned about static 
graphical representations of functions and dynamic interactive representations of functions, 
asking students to compare and contrast within each representation type met our needs. To this 
end, we decided to use the instructional routine of Which One Doesn’t Belong (WODB) 
(Danielson, 2016). A typical WODB task includes four objects and students are simply asked, 
which one doesn’t belong? The main characteristic of a WODB task is that all of the options 
within the task can be considered correct which shifts students’ focus away from trying to obtain 
the “correct” answer to distinguishing attributes of the objects presented in each option. This 
study used two WODB tasks, one with four static graphs of functions – each from a different 
function family (referred to going forward as the static task) and one with four dynagraphs of the 
same four functions (going forward referred to as the dynamic task).  

In the static task, PSMTs considered four graphs (Figure 1) of functions and were asked to 
decide WODB and why. Once the PSMTs explained their choice, they were then asked to 
explain why someone else might argue that each of the other remaining graphs does not belong. 

 

 
Figure 1: The static WODB task 
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In the dynamic task, the same four functions were presented (in a different order) but this 
time represented using dynagraphs (Note: PSMTs were not told they were the same). As a 
reminder, a dynagraph consists of two parallel number lines (function input on one, output on the 
other), and as the input is dragged, corresponding changes to the output will result (Figure 2). 
Just like the static task, PSMTs were asked to decide and explain WODB. Then they were asked 
why someone else might argue that each of the other remaining dynagraphs does not belong. 

 

 
Figure 2: The dynamic WODB task–linear, square root, quadratic, and absolute value 

functions from top to bottom (https://www.geogebra.org/m/wjecnfev) 
 

Methodology 
This study was situated within the context of a larger study investigating how PSMTs 

reasoned across static and dynamic representations of function. Here we used a multiple case 
study design (Yin, 2017) to explore two cases, where each case was defined by the type of visual 
mediator (i.e., static and DIM) with which the students interacted. Our overarching research 
question was: What is the nature of students’ discourse about function as they interact with 
different visual mediators (i.e., static and dynamic interactive mediators)?  

The full study included 25 PSMTs attending six universities. Here we focus on two female 
participants; neither had experience with dynagraphs before. They were secondary mathematics 
education majors attending different universities. Both participants were enrolled in a math 
methods course, prior to student teaching, at the time of the study. 

Video screen capture recordings of semi-structured interviews (Goldin, 2000) served as the 
main data source. One interview posed the static visual mediator first, and the second began with 
the DIM. Interviews were transcribed verbatim and uploaded in Atlas.ti to assist with coding.  

Similar to Antonini et al. (2020), we used Sfard’s (2008) Theory of Commognition to guide 
our analysis. We attended to words, discourses, and narratives to code the PSMTs’ comparing 
and contrasting of the mediators presented in the tasks. In our consideration of the scholarly 
mathematical discourse (words), we were specifically interested in the characteristics of function 
that were elicited. We read the transcripts for the specific characteristics of function being 
described (e.g., domain, range, increasing, decreasing, maximum), created quotations for each 
chunk of transcript referring to a specific characteristic, and applied labels. A full list of these 
characteristics is included in the findings.  

Next, we coded for the discourse about and with each mediator. To do so, all team members 
watched each video and reviewed the transcript to become familiar with each participant’s 
discourse. This was followed by full team meetings to develop short codes describing the 
discourse using the protocol set forth by DeCuir-Gunby et al. (2011). We compared the data and 

https://www.geogebra.org/m/wjecnfev
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emerging codes using a constant comparative method to create our final version of the codebook. 
From there two researchers coded each interview, and any discrepancies were discussed amongst 
them to come to a consensus. Finally, the researchers read the coded data again, condensing 
codes into categories and then identifying themes in the participants’ narratives about the 
different types of mediators. These themes are presented in the findings section. 

 
Findings 

The PSMTs engaged with two different visual mediators, a set of four static Cartesian graphs 
and a set of four dynagraphs. Regardless of the order of engagement (i.e., static or DIM first), the 
characteristics of function they attended to when comparing and contrasting the functions in each 
activity were similar. The characteristics elicited included: differentiability, domain and range, 
function families, function vs. non-function, increasing and decreasing, independent and 
dependent variables, local and global extrema, rate of change, and symmetry. Representative 
examples from our data for the most commonly noted characteristics are shown in Table 1. The 
only characteristics not included in the communication with both mediators were function/non-
function and symmetry. In both cases, these characteristics were mentioned by only one of the 
two PSMTs and on only one of the four functions being compared. The other seven 
characteristics were routinely included by both PSMTs in their discourse about both visual 
mediators. Given the similarities in the mathematical focus of their discourse related to both 
visual mediators, we next present findings related to the nature of the discourse related to the 
mathematical focus for each of the two visual mediators. 

 
Table 1: Representative examples of discourse related to characteristics of functions 

 Representative Examples 
 Static DIM 

Domain/Range PSMT 1: “The domain [of A] is 
only from one to infinity.”  

PSMT 1: “The domain [of h(c)] is going 
to go on forever here.” 

