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Backward transfer is when learning about a new topic influences an individual’s prior ways of 
reasoning about a topic they previously learned about. This study looked at how quadratic 
functions instruction differentially influenced students’ prior ways of reasoning about linear 
functions. Specifically, we compared students at three levels of reasoning about linear functions, 
low-, mid-, and high-level, using a pre/posttest design that bracketed a two-week quadratic 
functions math program. Results showed that students at different reasoning levels experienced 
different backward transfer effects, that particular mathematical reasoning processes were most 
involved in the effects, and that the effects spanned two dimensions of productiveness of 
mathematical reasoning. Results from this study are significant for better understanding the 
construct of backward transfer, and have implications for teaching quadratic functions. 
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The study reported in this article integrates two ideas that thus far have not yet been 
intentionally studied together. The first idea is that when individuals learn about a new concept 
(C2), that learning may have the unintended side-effect of influencing the individuals’ ways of 
reasoning about a previously-encountered concept (C1) (i.e., a concept they previously learned 
about and already developed ways of reasoning about). We call this effect backward transfer 
(BT) (Hohensee, 2014). A number of studies have reported a variety of BT effects (e.g., Bagley 
et al., 2015; Hohensee, 2014; Melhuish & Fagan, 2018; Van Dooren, 2004). Importantly, these 
studies have also shown there can be different BT effects for different students. 

The second idea is that students develop ways of reasoning that are more or less productive. 
Greeno (1989) characterized productive ways of reasoning about problem situations as when 
reasoning is deeply embedded in a problem situation and when that reasoning accounts for the 
essential properties and relations of that problem situation.  

Our study examined the interplay between these two ideas. To explain what we mean, 
imagine two students with different pre-established ways of reasoning about C1, who participate 
in the same learning experiences about C2. How the BT effects on those students’ ways of 
reasoning about C1 might compare is an open question. Our study set out to make these kinds of 
comparisons. 

Insights these comparisons reveal would be consequential for the development of BT theory 
because research thus far has only looked at what effects are produced (e.g., Hohensee, Gartland, 
Willoughby, & Melville, 2021), without trying to account for how those effects are different 
across students. Insights would also be consequential for future research on BT because, once 
more is known about differences in BT effects across students, future research can examine how 
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to address the differences (e.g., find ways to promote backward transfer that enhances 
productiveness of ways reasoning about C1).  

Theoretical Perspective 
Our theoretical perspective has three parts: part one is about mathematical reasoning in 

general, part two is about what productive mathematical reasoning is (and is not), and part three 
is about BT effects on mathematical reasoning. It is the relationship between productiveness of 
mathematical reasoning and BT effects on reasoning that is the topic of our study.  
Mathematical Reasoning 

Our theoretical perspective on mathematical reasoning aligns with Jeannotte and Kieran’s 
(2017) view that all mathematical reasoning is made up of thought and communicational 
elements that are organized on two interrelated dimensions, a process dimension and a structural 
dimension.1 The process dimension refers to the steps taken by thought or communicational 
elements to reach an intended mathematical goal. Jeannotte and Kieran specify nine such 
processes: generalizing, classifying, comparing, identifying a pattern, validating, justifying, 
proving, formal proving, and exemplifying. Of the nine processes, classifying, comparing, and 
identifying a pattern were most central to our study. 

One type of reasoning important for our study was quantitative reasoning. As we conceive it, 
quantitative reasoning requires the processes of classifying and comparing. Classifying is defined 
as the process of inferring “a class of objects based on mathematical properties and definitions” 
(Jeannotte & Kieran, 2017, p. 11). For an example of a falling rock, two quantities that could be 
classified are the distance and time the rock falls. Additionally to measure a particular quantity, 
comparisons must be made between amounts of a quantity and a standard of measure for that 
quantity (e.g., compare a meter stick to the distance a rock falls). 

