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Research on elementary students’ reasoning on patterning problems with pictorial 
representations has illustrated that students can visualize structure in patterns in different ways. 
In this paper, we offer a characterization of students’ spatial structures and numerical structures 
and explain how the link between these two structures can support students’ generalization of a 
pattern or prediction of a future value. 
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Reasoning about and with functions is a foundational topic in K-12 mathematics. Functional 
thinking in algebra can be defined as “representational thinking that focuses on the relationship 
between two (or more) varying quantities, specifically the kinds of thinking that lead from 
specific relationships (individual incidences) to generalizations of that relationship across 
instances” (Smith, 2008, p. 143). Functional thinking builds from patterning in elementary 
grades to generalized algebraic equations in secondary mathematics. In grades 3-5, elementary 
students are expected to “describe, extend, and make generalizations about geometric and 
numeric patterns; represent and analyze patterns and functions, using words, tables, and graphs” 
and use equations to express mathematical relationships, inherently linking patterns, relations, 
and functions (NCTM, 2000, p. 158). To prepare students for functional thinking in later grades, 
Blanton and Kaput (2004) propose that elementary students should move beyond simple patterns 
in one variable to focus on problems in which two or more quantities vary simultaneously. 
Indeed, such complex patterning problems are often included in research studies with elementary 
students (e.g., Stephens et al., 2017; Wilkie & Clark, 2016) and on standardized assessments for 
elementary students, such as the National Assessment of Educational Progress (NAEP) 
mathematics assessment and Trends in International Mathematics and Science Study (TIMSS).  

The mental activities used by students to generalize a pattern from a table, graph, or pictorial 
representation are of particular interest in studying students’ functional thinking (Smith, 2008). 
Recent research on student thinking about patterning problems considers both functional 
thinking and spatial visualization. By analyzing student work on patterning problems from both 
an analytic and visualization perspective, researchers can understand the ways students reason 
with and about different function representations, including figures, tables, and generalized rules. 
While other studies have reported on students’ spatial visualization when solving patterning 
problems with pictorial representations (Hershkowitz et al., 2001; Wilkie & Clark, 2016), in this 
paper, we identify both the spatial and numerical structures students use when solving a 
patterning problem and describe how linking a spatial structure with a numerical pattern 
structure can support a student’s generalization of a pattern or prediction of a future value. 
“Spatial structuring is the mental act of constructing a spatial organization or form for an object 
or set of objects. Numerical structuring is the mental act of constructing an organization or form 
for a set of computations” (Battista et al., 2018, p. 211). Spatial numerically-linked structuring is 
a coordinated process in which numerical operations are performed based on a linked spatial 
structuring (Battista et al., 2018). 
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Literature Review and Framework 
Three modes by which researchers analyze student reasoning about functions and patterning 

problems with two varying quantities are recursive, covariation, and correspondence approaches 
(Blanton & Kaput, 2011; Stephens et al., 2017). The recursive approach describes the change 
within a sequence of values (Blanton & Kaput, 2011). It indicates how to obtain the next value in 
a sequence given the current sequence value. In a two-column table with two varying quantities, 
a student using a recursive approach would identify the change in one column independent of the 
other column and use this change to move from one value to the next within a column. The 
covariation approach describes how the change in two quantities is related (e.g., as x increases 
by one, y increases by 2) (Confrey & Smith, 1991). The correspondence approach describes a 
rule or mapping that relates any given x-value to a unique y-value (e.g., y = 2x + 3, indicating y-
values are 3 more than twice the x-values) (Confrey & Smith, 1991).  

While there are multiple learning progressions in the literature describing the ways 
elementary students may develop these different types of functional thinking (Blanton et al., 
2015; Stephens et al., 2017; Wilkie & Clark, 2016), the progressions all provide evidence that 
students typically begin with recursive or covariational approaches and move toward more 
sophisticated correspondence approaches. In studies with students in elementary grades, 
researchers often present patterning problems by providing a series of figures or manipulatives 
that show a growing pattern in two variables (Stephens et al., 2017; Wilkie & Clark, 2016). This 
offers an opportunity for students to recognize the relationship between two variables. At times, 
tables are used to organize or display patterns and data (Schliemann et al., 2001). Standard 
questions include “far-prediction” problems or tables with a break in the sequence of values 
which have been used to encourage students to shift their approach from a recursive strategy to 
either a covariational or a correspondence approach or from a specific relationship between two 
items to a generalization for the whole set (Blanton et al., 2015; Blanton & Kaput, 2004; 
Schliemann et al., 2001; Stephens et al., 2017). In general, these studies have shown that young 
children are capable of functional thinking. 

