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In this paper, I propose a new construct named analytic equation sense to conceptually model a 
desired way of reasoning that involves students’ algebraic manipulations and use of equivalent 
expressions. Building from the analysis of two existing models in the field, I argue for the need 
for a new model and use empirical evidence to explain the new model. 
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Students’ success in learning algebra has concerned educators for decades, and researchers 
have stressed algebra’s importance to students’ learning and growth extensively and repeatedly 
(Kaput, 2000; Usiskin, 1995; Wu, 2001). A central difficulty to students’ algebra learning, as 
Behr et al. (1980) captured, is a sense of “extreme rigidity about written sentences,” which 
includes “an insistence that statements be written in a particular form” and “a tendency to 
perform actions (e.g., add) rather than to reflect, make judgments, and infer meaning” (p. 16). 
Such a sense of rigidity in doing algebra appears in scenarios such as students interpreting an 
equal sign as “calculate the left side” (e.g., Knuth et al., 2006), students meeting difficulties in 
using the substitution method in solving equations (e.g., Jones, 2008), and students hesitating to 
transform an expression into its equivalent expressions when beneficial (e.g., Ying, 2020).  

The field has conducted many studies regarding a sense of rigidity that appears in students’ 
conception of the equal sign and students’ use of the substitution method (e.g., Alibali et al., 
2007; Baroody, 1983; Knuth et al., 2008; McNeil., 2006, Jones et al., 2012). Comparatively, less 
research has focused on the sense of rigidity in students’ symbol manipulation and use of 
equivalent expressions for problem-solving (such as given x+y=2, xy=2, students should be able 
to evaluate x2+y2 without solving for x and y but realize x2+y2= (x+y)2-2xy). On the one hand, 
such an area that is challenging to research as 1) the idea of using equivalent expressions or 
symbol manipulation is so general that converting 2+x=5 to x=5-2 can also be argued as using 
equivalent expression; 2) a flexible use of symbol manipulation and equivalent expressions may 
be influenced by a complicated set of mathematical knowledge and is hard to list out clearly 
(Hoch, 2006); 3) it is doubtful whether some algebraic manipulations are just symbol playing 
which carry little educational value (Booth, 2018). However, on the other hand, studies have 
reported an important connection between students’ flexibility in using algebraic manipulation 
and their success in mathematics (e.g., Novotona & Hoch, 2008; Vincent et al., 2017; Kieran, 
2006) and how some delicate algebraic manipulations echo the essential aesthetic nature of 
mathematics and are accompanied by deep mathematical thinking (e.g., Arcavi, 1994; Dreyfus & 
Eisenberg, 1986).  

The aforementioned difficulties and affordances of reasoning flexibly with algebraic 
equations collectively suggest the need to construct a conceptual framework in studying 
students’ algebraic manipulation and the use of equivalent expressions. Accordingly, the paper 
reports a result from an ongoing research effort in constructing such a conceptual framework. 
Specifically, the paper begins by discussing the affordances and limitations of two existing 
constructs. Building from this analysis, the paper proposes a new construct named analytic 
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equation sense with empirical evidence illustrating a) how the construct was conceptualized from 
analyzing students’ algebraic manipulations and b) three factors that the construct captured as the 
core elements in supporting students’ algebraic manipulation and use of equivalent expressions.  

 
Existing Constructs in Studying Algebraic Manipulations  

and Use of Equivalent Expressions 
One of the early studies that drew attention to algebraic manipulation and equivalent 

expressions was Arcavi’s (1994) work on symbol sense. Arcavi established the construct of 
symbol sense as an analog to number sense in the context of algebra. The definition of symbol 
sense included all sense-making activities relevant to symbols, which includes students’ 
algebraic manipulations and use of equivalent expressions but extends much further. 