A second type of reasoning important for our study was covariational reasoning. As we 
conceive it, covariational reasoning requires the process of comparing. Comparing is defined as 
“the search for similarities and differences [to infer a] narrative about mathematical objects or 
relations” (Jeannotte & Kieran, 2017, p. 11; parenthetical added). During covariational 
reasoning, what is being compared are the ways “two varying quantities . . . change in relation to 
each other” (Carlson et al., 2002). For the falling rock example, corresponding differences in 
distance and time could be compared. Note that while quantitative and covariational reasoning 
are tied to classifying and/or comparing, other process likely also play a role (e.g., making 
generalizations during quantitative reasoning, justifying one’s covariational reasoning, etc.). 
Productiveness of Mathematical Reasoning 

Our theoretical perspective on productiveness of mathematical reasoning aligns with Greeno 
(1989), who characterizes productiveness on four dimensions, two of which are the following: 
(a) the degree to which reasoning is deeply embedded in the problem situation, and (b) the 
degree to which reasoning accounts for essential properties and relations in a problem situation.2 

According to our interpretation of these dimensions, when comparing students, those who 
engage in more of a particular kind of reasoning (e.g., more of the same kind of classifying or 
comparing) in ways that are relevant to a particular problem situation, are more deeply 
embedded in the problem situation. Similarly, we interpret those students who engage in the 
kinds of classifying and/or comparing that is more relevant to the problem situation, as better 
accounting for the essential properties and relations of the problem situation. Thus, these are two 
ways students’ reasoning can be categorized in terms of its productiveness. 
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Backward Transfer Influences on Mathematical Reasoning 
Finally, our theoretical perspective on how BT influences mathematical reasoning is based 

on Lobato’s (2012) perspective on forward transfer, which is that transfer is “the influence of a 
learner’s prior activities on her activity in novel situations” (p. 233). BT, which is “the influence 
that constructing and subsequently generalizing new knowledge has on one’s ways of reasoning 
about related mathematical concepts that one has encountered previously” (Hohensee, 2014, p. 
136), aligns with Lobato’s perspective on forward transfer because we too were interested in 
studying all influences. However, our definition of BT also departs from Lobato’s definition of 
forward transfer because we were interested in influences on reasoning about previously-
encountered concepts by new knowledge, rather than in the opposite direction. 

A number of other mathematics education researchers have observed this phenomenon (e.g., 
Bagley et al., 2015; Lima & Tall, 2008; Melhuish & Fagan, 2018; Van Dooren et al., 2004). 
However, to our knowledge no studies have specifically examined the relationship between BT 
effects and productivity of mathematical reasoning. In this study, we were driven by the 
following research question: In what ways are BT effects similar and/or different for students 
whose prior ways of reasoning are more productive (e.g., deeply embedded in a problem 
situation) compared to students whose prior ways of reasoning are less productive (e.g., not 
grasping as essential properties or relations of a problem situation)? 

 
Methods 

Setting and Participants 
Our study took place during a summer mathematics program in the Mid-Atlantic region of 

the United States. Participants were recruited from an organization that helps students of color 
enhance their college readiness. The students’ grade-level ranged from 9th to 11th grade. Our 
study was centered around a two-week summer math program on quadratic functions. The 
program took place at a local university and was taught by the primary investigator. Students had 
two 60-minute lessons per day. This study focused on data from four students whose reasoning 
about linear functions represented varying levels of productiveness. 
Procedure 

The study began on the first day of the math program with a linear functions paper-and-
pencil pre-assessment. The students had previously learned about linear functions, and as the 
assessment showed, came in with varying levels of productiveness in reasoning about linear 
functions. Students were also interviewed about their solution methods on the assessment. Next, 
students participated in 16 lessons about quadratic functions that focused on covariational 
reasoning (i.e., the math program). At the end of the program, students took a linear functions 
paper-and pencil post-assessment and were interviewed again about their solution methods. 

Assessments. The assessments assessed the students’ abilities to reason about various linear 
function problems. There were three main problems on the assessment each containing several 
sub-questions. The first problem made use of graphical representations, the second made use of 
tabular representations, and the third made use of pictorial representations. Two versions, A and 
B, of the linear functions assessment were developed. The versions varied in context and in 
numerical values, but not in structure or in mathematical intent. Students were randomly 
assigned to one version for their pre-assessment and the other version for their post-assessment. 