When functional relationships are represented pictorially, spatial thinking becomes an 
important part of students’ reasoning with functions. Students identify and visualize changes 
from figure to figure in a pictorial representation in many different ways (Hershkowitz et al., 
2001). Visualization is the process involved in constructing and transforming visual mental 
images (Presmeg, 1997) and impacts the resulting spatial mental image that encodes properties 
such as location, size, and orientation (Sima et al., 2013). Battista (1999) defines spatial 
structuring as the mental process by which a person constructs an organization for a set of 
objects. The process of spatial structuring includes identifying the spatial components of the 
figure and organizing the components into composites with certain relationships between them. 
This is of particular interest for patterning problems with pictorial representations because the 
way a student sees the figure components, figure composites, and interrelationships between 
figures becomes a part of the student’s reasoning process. Visualization and the resulting spatial 
structures have the potential to enhance a student’s understanding of algebraic and function 
concepts (Boaler et al., 2016) and can sometimes influence the way in which a student 
generalizes a visual pattern or predicts future values. Wilkie and Clark (2016) found that students 
sometimes transition between multiple visualizations of a pattern while solving a single 
patterning problem and report that these visualizations likely lead to specific types of 
generalizations of the numerical pattern. 
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Method 
To explore students’ thinking with pattern and relationship problems, clinical interviews 

(Ginsburg, 1981) were conducted with a convenience sample of three 4th grade students at a 
public elementary school in the United States. The students were all in the same mathematics 
class. According to the teacher, the three students represented the typical range of mathematical 
abilities in her classroom. The problem chosen for this study was the Pattern of Circles Item 
(Figure 1) of the 4th Grade 2011 TIMSS Questionnaire for which 75% of U.S. students 
(International 68%) correctly answered Part B, while only 47% of U.S. students (International 
39%) correctly answered Part C (IEA, 2013). The problem provides opportunities for students to 
reason with both pictorial and table representations while predicting a future value. Students 
were asked to solve the problem while the researcher (second author) observed and asked the 
students to clarify their thinking. The video and audio recorded interviews were transcribed and 
reviewed by both authors, examining for evidence of the spatial structure students used when 
working with the pictorial representation, how they interacted with the table, and how they 
predicted the number of circles in future figures in the pattern. (Note: Figures in bold refer to the 
inserted figures in the paper. Figures not in bold refer to the Figures in the Pattern of Circles item 
of the 4th Grade 2011 TIMSS Questionnaire).  
 

 
Figure 1: Pattern of Circles Problem TIMSS 2011 Assessment (IEA, 2013) 

 

Findings 

Student 1: Dennis 
Two students in the study, Dennis and Miles, used the same spatial structure (Battista, 1999) 

when describing the pictorial representation provided in the Pattern of Circles Problem (Figure 
1). In Part A, Dennis stated, “I know the sequence, it’s just adding on two [points to the circles at 
the bottom of each ‘leg’ as highlighted in Figure 2].” Dennis identified the way he saw the two 
additional circles in successive figures as the bottom two circles on each ‘leg.’ 
 

  
Figure 2. Dennis’ Spatial Structure for the Pictorial Representation 
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While Dennis recognized the pattern in the pictorial representation of the problem, he stated 
“I don’t really get this table.” When the researcher explicitly asked Dennis what the numbers in 
the table might mean, he correctly related the first column to the figure number. The researcher 
further prompted him by asking what the second column in the table refers to and Dennis replied, 
“Oh, okay, … The numbers of circles that are in each triangle shaped thing.” He then filled in the 
missing value in the table with the numeral “7”.  

To solve Part B, Dennis drew Figure 5 consistent with how he spatially structured the two 
additional circles in successive figures and counted to correctly conclude that there were nine 
circles in Figure 5. The order in which circles were drawn for Figure 5 is shown in Figure 3. 
 