Specifically, the idea of symbol sense addresses algebraic manipulations that are 
complemented with what Arcavi calls reading through symbols. As Arcavi (2005) indicated, the 
detachment of meaning in symbol manipulation helps with efficiency, but reading through 
symbols adds a layer of meaning and connectedness to performed manipulations. One example 
Arcavi (1994) provided was the problem of finding the numerical property of the result n3-n 
when n is an integer. Arcavi suggested the problem could be solved by converting the expression 
n3-n to the expression n(n-1)(n+1) and realizing that the latter term was the product of three 
consecutive integers, which further implied that n3-n can be divided by 6. Arcavi argued in such 
a solution, one had to both apply manipulations (convert n3-n to n(n-1)(n+1)) and read through 
symbols (conceive n(n-1)(n+1) as representing three consecutive integers) to fully solve the 
problem. Consequently, Arcavi argued that algebra manipulations and reading through algebra 
symbols are complementary to each other.  

In the case of using equivalent expressions, Arcavi suggested that equivalent expressions can 
be conceptualized with non-equivalent meanings. Using the same example above, Arcavi 
believed the expression n(n-1)(n+1) helps students to interpret the term as the sum of three 
consecutive integers, which is an observation that the original expression n3-n may not afford 
directly. Similarly, many expressions, when transformed into different equivalent expressions, 
can generate a richer set of implications and meanings. Therefore, Arcavi suggested an important 
aspect of symbol sense is to treat the result of manipulations not only as results but also as 
“potential sources of new meaning” (p.28).  

Collectively, Arcavi’s idea of symbol sense stresses the importance of incorporating a search 
for meaning while performing algebraic manipulation and using equivalent expressions. In other 
words, educators should attend more to symbol manipulations that are accompanied with 
meanings.  

Nevertheless, since symbol sense also contains many other aspects, researchers have adopted 
the term in a broad range of areas. For instance, symbol sense was also used in studying 
students’ conception of the minus sign (Lamb et al., 2012), students’ understanding of the 
quantitative relationship between different expressions (Pope & Sharma, 2001), students’ 
calculus performance (Thompson et al., 2010), and students’ function graphing skills (Kop et al., 
2020). As a result, the versatile use of the construct symbol sense has the risk to obscure 
researchers’ real interest when working with such a construct. As Pierice & Stacy (2004) 
categorized, the applicability of symbol sense contains almost everything involving symbols. 
Furthermore, as Bokhove & Drijvers (2010) stated, “observing symbol sense is not a 
straightforward affair,” as students “exhibit both symbol sense behaviors and behavior lacking”, 
and it was hard to decide whether students “are relying on standard algebraic procedures or are 
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actually showing insight into the equation of expression” (p.48). In summary, it is questionable 
whether the idea of symbol sense is at an appropriate grain size for studying algebraic 
manipulations and the use of equivalent expressions, and the definition of symbol sense might be 
too general to provide sufficient details to pinpoint students’ cognitive difficulties in algebraic 
manipulations. 

Another widely adopted framework in the field was Hoch’s (2003) idea of structure sense. 
Building on Arcavi’s symbol sense, Hoch narrowed her scope of interest to manipulations that 
leveraged algebraic structures. Hoch & Dreyfus (2005) defined algebraic structures as 
combinations of external appearances (the way an expression is written) and internal orders of an 
expression (the potential implications of an expression). As an oversimplification, one might 
interpret Hoch’s definition of algebraic structures as almost all possible information that one can 
derive from algebraic expressions, and the conception of structure sense is then a collective set of 
skills in leveraging the derived information to make manipulations and use equivalent 
expressions. In short, Hoch’s idea of structure sense is a trimmed version of symbol sense that 
focuses on students’ flexible algebraic manipulations.  