Math program instructional pattern. The math program was designed as a two-week 
course on quadratic relationships. The principle investigator, a university professor who was 
previously a high school mathematics teacher, was the instructor for the course. The focus of the 
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program was to develop students’ abilities to reason covariationally with quadratic functions. An 
inquiry-oriented instructional approach was utilized and quadratic functions were represented 
with tables and with SimCalc dynamic software. 
Data Set 

Our data set consisted written responses to the pre- and post-assessments, and video/audio 
recordings and transcripts from semi-structured interviews. 
Data Analysis 

We began by reviewing the assessments and the interviews in order to identify four students, 
of varying levels of productiveness in reasoning about linear functions. We looked for at least 
one student from each of the following categories: higher-, mid- and lower-level linear function 
reasoners. We also looked for students who appeared to exhibit changes in ways of reasoning 
from pre- to post-assessment. We ended up choosing one high-level, one low-level, and two mid-
level linear function reasoners. 

During analysis, each member of the research team analyzed one student’s data, taking a 
grounded theory approach (Strauss & Corbin, 1998). During open coding, each research team 
member went sub-question by sub-question through the written and interview responses for their 
student, looking for changes in ways of reasoning from pre- and post-assessment. Each new 
change in reasoning became a new code. When each student had been analyzed, we compared 
the codes and consolidated those that were similar. For each student, a second member of the 
research team reviewed the coded changes in ways of reasoning f to triangulate the data. During 
axial and selective coding, each team member identified associations between categories of 
changes in ways of reasoning and organized and integrated the categories into a story for each 
student and presented the story to the group for feedback. Finally, the team interpreted each 
change in reasoning in terms of Jeannotte and Kieran’s (2017) mathematical reasoning processes 
and Greeno’s (1989) dimensions of productive reasoning. 

 
Results 

In this section, we present each student’s changes in ways of reasoning, starting with 
Rashana, the higher-level linear function reasoner, followed by Layla, the lower-level linear 
function reasoner, followed by Yolanda and Damien, the mid-level linear function reasoners. For 
each student, we state the core category and several subcategories of how their reasoning 
changed from pre- to post-assessment. Then, we illustrate the core category and one subcategory. 
Rashana 

Rashana, the highest-level linear function reasoner of the four students, changed some of her 
ways of reasoning linear functions from the pre- to post-assessment. There was a core category 
we called improved quality of the responses, and four subcategories we called (a) expansion of 
covariational reasoning, (b) more quantities notice, (c) exploration of relationship between 
quantities, and (d) different representations used. Each subcategory represents a dimension on 
which Rashana’s reasoning became more productive from pre- to post-assessment.  

Core category: Improved quality of responses. From pre- to post-assessment, Rashana 
improved the quality of several responses. Interestingly, however, on the six problems that we 
coded her response as having improved from pre- to post-assessment, the correctness of her 
answers did not change. For example on problem 3(a) of the pre-assessment, Rashana correctly 
solved a problem about a plant growing at a constant rate by first finding the equation y = 
1.6(x+1) + (-.2)x. This equation was technically correct. However, Rashana indicated she was 
uncertain about why the (–.2)x was needed, other than that the equation did not work without 
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adding that expression. In contrast, on problem 3(a) of the post-assessment, Rashana correctly 
solved a similar problem by representing the data set with a table, without any uncertainties. 

Subcategory: More quantities noticed. We subcategorized some changes in Rashana’s 
ways of reasoning as more quantities noticed. For example, on 3(d) of the pre-assessment 
Rashana noticed the following quantities for a plant growing at a constant rate: the changes in the 
day, and changes in the height. In contrast, on problem 3(d) of the post-assessment, Rashana 
again noticed the changes in the day and the changes in height, but also changes in the changes 
in the day and the changes in the changes in height.  

Applying Jeannotte and Kieran’s (2017) conceptualization of mathematical reasoning to this 
subcategory, we interpreted the change to notice more quantities as an increase in the process of 
classifying (i.e., classifying more quantities). Also, applying Greeno’s (1989) conceptualization 
of productivity of reasoning to this subcategory, we interpreted this a productive change in favor 
of becoming more deeply embedded in the problem on the post-assessment problem. 