 
Figure 3: Dennis’s Drawing of Pattern of Circles Figure 5 

 
For Part C, Dennis attempted to count the number of circles in Figure 10 by tapping his 

pencil from left to right under each ‘leg’ of Figure 4 while counting aloud from circle seven: “8, 
9; 10, 11; 12, 13; 14, 15; 16, 17 [see Figure 4]. So, I think it’s 17.” However, this is the correct 
number of circles for Figure 9, rather than Figure 10.  
 

 
Figure 4: Dennis’s Visualization and Counting of Additional Circles 

 
When prompted to further explain his thinking, Dennis recounted the number of circles in 

Figure 10 using the same spatially structured counting method but was more explicit about the 
way he kept track of the figure numbers and the number of circles. Starting from circle seven in 
Figure 4 he stated, “So 8, 9, that would be one [figure more]; 10, 11, that would be two [figures 
more]; 13, 14 that would be three [figures more]; 15, 16 that would be four [figures more]; 17, 
18, that would be five [figures more].” Two errors occurred when Dennis counted the second 
time. The first error was that he counted five figures from Figure 4, rather than six just as he did 
the first time he counted. The second error was skipping the number 12 when counting the 
circles. Coordinating the number of figures and the number of circles at the same time was 
challenging. 

When asked how he knew when to stop adding circles, Dennis stated, “You only need to do 
five times two. Just need to do two five times. That’s how you get your answer.” While further 
explaining his thinking, Dennis corrected his counting error: “Because it says 10. Wait, six times 
[not five]. If you work with [Figure] four. Yeah, it’s six times.” Dennis again recounted the 
number of circles, using the same spatially structured counts illustrated in Figure 4 and reached 
the correct number of circles, 19. He then generalized the counting process. “So yeah, you do 
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two six times. Two times six, plus seven…Because there’s only Figure 4, not Figure 5. If there 
was a Figure 5, then you only need to do five times, but there’s no Figure 5.”  

Dennis correctly concluded he would need to add six sets of two circles to build Figure 10 
from Figure 4, and extended his thinking in a way that would have facilitated starting with a 
different figure number. Dennis developed his generalization by imagining the changes from 
Figure 4 to Figure 10 using the spatial structure he described when looking at the figures (Figure 
2), while explicitly stating the relationship between the addition of two circles and the successive 
figure in the sequence. 
Student 2: Miles 

In contrast to Dennis for Part A, our second student, Miles immediately wrote “7” in the table 
for the number of circles in Figure 4, making an unprompted connection between the pictorial 
and table representations. 

Miles: So, I saw one here [points to the one circle in Figure 1 and to the “1” in the output 
column], three here [points to the three circles in Figure 2 and to the “3” in the output 
column], five here [points to the five circles in Figure 3 and to the “5” in the output 
column]. So, I counted these [the circles in Figure 4], and I got an answer of seven, so I 
put that in the box. 

When asked how he determined the number seven, Miles described the same spatial structure 
as Dennis (Figure 2). 

Miles: So, I saw figure one, and then I saw figure two, and right away I saw that it added two 
more circles [points to the bottom two circles on each ‘leg’ of Figure 2]. So then in figure 
three, I saw it add two more circles [points to the bottom two circles on each ‘leg’ in 
Figure 3]. And again, in figure four, I saw it add two more circles [points to the bottom 
two circles on each ‘leg’ in Figure 4]. So, I thought there was an addition of two from one 
going up to seven. 

For Part B, Miles added two plus seven to correctly conclude that Figure 5 would have nine 
circles without producing a drawing. In explaining his reasoning, Miles stated, “I knew that there 
was a pattern of adding two [gestures from left to right over the figures]. So, I just add two to 
seven, if there was a figure five, and I got nine.” 