Many researchers have used Hoch’s idea of structure sense and studied relevant students’ 
algebraic manipulations. Hoch and Dreyfus (2005) primarily investigated students’ structure 
sense by asking students to solve problems that contain some “cancelable” parts on both sides of 
the equation, such as solving for x knowing (𝑥3 + 2𝑥) − 𝑥 = 5 + (𝑥3 + 2𝑥). During the study, 
Hoch found only 6.3% of the students recognized the cancellation without a bracket, 13.6% with 
one bracket, and 17.7% with two brackets. Hoch and Dreyfus (2006) found that structure sense 
increases students’ accuracy in solving algebra problems, but even high performers lack structure 
sense. Jupri and Sispivati (2017) reported that experts (mathematics lecturers in college) would 
solve some challenging problems in a consistent way with Hoch’s picture of structure sense. An 
interesting observation by the authors was that sometimes experts started the problem by 
following procedural solutions without exploiting algebraic structures, and then these experts 
came back to leverage structures when they met difficulties. Researchers have also used the idea 
of structure sense in a broader setting, including college algebra and basic arithmetic (e.g., 
Novotna et al., 2006; Novotna & Hoch, 2008; Meyer, 2017; Bishop, 2018), and the lack of 
structure sense among teachers and students was a common theme across many findings (e.g., 
Musgrave et al., 2015; Vincent et al., 2017). 

The idea of structure sense has a much smaller grain size than the idea of symbol sense, and 
researchers have applied the term with more coherence in studying students’ algebraic 
manipulations. However, the construct still suffers from salient constraints: namely, if one 
carefully reviews the mathematical tasks that researchers have used in studying structure sense, 
one may find a lack of clarity in the mathematical understanding that the idea structure sense 
tries to capture. Consider the following three questions as examples: 

Q1: 1
4

− 𝑥
𝑥−1

− 𝑥 = 5 + (1
4

− 𝑥
𝑥−1

); Q2: (x-3)4-(x+3)4 ; Q3: 10012-9992; 
All three questions are taken from Hoch and Dreyfus’s (2005, 2006) research. Hoch and 

Dreyfus believed that students’ abilities in solving these questions elegantly measured their 
structure sense. In the appearance, all four questions do measure students’ abilities in performing 
certain algebraic manipulations, but it is doubtful whether the intellectual capacities required in 
each task are well-connected or consistent. For instance, Q1 requires students to be sensitive 
toward a potential cancellation on both sides of an equation, Q2 expects students to view a 
compound expression (x-3) as a single entity, and Q3 asks students to apply the property of (a2-



Proceedings of the 43rd Annual Meeting of PME-NA 

—————————————————————————————————————————————————————————— 
Olanoff, D., Johnson, K., & Spitzer, S. (2021). Proceedings of the forty-third annual meeting of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. Philadelphia, PA. 
 

362 

b2)=(a+b)(a-b) into a numerical expression. Cognitively, each task seems to demand a different 
set of mathematical knowledge. In relating those tasks to the broader field of mathematics 
education, one may find Q1, Q2, and Q3 all indeed align with different existing research topics. 
For instance, Q1 overlaps with Carpenter’s (2005) idea of relational thinking, which models 
students’ coordination between both sides of an equation (e.g., realizing cancellation).  Q2 
touches on the broader topic of transitioning between arithmetic and algebra, and many 
researchers have studied students’ difficulties in forming an algebraic way of thinking and 
mastering algebraic rules (e.g., Carraher et al. 2006; Filloy & Rojano, 1989; Herscoviss & 
Linchevski, 1994; Kirshner, 2004). Q3 brings the theme of creativity in mathematics problem 
solving and number sense. As a result, the cognitive commonalities between these tasks and 
between the thinking required in these tasks are unclear. Consequently, without explicating 
students’ thinking behind all those tasks, to group those tasks under the same quilting of structure 
sense might be counter-productive in helping teachers to locate students’ real struggles with the 
learning of algebra.  

The lack of cognitive explanation on the thinking behind the construct structure sense is most 
salient for the question that asks the student to prove (x+y)4=(x-y)4+8xy(x2+y2) (Hoch & 
Dreyfus, 2006). In Hoch and Dreyfus’s writing, this question should be solved with certain 
manipulation tricks. However, why students should not just expand the polynomial on both 
sides? As Jupri and Sispivati (2017) illustrated, experts also attempt problems by procedural 
solutions, and it is psychologically natural for students to take an approach that is less 
cognitively demanding. Therefore, we remain cautious in believing all manipulation problems 
share equal values. Moreover, to help differentiate between random symbol playing and desired 
manipulations, I believe a cognitive explanation to the thinking behind algebraic manipulations 
is needed. 