In sum, Rashana, who represented a high-level linear function reasoner, nevertheless 
exhibited BT changes in her ways of reasoning that considering correctness alone did not reveal. 
Layla 

Layla, the lowest-level linear function reasoner of the four students, also changed some of 
her ways of reasoning about linear functions from the pre- to post-assessment. There was a core 
category we called mixed changes in quantitative reasoning, and three subcategories we called 
(a) new ways of reasoning with quantities (b) new ways of reasoning with changes in quantities, 
and (c) new ways of finding and reasoning about rates of change. In contrast to Rashana, Layla’s 
responses in several instances became less productive from pre- to post-assessment, although at 
times there were also more productive aspects.  

Core category: Mixed changes of quantitative reasoning. From pre- to post-assessment, 
Layla’s ways of reasoning changed on six responses. Moreover, four of the six were less correct 
from pre- to post-assessment, and the other two stayed at similar levels of correctness. However, 
we did observe some productive development in her ability to reason quantitatively. For 
example, on problem 1(a) of the pre-assessment, Layla correctly applied the slope formula to a 
linear graph representing gas left in a car’s gas tank vs the distance the car traveled. However, 
her explanation lacked evidence of quantitative reasoning: “So basically, I started out by finding 
the total amount. So I did the slope equation for these two first and then I found out that that was 
the total number of gas use between point A and point C.”  

On problem 1(a) of the post-assessment, Layla incorrectly divided corresponding values of 
gallons used by distance driven. However, her explanation had more reasoning with quantities: 

So, I said the gas in Car 1 is decreasing as the miles driven increases. The gas in Car 1 has 
decreased drastically by point C. So, basically, I did the distance driven over the gallons left 
in the tank . . . Those were the changes. The changes in the - oh my gosh - the changes in the 
um, we were just talking about this! The changes in, um, I would say the changes in gallons. 

We interpreted this excerpt as evidence of Layla trying to reason with several quantities, distance 
driven, gallons of gas in the tank and changes in the gallons. Most changes in Layla’s ways of 
reasoning similarly reflected increased attempts at quantitative reasoning.  

Subcategory: New ways of reasoning with changes in quantities. We subcategorized some 
changes in Layla’s ways of reasoning as new ways of reasoning with changes in quantities. For 
example, on problem 2(a) of the pre-assessment, Layla used the slope formula to correctly 
determine that for a table displaying the additional cost for extra megabytes of data used on a cell 



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

1243 

phone plan “it increased by .75 cents, each time you used a megabyte.” In this response, 
reasoning with the changes in quantities involved multiplicatively comparing changes in one 
quantity and changes in the other quantity (i.e., by dividing). 

On problem 2(a) of the post-assessment, Layla found changes in additional megabytes used 
and changes in additional cost between rows of the table to “find the constant rate of additional, 
that used. But that wasn’t really working for me.” Thus, Layla went from multiplicatively 
comparing changes in quantities on the pre-assessment, to looking for additive patterns in the 
changes in each quantity separately. Altogether, changes in how Layla reasoned with changes in 
quantities were observed on five problems. 

Applying Jeannotte and Kieran’s (2017) conceptualization of mathematical reasoning to this 
subcategory, we interpreted changes in reasoning about changes in quantities as primarily a 
change in the process of comparing (i.e., going from multiplicatively comparing to additively 
comparing). Also, applying Greeno’s (1989) conceptualization of productivity of reasoning to 
this subcategory, we interpreted this an unproductive change toward grasping less of the essential 
properties and relations for the post-assessment problem than the pre-assessment problem.  

In sum, Layla, who represented a low-level linear function reasoner, exhibited BT changes in 
her ways of reasoning that were mostly not productive but did reflect increased attempts at 
quantitative reasoning.. 
Yolanda 

Yolanda, one of the mid-level linear function reasoners, also changed her ways of reasoning 
from pre- to post-assessment. There was a core category we called greater focus on changes in 
quantities, and three subcategories we called (a) more changes in quantities found, (b) more 
changes in quantities represented, and (c) changes in reasoning about changes in quantities. 
Like Rashana, each subcategory represents a dimension on which Yolanda’s reasoning became 
more productive from pre- to post-assessment. 