Increasing/ 
Decreasing 

PSMT 1: “[A’s] just going to 
keep going up.” 

PSMT 2: “And b, I'm noticing that as 
you increase the input of b, more 
and more like the like g(b) increases 
less.” 

Rate of Change PSMT 1: “The slope of the lines 
[of absolute value function] 
was one or negative one.” 

PSMT 2: “And it looks like so as d is 
approaching negative infinity j(d) 
increases at the same rate that d is 
decreasing.” 

 
Nature of Discourse with and about Static Visual Mediators 

When engaging with the static version of the WODB task, the nature of the PSMTs’ 
discourse was routinely focused on using formal mathematical language (though not always 
precisely) and what we referred to as “describing the image”. Representative examples for each 
of these types of narratives are provided in Table 2.  

As they compared and contrasted the four static graphs, the PSMTs consistently used the 
formal language to typically describe characteristics of functions – e.g., domain, range, 
increasing, decreasing, slope, concave up. For example, PSMT 2 described graph A using the 
term “restricted domain” (see row 1 of Table 2). This is to be expected given the years of 
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experience they have of being asked to identify characteristics of functions based on their graphs. 
Of course, their discourse would include the words used by the mathematicians they have 
learned from over the years. However, the PSMTs did not always use these words in precise 
ways. For example, when trying to describe the non-constant rate of change of the function in 
graph C, PSMT 1 refers to it as “average rate of change” with uncertainty, as she knows it is not 
constant, but is not sure what to call it. 
 

Table 2: Representative examples of discourse about the static visual mediators 
Features of PSMTs’ 

narratives 
Representative Examples 

Use of formal and precise 
mathematical language 

PSMT 2: “[A’s] the only one that has like a restricted domain. 
Because it like, it doesn't have any inputs, that work for the, 
they give, like a real value lower than one.”  

Use of formal and 
imprecise 
mathematical language 

PSMT 1: “The slope [of D] from zero to infinity and the range is 
going to be positive one. But I wouldn't say it’s that's not 
really an av- (pause) that’s not really an average rate of 
change.” 

Describing the image 
 

PSMT 1: “Well, [C’s] concave down, it's opening down. ... [D’s] 
the only one that goes through the origin. ... B’s the only one 
that doesn't belong because it's the only one that touches all 
or touches three quadrants while the rest touch one or two.” 

PSMT 2: “[C’s] only one where it doesn't go above zero. It 
doesn't have an output above zero, right.” 

 
Whether their formal mathematical language was precise or not, the PSMTs consistently 

compared and contrasted the static graphs by describing the presented images as if they were 
pictures. For example, while PSMT 1 (see row 3 of Table 2) correctly described graph C as 
“concave down”, the follow up phrase “it’s opening down” reveals she is describing the image 
rather than the increasing and then decreasing rates of change that the term concavity is intended 
to describe. The routine of describing the image in the static graphs is consistent with what 
Moore and Thompson (2015) refer to as “static shape thinking” or “treating a graph as a piece of 
wire ... attending to perceptual cues and the perceptual shape of a graph” (p. 784). The attention 
to perceptual cues (e.g., “goes through the origin”, “touches three quadrants”) and shape (e.g., 
“doesn’t go above zero”) is evident in both examples presented in row 3 of Table 2. 
Nature of Discourse with and about Dynamic Interactive Mediators 

When engaging with the dynamic version of the WODB task, the nature of the PSMTs’ 
discourse was routinely focused on describing relative direction, distance, and/or speed and 
connecting their noticing to imagined graphs of known functions. Representative examples for 
each of these routines are provided in Table 3. 

The PSMTs interacted with each dynagraph by dragging the independent variable and 
examining the resulting reaction of the dependent variable. As they explored dynamically, they 
described the dynamic characteristics they noticed. Both PSMTs consistently noted the variables' 
relative direction and speed. For example, as PSMT 2 dragged d to the far left, she saw j(d) move 
to the right and stated, “as d is approaching negative infinity, j(d) increases”.  In addition, she 
noted that “j(d) is increasing constantly or very close to the same amount that d is”. Relative 
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distance and speed were also often discussed. For example, when describing her exploration of g 
alongside of h, PSMT 1 noted their relative speed but used distance to make sense of it, referring 
to the length of the connector between c and h(c) to describe that distance, she explains “so, the 
outputs, the g(b) aren’t moving as fast as this one” and then describing h she said, “it's like the 
arrow from the inputs, the outputs, gets larger and larger and larger.” The arrow getting “larger” 
corresponded to the increasing rate of change. In the PSMTs’ discourse about the relative speed, 
direction, and distance, there is evidence of attending to not only how each of the input and 
output are varying, but also the ways in which they are covarying. 

 
Table 3: Representative examples of discourse about the dynamic interactive mediators 

Features of PSMTs’ 
narratives 

Representative Examples 

Describing relative 
speed, direction, 
and/or distance 

 

PSMT 1: “So the outputs, the g(b) aren't moving as fast as if like if 
I move this one [talking about h]. And I move it, it's like the 
arrow from the inputs, the outputs, gets larger and larger and 
larger. But here [talking about g] it does get larger. But it's like 
it takes a longer time for it to get as long, like cause see, like 
here I have to move b all the way to the right for it to get really 
long.” 