In summary, both the constructs of symbol sense and structure sense have helped researchers 
studying students’ symbol manipulations. However, both constructs lack specificity and 
cognitive explanatory power in a) identifying beneficial and preventive factors that are relevant 
to students’ algebraic manipulation; b) explicating a way of reasoning that teachers and students 
can adopt in engaging algebra manipulations. Some studies also touch on such an area, such as 
Harel & Soto’s (2017) work on structural reasoning, Hausberger’s (2015) work on structuralist 
thinking, and Schoenfeld’s (2014) work on problem-solving. Similarly, their works situate in 
different grain sizes and lack specialized cognitive analysis of the thinking behind desired 
algebraic manipulations. Still, all aforementioned works are indispensable, and they are the 
giants’ shoulders the paper stands on. 

 
Method and Methodology 

The ongoing research project aims to design a conceptual framework in studying students’ 
flexible and meaningful algebraic manipulation and use of equivalent expressions in problem-
solving. The term conceptual framework follows Thompson’s (2008) writing on conceptual 
analysis. Epistemologically, we share many premises with general constructivism (e.g., 
Glaserfeld, 1995) and believe that students construct their own mathematics. Accordingly, the 
building of a conceptual framework creates a hypothetical thinking model through observing and 
analyzing students’ thinking so that such a framework becomes a viable way of assessing 
students’ mathematical knowledge and provides a viable way of thinking that students and 
teachers can adopt in relevant tasks (Thompson, 2008, 2013).  
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Up to the date when the manuscript was written, we conducted four semi-structured clinical 
interviews (Barriball & While, 1994) separately with four pre-service high school teachers, and 
the length of each interview varied between two to three hours. We have only recruited pre-
service teachers so far as 1) pre-service teachers’ knowledge is an important factor that 
influences the general teaching quality (e.g., U.S Department of Education, 2000); 2) pre-service 
teachers share similar mathematical understandings with high school students on K-12 math 
content (Carlson, Oehrtman, & Engelke, 2010). All participants have completed several college-
level math courses (e.g., multi-variable calculus) but not high-level analysis courses (e.g., 
complex analysis). In each session, we asked the participant to go through 6-8 sequenced algebra 
problem, and a talk-aloud approach was adopted. Such approach asks interviewers to encourage 
the participant to share their thinking at every step verbally, while staying cautious in not 
intervening participants’ own thought process (Carlson & Bloom, 2005). Most of the problems 
were challenging algebraic questions with multiple solutions, and we do not expect nor push 
participants to solve all of them. Instead, we encourage each participant to try as much as 
possible, and view both their successful attempt and unsuccessful attempts as valuable data in 
indicating their thought process. We transcribed all recordings and used open coding (Khandkar, 
2019) to find emergent themes that assisted the modeling of students’ thought process.   

 
Analytic Equation Sense along with empirical supports 

Based on the empirical findings, the paper proposes a conceptual model named analytic 
equation sense (AES). We define AES as a positive cyclic reasoning process with three 
important aspects:  

1. Equation aspect: Students should conceptualize an equation as generative to further 
equivalences.  

2. Analytic aspect: Students should analytically navigate between different equivalences in 
a given problem beyond solely relying on visual clues.  

3. Sense aspect: Students should reflect on the encountered problem to gain more 
knowledge about the potential affordances and limitations of different manipulations and 
equivalent forms. The reflection, in return, strengths students’ awareness that an equation 
have multiple equivalent forms and helps students to develop stronger skills in navigating 
between various equivalent forms.  