Core category: Greater focus on changes in quantities. From pre- to post-assessment, 
Yolanda’s reasoning changed in favor of a greater focus on changes in quantities. For example, 
on problem 3(d) of the pre-assessment, Yolanda focused only on the changes in the height for the 
growing plant, recording magnitudes of each change in height, and adding brackets to indicate 
where each change in height applied. On problem 3(d) of the post-assessment, Yolanda again 
focused on the plant’s height, adding brackets to indicate where the changes in height applied. 
She also focused on the changes in days and the changes in changes in the days. We found 
evidence of this increased focus on changes in quantities on five problems. 

Subcategory: Changes in reasoning about changes in quantities. We subcategorized some 
changes in Yolanda’s ways of reasoning as changes in reasoning about changes in quantities. 
For example, on problem 1(b) of the pre-assessment, Yolanda compared changes in the gallons 
left in the tank from points D to E and from points E to F (see Figure 6), saying: 

Car 2 does not use the same gas at the same rate between D and E as it does between E and F 
due to the reason that D to E takes up 1.50 gallons while E to F took up only .75 gallons. 

In contrast, on 1(b) of the post-assessment, Yolanda tried to iterate a difference in one quantity to 
go from one data point to the other: 

So one way I found out, well made me confident, was I just did the pattern again and again 
on the whiteboard I had. And since I just did 42 times like 42 times 9, 42 times 8 to try to get 
to 408 but I didn’t come to that number. 
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Thus, Yolanda went from comparing two changes for the same quantity (i.e., between points D 
and E and points E and F), to iterating a difference in one quantity to go from one value of the 
quantity to another (i.e., iterating 42 miles to go from 42 to 408 miles). Changes in how Yolanda 
reasoned about changes in quantities were observed on three problems. 

Applying Jeannotte and Kieran’s (2017) conceptualization of mathematical reasoning to this 
subcategory, we interpreted changes in reasoning about changes in quantities as a change in the 
process of comparing (i.e., how Yolanda compared changes in quantities). Also, applying 
Greeno’s (1989) conceptualization of productivity of reasoning to this subcategory, we 
interpreted this a productive change in favor of grasping more of the essential properties and 
relations for the post-assessment problem. We claim this because iterating a change in one 
quantity repeatedly is more consistent with a constant rate of change than comparing static 
changes in a particular quantity. In sum, Yolanda, who represented a mid-level linear function 
reasoner, exhibited productive changes in her ways from pre- to post-assessment but that, like 
Rashana, did not impact correctness. 
Damien 

Finally, Damien, one of the mid-level linear function reasoners, also changed his ways of 
reasoning from pre- to post-assessment. There was a core category we called improved 
covariational reasoning and three subcategories we called (a) a change in reasoning about 
different quantities, (b) better understanding of rates of change, and (c) change in the stability of 
correct application of the slope formula. Overall, Damien’s reasoning appeared to change in 
favor of an increased ability to reason covariationally in a more productive manner. 

Core category: Improved covariational reasoning. From pre- to post-assessment, Damien 
improved his ability to reason covariationally. In particular, on each of the five problems we 
coded as having changed responses from pre- to post-assessment, despite not all responses 
becoming more correct, Damien provided evidence of improved covariational reasoning. For 
example, on problem 1(a) of the pre-assessment, which was about the graph of the gas remaining 
in the tank of the car and the distance driven, Damien wrote down the correct slope formula, but 
incorrectly calculated the slope by dividing ∆x by ∆y instead of vice versa. Trying again, he 
subtracted ∆x from ∆y rather than dividing ∆y by ∆x. When asked what his calculation meant, 
Damien struggled to reason covariationally, replying, “for each, um, mile driven, 30 gallons are 
wasted.” This incorrect response suggested he did not have a clear understanding of the meaning 
of slope. Understanding slope is an important aspect of reasoning covariationally. 

On problem 1(a) of the post-assessment, Damien used the slope formula to correctly 
calculate that the slope between points A and B and between points B and C was -0.031, and 
correctly wrote “per mile driven 0.031 gallons of gas are used.” In the interview, Damien 
confirmed, by interpreting the slope, that there had been somewhat of a productive change in his 
covariational reasoning, saying “It’s negative 0.031 because that’s how much is decreasing by.” 
This response suggests Damien was reasoning more covariationally.  