PSMT 2: “It looks like j(d) is increasing constantly or very close to 
the same amount that d is and then when d is less than zero j(d) 
is increasing, oooh. And it looks like so as d is approaching 
negative infinity, j(d) increases at the same rate that d is 
decreasing. And so that reminds me of the absolute value 
function.” 

Imagining a Cartesian 
graphical 
representation of a 
known function 

 

PSMT 2: “Because, so like, if I'm picturing, like, the function, like 
absolute value of x and to the right of zero, d would be, or to the 
right of zero, x and f(x) would be the same or d and j(d) would 
be the same. But then to the left of zero, as d approaches 
negative infinity x would approach or I feel like a mixing of 
other notation like as x approaches negative infinity, f(x) would 
approach infinity at the same rate. If that makes sense, like it's 
just the x function on both sides. But. Yeah.” 

PSMT 1: “[h(c)’s] probably like (pause) a quadratic that is facing 
down or maybe even an absolute value, because if I move. The 
x values from negative to positive, the y values look like they're 
staying. (pause) They're kind of repeating themselves, the 
outputs are similar.” 

 
Another routine that emerged in the PSMTs’ discourse was connecting the relationships they 

were observing among the variables with Cartesian graphs of function families with which they 
were familiar. They tended to describe images of static graphs of functions on Cartesian planes 
they envisioned as sharing characteristics with the dynamic representations they were 
investigating. For example, as PSMT 2 dragged d from the far right to the far left and noticed 
j(d) moving at a constant speed and the same direction until a certain point and continuing at a 
constant speed but moving the opposite direction she said, “like if I’m picturing, like, the 
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function, like absolute value of x and to the right of zero, d would be, or to the right of zero, x 
and f(x) would be the same ... as x approaches negative infinity, f(x) would approach infinity at 
the same rate. If that makes sense, like it's just the x function on both sides.” She is connecting 
what she is seeing in the dynagraph with a Cartesian graph that she is familiar with. PSMT 1’s 
description is similar; she starts by connecting the relative direction of d and j(d) to “probably 
like (pause) a quadratic that is facing down”, but then considers the constant relative distance and 
says “maybe even an absolute value ... y values look like they're staying. They're kind of 
repeating themselves”. This routine of connecting the dynamic movement of the dynagraph 
representation to an imagined Cartesian graph of a known function is consistent with what 
Moore and Thompson (2015) referred to as emergent shape thinking, “understanding a graph 
simultaneously as what is made (a trace) and how it is made (covariation)” (p. 785). Here the 
PSMTs were imagining the one-dimensional trace as a two-dimensional trace and in doing so 
demonstrated their understanding of the ways in which the quantities were covarying. 

 
Discussion and Conclusion 

In this study, we investigated the similarities and differences in the ways PSMTs reasoned 
about static and dynamic representations of functions. Findings from this study suggest that static 
representations of function limit students’ attention to covariation; this is consistent with prior 
research that showed students pay attention to shape and perceptual cues rather than the ways the 
graph represents how the variables change together (Moore & Thompson, 2015; Oehrtman et al., 
2008; Weber, 2012). On the other hand, we found evidence of emergent shape thinking when 
students engaged with the DIM. They were imagining how their action would be represented in a 
static graph (a trace) which led them to reason covariationally. This attempt to make a 
connection raises a question: Do PSMTs not naturally tend to reason covariationally when 
presented with static representations in the first place or did the DIM support this connection 
making? Further research is needed to gain more insight to the reason behind this connection.  

Results also suggest that different representations of function influenced PSMTs’ use of 
mathematical language. The DIM seemed to disrupt PSMTs’ reliance on formal mathematical 
language since they did not have a formal language to attach to the non-traditional function 
representations (i.e., dynagraphs). This is consistent with Ng’s (2016) findings that students 
demonstrated increased reliance on verbs of motion and less reliance on formal mathematical 
language in the dynamic environment. In both representations, PSMTs described dynamic 
situations; however, they used dynamic language only with the DIM. It is possible that PSMTs 
had to think differently than they are used to, and thus did not have an expert’s discourse at hand 
to describe what they observed. Whereas the familiarity of the static representation caused them 
to draw upon formal language (sometimes imprecisely), either because they are accustomed to 
doing so or because they felt it was expected. The fact that the DIM elicited more informal 
language may benefit the development of precise use of formal language. PSMTs tend to attend 
to dynamic features of the function as they are describing what they see. This will eventually 
evolve into formal mathematical language with the support of mathematics teacher educators. 

Given the promise of the use of dynagraphs in supporting PSMTs’ use of dynamic language 
and expressing emerging shape thinking, we plan to scale up the study with more PSMTs to 
determine if the patterns we saw here are consistent. In addition, we plan to consider how the use 
of DIMs might support the development of emergent shape thinking about static representations. 
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