
Theory and Research Methods 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

2253	

RANKING THE COGNITIVE DEMAND OF FRACTIONS TASKS 

Sarah Kerrigan  
Virginia Tech 
stk123@vt.edu 

Anderson Norton 
Virginia Tech 

norton3@vt.edu 

Catherine Ulrich 
Virginia Tech 
ulrich@vt.edu 

We report on and validate a system for ranking the cognitive demand of mathematical tasks. In our 
framework, task rankings are determined by the sequences of units and unit transformations students 
might use to solve each task. Using this framework, we ranked a set of 10 fractions tasks. We then 
interviewed 12 pre-service teachers to assess the validity of the ranking system. Results validate the 
task ranking system by demonstrating that increases in task ranking predict increases in the 
cognitive demand experienced by the pre-service teachers, as evidenced by their responses to the 
tasks. These results hold implications for instruction that maintains appropriate cognitive demand 
and future research that models students’ mathematics. 
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In mathematics education, the cognitive demand of mathematical tasks has been categorized in 
terms of qualitative distinctions, such as procedures without connections and doing mathematics (e.g. 
Stein, Grover, Henningsen., 1996). In cognitive psychology, cognitive demand is quantified in terms 
of the number of action schemes a student might need to hold in mind in order to solve the task 
(Pascual-Leone, 1970). Here, we present a framework that accounts for the cognitive demand of 
mathematical tasks in terms of the sequences of units and unit transformations students might use to 
solve fractions tasks. Our framework integrates the math-specific construct of units coordination with 
the general cognitive construct of working memory.  

The purpose of this study is to test a task ranking system based on our integrated framework. This 
purpose addresses one the major goals of PME-NA, “to further a deeper and better understanding of 
the psychological aspects of teaching and learning mathematics and the implications thereof.” We 
created task rankings based on the hypothesis that longer sequences of units/transformations would 
induce higher cognitive demand. To test the hypothesis, we applied a simple statistical test from 12 
pre-service teachers’ (PSTs) responses to 10 ranked fractions tasks. Results confirm that the task’s 
rank predicts the cognitive demand experienced by PSTs, as evidenced by their behavioral (including 
verbal) responses to the task. Thus, our results validate the task ranking system and its underlying 
framework. 

Theoretical Framework 
Piaget characterized mathematics as a coordination of mental actions (e.g. Beth & Piaget, 1966). 

Mathematics educators who have adopted Piagetian perspectives on mathematical learning have 
attempted to account for the actions students rely upon to construct mathematical concepts (Simon, 
Placa, Avitzur, & Kara, 2018; Tzur & Simon, 2004). We are particularly concerned with the mental 
actions students use to construct and transform units. 

Steffe (1992) originally defined units coordination as the distribution of one composite unit (a unit 
containing units of 1) across each of the units in another composite unit. For example, a student 
might conceptualize the product 5 times 7 as the distribution of seven units of 1 within each of five 
units of 1, simultaneously producing five 7s and 35 1s. However, units coordination can be 
understood more broadly as any coordination of mental actions used to construct or transform units. 
For example, the unit fraction 1/5 might be constructed by partitioning a whole into five parts; 
conversely, iterating one of those parts five times reproduces the whole. The coordination of this 
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partitioning action and the corresponding iterating action establish 1/5 as a one-to-five relationship 
between the unit fraction and the whole (Wilkins & Norton, 2011) 

Research on students’ mathematics has identified several mental actions that undergird their 
fractions knowledge (Hackenberg & Tillema, 2009; Steffe & Olive, 2010; Ron Tzur, 1999; Boyce & 
Norton, 2016; Wilkins & Norton, 2011). In addition to partitioning and iterating, these mental actions 
include unitizing, disembedding, and distributing, as summarized in Table 1. 

 
Table 1: Mental actions for constructing and transforming 

Mental Action Description Fractions Example 
Unitizing 

(Un) 
Taking a collection of n items or units, 
or a continuous span of attention, as a 
whole unit 

Treating a rectangular bar as a 
whole unit, of 1 

Iterating 
(In) 

Making n identical, connected copies 
of a unit to form a new unit 

Iterating 1/7 of a whole three 
times to produce 3/7 of the bar 

Partitioning 
(Pn) 

Creating n equal parts within a whole Partitioning a whole bar into 15 
equal parts 

Disembedding 
(Dn) 

Taking n parts out of a whole while 
maintaining their inclusion as part of 
the whole 

Taking one part from a whole 
that has been partitioned into 9 
parts, to make 1/9 

Distributing 
(Tm:n) 

Inserting the m units of one composite 
unit into each of the n units in another 
composite unit to produce a unit of 
units of units 

Inserting three parts within each 
of the nine parts in 9/9 to make 
27 parts in the whole 

 
Working memory is a limited cognitive resource with special relevance in solving mathematical 

tasks (Bull & Lee, 2014; Swanson & Beebe-Frankenberger, 2004). Here, we adopt Pascual-Leone’s 
definition: “working memory involves the process of holding information in an active state and 
manipulating it until a goal is reached” (Agostino, Johnson, & Pascual-Leone, 2010, p. 62). In our 
framing, in the context of solving fractions tasks, working memory involves holding in mind 
sequences of mental actions used to construct and transform units. 

Methods 
Task Ranking  

We chose to focus on fractions tasks because of the wealth of literature on students’ development of 
fractions knowledge and the mental actions that undergird that knowledge (Boyce & Norton, 2016; 
Hackenberg & Tillema, 2009; Steffe & Olive, 2010). The literature identifies unitizing, partitioning, 
iterating, distributing and disembedding as mental actions potentially available to students in solving 
fraction tasks. We used these five actions along with three types of units (whole units, composite 
units, and fractional units) as the atoms of fractions knowledge. The fraction tasks we used were 
modified from Hackenberg and Tillema’s (2009) work. We report on a subset of 10 fraction tasks we 
ranked, listed in Table 2. 