Subcategory: Better understanding of rates of change. We subcategorized some changes 
in Damien’s ways of reasoning as indicating a better understanding of rates of change. For 
example, on problem 2(a) of the pre-assessment, Damien was asked to consider the cell phone 
data table. Damien correctly applied the slope formula but was unclear about why that worked: 
“I don’t know how to describe it, but, um . . . when I was in slope intercept in eighth grade and I 
just remember doing this for every question that I would get that would be like this.” In contrast, 
on problem 2(a) of the post-assessment, Damien correctly found and correctly interpreted the 
rate of change: 
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I found out that the one megabyte of data costs 0.75 cents. So they said that they wanted to 
know how much, um, an additional 51 MB of data would cost. So I’ve taken 0.75 and 
multiply . . . Since one megabit of data is 75, well .75, I want it to multiply that by 51 times. 

This excerpt suggested Damien had a better understanding of the rate of change. 
Applying Jeannotte and Kieran’s (2017) conceptualization of mathematical reasoning to this 

subcategory, we interpreted changes in reasoning in favor of better understandings of rates of 
change as a change in the process of comparing (i.e., rates of change are multiplicative 
comparisons between changes in one quantity and the corresponding changes for a related 
quantity). Also, applying Greeno’s (1989) conceptualization of productivity of reasoning to this 
subcategory, we interpreted this a productive change in favor of better grasping the essential 
properties and relations of a problem situation. 

In sum, Damien, who like Yolanda was a mid-level linear function reasoner, exhibited 
productive changes in his ways of reasoning from pre- to post-assessment. However, in contrast 
to Yolanda, whose reasoning changed primarily in favor of a greater focus on changes in 
quantities, Damien’s reasoning changed primarily in favor of improved covariational reasoning. 

 
Discussion 

The results from this study can be summed up with the following five points. First, three of 
four students’ level of correctness remained stable from pre- to post-assessment, while one 
student’s level of correctness dropped. Second, all students, including the student whose level of 
correctness dropped, showed at least some productive changes in reasoning from pre to post (i.e., 
most BT effects were productive). Third, productiveness was impacted on both of Greeno’s 
(1989) productiveness dimensions. Fourth, BT effects largely involved changes in quantitative 
reasoning and somewhat involved covariational reasoning. Fifth, the reasoning process that 
appeared most involved in BT was the process of comparing. 

Significance. This study is significant because it provides new insights into how BT 
influences mathematical reasoning processes and productiveness, as well as into how the 
reasoning of students at different levels is influenced by BT. With respect to reasoning processes, 
this study is significant because it showed that particular reasoning processes (i.e., classifying 
and comparing) can be influenced by BT. Moreover, it showed that BT can influence the amount 
that reasoning processes are used (e.g., classifying more quantities) and the ways reasoning 
processes are used (e.g., comparing different quantities). 

With respect to mathematical reasoning productiveness, this study is significant because it 
showed how productiveness can be influenced by BT. Although other studies have reported 
productive and unproductive BT effects on mathematical reasoning (e.g., Hohensee, 2014), this 
study was the first to show that these effects can manifest themselves on two of Greeno’s (1989) 
dimensions of productiveness. 

Finally, with respect to students who represent different reasoning levels, this study is 
significant because it showed that BT can influence the reasoning of students at all levels. This 
finding challenges our previous theory about BT (Hohensee, 2014), that BT primarily affects 
mid-level reasoners, and that high-level reasoners know too much and low-level reasoners too 
little to be influenced by BT. It is also significant that our study unpacks ways that students at 
different levels are influenced by BT. To our knowledge, our study is the first to do so. 

Implications. We mention two implications for practice. An implication from our finding 
that our lower-level linear function reasoner, whose reasoning became less correct from pre to 
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post but who also showed some new quantitative reasoning, is that perhaps it could be useful for 
this level of reasoner, if teachers revisited an old topic after covering the new topic. By reasoning 
more quantitatively, these learners may be more ready to further their thinking of the old topic. 

A final implication is that emphasizing quantitative and covariational reasoning during 
quadratic functions instruction should be promoted. Our results suggest that this emphasis 
productively influences most students’ ways of reasoning about linear functions.  

 
Notes 

1 The structural dimension, which is about whether the mathematical reasoning is deductive, 
inductive, or abductive, was not examined. 

2 Creativity and flexibility, the other two dimensions of productiveness of reasoning, were 
not examined. 
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