For Part C, Miles generalized from Figure 5 and stated that the answer would be 19 circles, 
because, “I knew that after each figure, two [circles] would be added. So, if there were five 
figures [from Figure 5 to Figure 10] and two were being added each time, I knew that it would be 
10. So, I add 10 plus nine to get my answer of 19.” Miles made this generalization without 
drawing or explicitly visualizing additional figures like Dennis did; rather Miles used the 
difference in figure numbers from five to ten to generalize the pattern.  
Student 3: Margot 

The third student, Margot, recognized the addition of two circles for each successive figure, 
but she saw the additional two circles in a different spatial structure than Dennis and Miles. After 
reading Parts A and B of the question, Margot initially analyzed the figures, saying, “Um, first 
you do like—so two [moves pencil across Figure 2 as shown in Figure 5], two [taps Figure 3 as 
shown in Figure 5]. Um, two [moves pencil across Figure 4 as shown in Figure 5]. It would be 
like, 1, 2, 3, 4, 5, 6, 7 [counts Figure 4 as shown in Figure 5].” Rather than seeing the additional 
two circles in each figure added to the bottom ‘legs’ of the previous figure as Dennis and Miles 
did, Margot saw the two circles on one ‘leg’ of the figure. From her comments in later dialogue, 
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we infer that she saw the number of remaining circles in the figure as equal to the number of 
circles in the previous figure, indicating that she may have recognized the recursive nature of the 
pattern.  

 

 
Figure 5: Margot’s Spatial Structure for the Pictorial Representation 

 
Initially when answering Part A, Margot incorrectly wrote “6” in the table as the Number of 

Circles in Figure 4. When the researcher asked her to explain her thinking, Margot responded, 
“Um—I just think—oh, now I know [erases the “6” and puts “7”]. Seven, because like, … I 
think it just matches. I don’t know.” Though Margot’s second answer of seven was correct, she 
had difficulty explaining her reasoning within the table representation. The researcher then asked 
if she knew what the table was referring to, and Margot was prompted to relate the table to the 
figures. She verified her answer of seven in the table by recounting the number of circles in 
Figure 4, “Yeah, 1, 2, 3, 4, 5, 6, 7,” (as illustrated in Figure 5). While Margot’s reasoning with 
the numerical values in the table was imprecise, she ultimately relied on the pictorial 
representation to definitively and correctly state the number of circles in Figure 4.  

When asked to solve Part B, Margot, like Miles, correctly predicted the number of circles in 
Figure 5 by simply adding two to the number of circles in Figure 4 without producing a drawing. 
However, she still indicated the additional two circles in each figure as shown below. 

Margot: Pretty sure I know it’s nine…It’s nine…Because there’s—so one [points to the one 
circle in Figure 1], three [points to the three circles in Figure 2], because these are—and 
there’s two more [gestures to the right ‘leg’ of Figure 2 as indicated in Figure 6] than 
each of them. Two [gestures to right ‘leg’ of Figure 3 as indicated in Figure 6], Two 
[gestures to right ‘leg’ bottom two circles in Figure 4 as indicated in Figure 6] more than 
each of these other ones, so I’m pretty sure it’s nine. Because seven plus nine is, wait, 
seven plus two is nine. 

 

  
Figure 6: Margot’s Gesturing of the Two Additional Circles in Each Figure 

 
For Part C, Margot attempted to draw the figures up through Figure 10, but did not continue 

the pattern of circles following the spatial structure of adding two illustrated in Figure 6. Instead, 
she drew long, straight chains of circles to represent each figure but did not consistently draw the 
straight chains with an accurate number of circles (Figure 7). At times she added two circles to 
the next figure and at times she added three, ultimately leading to a series of figures that 
produced an incorrect answer.  
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Figure 7: Margot’s Figure Growth Drawings for Part C 

Discussion  
Two of the three participants in our study, Dennis and Margot, faced challenges when 

determining the number of circles in Figure 10 in Part C. By characterizing the spatial structures 
used by the students as spatial numerically-linked structures (Battista et al., 2018) or non-spatial 
numerically-linked structures, we provide insight for when a spatial structure may support 
students’ reasoning about patterning problems.  

The spatial structure utilized by Dennis and Miles (Figure 2) can be classified as a spatial 
numerically-linked structure (Battista et al., 2018) which has the potential to support student 
reasoning about far-prediction problems. By seeing the two additional circles at the bottom of the 
figure, Dennis and Miles were using a spatial structure that is aligned with a recursive numerical 
process. Numerically, a recursive pattern adds a value to a previous value; spatially, this can be 
thought of as adding objects to a previous congruent figure. Dennis’ and Miles’ spatial 
structuring organized the components of the figures, the circles, into composites: one part is the 
previous figure and one part is the two additional circles for each successive figure (Figure 8). 
This organization includes the geometric properties of symmetry within the figures and 
congruence between figure components. Even though neither Dennis nor Miles stated these 
geometric properties, these visually salient qualities may support imagining or visualizing future 
shapes.  