Equation Aspect 
We chose the term equation as we found that students’ conceptualization of an equation plays 

an important role in performing algebraic manipulation and using equivalent expressions. In 
specific, we build off Ying’s (2020) research on differentiating between two different 
conceptions of the equation: Students with a type A conception conceive an equation as 
representing one equivalent relationship, and that students will be able to substitute quantities 
that are shown in the relationship. For instance, when given the equation x2-x+1=0, students with 
type A conception can substitute the term x2 with the term x-1 when needed. Students with type 
B conception will further conceive an equation as also representing a family of equivalent 
relationships, and that students will be able to transform the equation to generate substitutions for 
new quantities. For instance, when given the same equation x2-x+1=0, students with type B 
conception can also generate a substitution for unappeared terms, such as 1

𝑥
. The student may 
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realize x2-x+1=0 implies 𝑥 − 1 + 1
𝑥

= 0  and then aware that 1
𝑥
 can be substituted with the term 

1-x when needed. We argue students’ flexible algebraic manipulations require students to 
develop the type B conception.  

We use students’ work on the following task as an illustration: “Given a2-3a+1=0, find the 
value of 3𝑎3 − 8𝑎2 + 𝑎 − 1 + 3

𝑎2+1
”. A challenge in solving this problem is tackling the term 

3𝑎3 and 3
𝑎2+1

  (using the fact a2-3a+1=0, the term 3
𝑎2+1

 equals 1
𝑎
). One way to substitute both 

terms is to transform the given equation a2-3a+1=0 into a3-3a2+a=0 (multiply a on both sides) 
and 𝑎 − 3 + 1

𝑎
= 0  (divide a on both sides) and use those two new equations for substitution.  

All participants displayed a sense of struggle with this problem, especially with tackling the term 
3𝑎3 and 3

𝑎2+1
. We believe many of the observed struggles related to their lack of type B 

conception, which is the conception that an equation represents a family of equivalent 
relationships, consider:  In dealing with the term a3, students did not attempt substitute a3 directly 
(which can be accomplished through converting a2-3a+1=0 to a3-3a2+a=0). Rather, students 
rewrote a3 as a(a2) and substitute a2. Such manipulation displays a sense of preference to operate 
only with the term that was shown in the given equation a2-3a+1=0. Similarly, in dealing with 
the term 3

𝑎2+1
, all participants deduced that a2-3a+1=0 implies 𝑎2 + 1=3a and rewrote 

3
𝑎2+1

  𝑎𝑠 3
3𝑎

. However, when tackling the term 3
3𝑎

 or 1
𝑎

 , all participants were puzzled and 
confused. When we asked participants whether they could infer anything about 1/a from the 
given equation a2-3a+1=0, they suggested no. Since all participants performed substitution, we 
believe students have developed the type A conception of an equation. However, their inabilities 
to deal with the term 1/x and their preference to only operate with the term that was shown in the 
original equation indicated their potential lack of the type B conception. 

After showing the solutions to the students and asking for their feedback, all of the 
participants expressed a sense of shock regarding the possibility of transforming the given 
equation to generate new equations. Their feedback reaffirmed our hypothesis that students may 
not conceptualize an equation as representing a family of equivalent relationships. In specific, 
one participant said, “I automatically think of modifying what’s already there as opposed to 
changing the equation itself before we begin to solve, before we begin to work and solve actual 
problem.” He also elaborated, “you are given these two equations, so the major response was to, 
ok, what can we do with these two, by themselves, to get the answer. Rather than what can we 
change about these two, you know like multiplying by a on both sides and dividing a on both 
sides before we begin actually go about solving.” Similarly, another student stated, “I was 
thinking a lot of it like taking things like this (circling the original equation a2-3a+1=0) as it was 
instead of moving terms around.” In another problem, one participant also shared a similar sense 
of reluctance in transforming the given equation and stated that “these numbers are kind of sets, 
and usually I guess, these are usually presented in the way that is easiest to solve.” Based on 
those responses, we infer that many students do not conceptualize an equation as a potential 
source to generate new equations, and such thinking thwarts students’ flexibility in performing 
algebraic manipulations and their use of equivalent expressions. 