 
Figure 8: A Spatial Numerically-linked Structuring for the Pictorial Representation 

 
A spatial numerically-linked structuring can provide a way to coordinate the two varying 

quantities in a patterning problem. The way in which Dennis saw the additional two circles 
added to each figure provided a way for him to coordinate the figure number and number of 
circles resulting in a numerical structure that provided an organization for his set of computations 
(Figure 9). Each time he imagined a new pair of circles being added, he moved to a new row and 
tapped his pencil adding the additional circles in an organized way. Even when he made two 
counting errors, he was able to recognize and correct those errors and generalize his process 
because his spatial structure and numerical structure were linked. 
 

 
Figure 9: Dennis’ Spatial Numerically-linked Counting 
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In comparison, Margot, did not reach the correct solution for Part C. One explanation for 
why Margot’s visual structure did not support predicting the number of circles in Figure 10 is 
that the spatial structure was not linked to a numerical structure for adding on two circles in an 
organized way. Like Miles and Dennis, Margot also recognized that two circles were added in 
each successive figure. However, the way in which she saw the two additional circles within the 
figure (Figure 6) did not show the addition of the circles to a congruent previous figure or 
maintain the symmetry of the figures. Because the spatial structure was not linked to the 
recursive numerical pattern she verbalized, it was very difficult for Margot to imagine or draw 
the next figure even though she could explain the provided figures using her spatial structure. By 
observing her gestures and descriptions of the pattern, we hypothesize that she verified the 
pattern by recognizing that the collection of three white circles in Figure 3 were the three circles 
from Figure 2 in a different spatial arrangement (Figure 10). She used similar gesturing to verify 
that the collection of five white circles in Figure 4 is just a different spatial arrangement of the 
five total circles in Figure 3. But without a symmetric, congruent spatial structuring, creating a 
new figure, such as Figure 5, using the recursive relationship of adding two circles is very 
challenging, making a resulting numerical structure for computations to determine the number of 
circles in Figure 10 very difficult to coordinate with the pictorial representation.  
 

 
Figure 10: Margot’s Spatial Structure  

 
Indeed, for Part C, Margot did not attempt to draw using the same spatial structure. Instead, 

she drew long chains of circles to represent each figure (Figure 7). However, Margot’s second 
spatial structuring was also not a spatial numerically-linked structure because it was not 
connected to the numerical recursive pattern of adding two. We hypothesize that Margot’s re-
arrangement of the figures into long strings of circles could be spatially linked to the numerical 
structure if the straight lines were maintained and the circles were congruent (Figure 11). This 
would offer the same spatial-numerical link as Miles’ and Dennis’ structure because the 
additional two circles would be added to a previously congruent figure. While symmetry within 
the figures is not as visually salient, the equal “heights” of the strings could have helped 
coordinate the additional two circles added to congruent strings. However, because Margot’s 
drawings did not incorporate these features, it became very difficult for her to keep track of the 
total number of circles in each figure and to consistently add two circles to each string ultimately 
causing her to reach an incorrect solution. 

 

 
Figure 11: A Spatial Numerically-linked Structure Example 

 
While spatial numerically-linked structures can help students reason about pattern problems 

with pictorial representations, it is certainly not required if other representations are utilized. A 
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student could have been successful on the Pattern of Circles problem without such a structure by 
using the table representation to add two to the previous output value, extending the table to 
determine the number of circles in Figure 10. However, none of the students in the study 
explicitly reasoned with the table. Miles was the only student who did not draw additional 
figures while predicting future values. While it is possible that he used information from the 
table to support the development of his generalization, he also used the same spatial numerically-
linked structuring as Dennis while reasoning about the problem.  

 
Conclusion 

Research has shown that students can think about pictorial representations with different 
visual structures, and we have offered evidence that these visual structures can support student 
thinking about patterning problems when the spatial structure and the numerical structure are 
adequately linked. By identifying features of spatial structures and numerical structures that are 
helpful for students when solving patterning problems, we can better understand how students’ 
visualizations can facilitate the development of numerical generalizations and predictions.  
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