In short, we use the term equation to highlight the need for students to understand that an 
equation can be transformed and leveraged in various equivalent forms, and educators should be 
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aware of some unproductive beliefs, such as that equations “are usually presented in the way that 
is easiest to solve.”  
Analytic  

We chose the term analytic as we found that an analytic way of reasoning plays an important 
role in doing algebraic manipulation and use of equivalent expressions. In specific, we followed 
Stylianou’s (2006) research on differentiating between three different types of proof schemes, 
which are external (random guess), empirical (based on old memory or visual similarity), and 
analytic (with mathematical rationale). We believe a student displays an analytic way of 
reasoning in algebra manipulations if the student can provide a mathematical rationale or 
justification for the manipulation he or she wants to perform and performed. In contrast, we 
believe that a student does not display an analytic way of reasoning if he or she performs an 
operation solely based on random guesses or visual similarities. We argue that an analytic way of 
reasoning helps students with flexible algebraic manipulations.  Consider the following two 
scenarios: 

The first scenario is the case where the student adopted an analytic way of reasoning. The 
problem is “given a=2003, b=2007, c=1997, Evaluate a2+b2+c2-ab-bc-ac”. One way to solve the 
problem is realizing that the targeted expression equals (𝑎−𝑏)2+(𝑎−𝑐)2+(𝑏−𝑐)2

2
 . 

The student started the problem by writing down the expression (a-b)2. Interestingly, he did 
not remember the exact formula but quickly calculated (a-b)(a-b) on paper to derive the 
expansion. He then wrote out the expansions for (b-c)2 and (c-a)2. And he said that he was going 
to try to use these three perfect squares expressions to get the answer. Finally, he realized that 
(𝑎 − 𝑏)2 + (𝑎 − 𝑐)2 + (𝑏 − 𝑐)2 is 2(a2+b2+c2-ab-bc-ac) and solved the problem.  When the 
interviewer asked about his thought process in deciding such an approach, he replied, “the way 
the question is framed, with the squares, and also the subtraction of ab, bc, and ac. That makes 
me think of this formula how a different of squares will get you… get you there…Also I am 
seeing, after I saw this that, it will be easier to get a square if I can subtract out some of the larger 
number from each other”. Later, he also explained that he wrote out all three expressions because 
he believed all three perfects squares were needed to substitute the terms “ab,” “bc” and “ac that 
were shown in the expression.  

Such a process displayed a desirable analytic way of reasoning. The student started the 
problem by trying to establish associations between the expression that he needed to evaluate 
(a2+b2+c2-ab-bc-ac) and the expression that he was acquainted with ((a-b)2 ). After making such 
an association, he reaffirmed those associations’ usefulness by realizing their potential in 
simplifying calculation (notice the difference between a,b, and c are relatively small). He further 
noticed that since the three middle terms were “ab,” “bc,” and “ac”, if he wanted to rewrite the 
entire expression based on those perfect squares, he would also need (b-c)2 and (a-c)2. In such a 
thought process, his final success in finding the solution was accompanied by mathematical 
rationales, and those rationales guided and reaffirmed his choices of manipulation.  

The second scenario is where the student adopted a non-analytic way of reasoning. When 
solving one problem, the student needed to evaluate 𝑥2 − 1 + 1

𝑥2 from given equation 1
𝑥

+ 𝑥 = 1. 

One possible approach was to take squares on both sides of the equation 1
𝑥

+ 𝑥 = 1. Facing the 

problem, the student stated, “this expression (referring to 𝑥2 − 1 + 1
𝑥2) was kind of similar to the 

one we were given (referring to 1
𝑥

+ 𝑥 = 1) , but I need to substitute something to replace the 
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𝑥2”. After some thought, the student decided to substitute x2 by x-1 (which derived from timing x 
on both sides of the equation 1

𝑥
+ 𝑥 = 1) and transformed 𝑥2 − 1 + 1

𝑥2 to (𝑥 − 1) − 1 + 1
𝑥−1

, and 
then she was puzzled and stuck. We asked why she performed such a substitution, and she 
explained, “you wanna have similar terms on each of these, so just thinking about how a 
manipulation will help you give you something similar to whatever the expression is you are 
trying to find the value of.”  

From her response and writing, we infer the mathematical operation that she performed was 
largely motivated by pursuing visual similarities, and she might regard 1

𝑥
+ 𝑥 = 1 and (𝑥 − 1) −

1 + 1
𝑥−1

 as similar since those two expressions visually appear so. Nevertheless, visual 
similarities between equations do not always translate into the similarities between equations’ 
mathematical meanings. In this case, the student’s pursuing of visual similarities thwarted her 
chance to find the solution, since converting between 1

𝑥
+ 𝑥 = 1 and (𝑥 − 1) − 1 + 1

𝑥−1
 takes 

much more effort than converting between  1
𝑥

+ 𝑥 = 1 and 𝑥2 − 1 + 1
𝑥2.  Indeed, during our 

study, many students displayed non-analytic ways of reasoning and chose to perform some 
manipulations for reasons such as “this is what I did in the previous problem” or “I want to make 
this look like that”. Frequently, those non-analytic ways of thinking lead students in an 
unproductive direction. More importantly, without analytic ways of reasoning, students 
frequently meet difficulties in evaluating whether a particular approach is worth continuing. 

Based on the contrast between these two scenarios, we argue that students who are guided 
solely by visual features of expressions without analytically considering their mathematical 
meanings will have a more challenging time performing appropriate algebraic manipulations and 
use appropriate equivalent expressions. In summary, we chose the term analytic to highlight the 
necessity of helping students to generate a mathematical rationale regarding every manipulation 
that students made in solving algebra problems.    
Sense 

We inherit the word sense from Arcavi and Hoch’s writings as we believe students’ algebraic 
manipulation and use of equivalent expression is essentially a sense-making process in solving 
algebra-related problems. Since we do not believe one may develop his or her sense-making 
ability all in a sudden. We believe students’ skills in algebraic manipulation and use of 
equivalent expression, as one’s skill in sense-making, requires continuous effort in practicing and 
reflecting.  

In the example provided above where the student decided to substitute x2 by x-1 for the 
expression 𝑥2 − 1 + 1

𝑥2, it is worth noticing that such substitution was derived from actively 

transforming the given condition 1
𝑥

+ 𝑥 = 1 to x + x2 = x. But that student, in the earlier 

problem which is “Given a2-3a+1=0 and evaluate 3𝑎3 − 8𝑎2 + 𝑎 − 1 + 3
𝑎2+1

”, did not attempt to 
change the given equation. Similarly, after solving one problem which required taking the 
reciprocal, that same student actively started to try to take reciprocals in the next problem. 
Unfortunately, we cannot prove that she gained these insights by reflecting on the earlier 
problem. However, her performance does raise the possibility that one’s intuitions and skills for 
algebraic manipulations can be gained through practice and reflecting on encountered problems. 
Those practices and reflections, in return, can strength students’ awareness that an equation have 
multiple equivalent forms and helps students to develop stronger skills in navigating between 
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various equivalent forms. Therefore, we use the term sense to indicate our belief that the 
development of algebraic manipulation skills is a constant learning process that requires 
continuous effort in practicing and reflecting. 

 
Conclusion  

In a nutshell, the conceptualization of AES represents a sincere effort to capture the potential 
sense-making process in which students can engage in algebraic manipulation and use of 
equivalent expressions. AES can be used both as a way of reasoning that students can adopt in 
solving algebra problems or as a research framework in understanding relevant students’ 
difficulties. In a broader context, AES speaks directly to the general theme of rigidity that 
educators try to tackle, and the construct encourages students to engage in algebra problems 
flexibly, analytically, and creatively.  
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