In order to determine how cognitively demanding a task might be for a student, we examined results 
from the literature that reported on students’ prior responses. The literature we chose, and 
Hackenberg & Tillema (2009) in particular, included detailed accounts for the schemes and mental 
actions students seemed to use in solving the tasks. However, in some cases, we had to break down 
schemes and advanced ways of operating into the aforementioned atoms—simpler units and actions 
that undergird students’ fractions knowledge. That is, we hypothesized potential solution paths for 
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mathematical tasks using one unit/action at a time, without chunking them into larger structures, such 
as schemes. 

 
Table 2: Fractions tasks 

 
For example, consider Task 8. To solve this task, a student might start with the whole cake (whole1) 

and partition it (P9) into nine pieces (9), then disembed one of those pieces (D1) to make their piece 
of cake (whole2). The student could then partition (P3) that piece into three pieces (3) and disembed 
one (D1) of those to make a new piece (whole3). Knowing two pieces are needed, the student could 
iterate that piece twice (I2). The student still needs to name the fractional size of the small piece. To 
generate the relationship between the original whole cake and the small piece, the student could 
iterate (I27) the small piece to exhaust the original whole. This process is captured in the graph shown 
in Figure 1. We refer to such graphs as unit transformation graphs. 

Since our theory assumes that units and actions count towards the cognitive demand  a student 
experiences when solving a task, both were counted when determining the rank of a task.  This total 
sum of units and actions enumerated the cognitive demand of the task. In the unit transformation 
graph for Task 8 (Figure 1) there are six units (denoted by circles) and six mental actions (denoted by 
arrows), together giving a task demand of 12. All tasks were ranked using this same process and the 
ranks are reported in Table 2. Once all the tasks were ranked, we tested our theoretical ranking 
system through empirical evidence.  

 

Task Rank Description 
3 5 Imagine a cake that is cut into 13 equal pieces. You take 4 pieces. So, how 

much of the whole cake do you have? 
4 7 Imagine you have 1/7 of a whole candy bar. So, could you use that to figure out 

how long 3/7 of the whole candy bar would be? 
5 8 Imagine this [drawing a rectangle] is 5/9 of a whole candy bar. So, how could 

you make 1/9 of the whole candy bar from what you have? 

6 10 Imagine a rectangular cake that is cut into 15 equal pieces. You decide to share 
your piece of cake fairly with one other person. So, how much of the whole 
cake would that person get? 

7 10 Imagine you share a sub sandwich fairly among 17 people. Now each person 
shares their piece with two other people (three people total share each piece). 
So, could you figure out how much one little piece is of the whole sandwich? 

8 12 Imagine you are at a party and a cake is cut into nine equal pieces. Two people 
show up to the party late and you decide to share your piece of cake with them. 
So, what fraction of the whole cake do the latecomers get together? 

9 12 Imagine cutting off 2/5 of 1/3 of a cake. So, how much is that of the whole 
cake? 

10 14 Imagine cutting off 1/4 of 5/6 of a cake. So, how much is that of the whole 
cake? 

11 16/17 Imagine, you need 1/3 of a pound of sugar and all you have are bags of sugar 
that are 1/7 of a pound. So, how many 1/7 bags do you need? 

12 16 Imagine I have 7/9 of a yard of ribbon, but every ninth it changes colors. My 
friend needs 2/3 of what I have, and she wants all of the colors. So, tell how 
much of a yard she has. 
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Figure 1: Graph of units and actions for Task 8  

 
Data Collection  

Participants were recruited from two sections of a mathematics for elementary school teachers 
content course taught by the same instructor at a large university in the mid-Atlantic United States. 
PSTs were selected for this study because they engage in metacognitive skills that enable them to 
express their thinking well; they commonly practice explaining their mathematics in the mathematics 
for elementary school teachers course. Moreover, they are mathematically mature enough to have 
constructed the mental actions required to productively engage with fraction tasks. 

Twelve PSTs volunteered to participate in a 75-minute semi-structured clinical interview (Goldin, 
2000). Each interview consisted of three parts: a units coordination assessment (Norton et. al, 2015), 
a working memory assessment (Morra, 1994), and a set of fraction tasks. This paper focuses on the 
final component of the interview. The PSTs were given the fraction tasks verbally one at a time and 
asked to solve them, initially without using figurative material. Sometimes follow-up questions were 
asked to probe a PST’s thinking; sometimes PSTs were encouraged to use drawing to support their 
solution. A subset of tasks from Table 2 was selected for each PST, depending on our assessment of 
that PST’s units coordinating ability and working memory. The tasks were always given in 
increasing order (top to bottom in Table 2), posing lower ranked tasks before higher ranked tasks. 
Each interview was video recorded with any written work collected using a Livescribe pen and 
notebook. The videos were selectively transcribed.  
Data Analysis 

Data analysis for this report consisted of two phases: coding for cognitive demand the PSTs 
experienced and a quantitative analysis of the task ranking system from the results of the coded 
cognitive demand.  
Coding cognitive demand. Videos were analyzed for the purpose of coding the cognitive demand 

of each task, as experienced by each PST. We relied on video recorded behavioral data (including 
verbalizations) as indicators of this experienced demand. 

Videos were analyzed one PST at a time with at least two of the three authors present. Experienced 
cognitive demand was coded as Low, High, or Over. The Low code was given when the PST was 
able to solve the task easily and confidently. Behavioral indicators included relaxed posture, 
providing an answer without verbal rehearsal or giving a fluent rehearsal of solution strategy. When a 
PST struggled but still had success engaging with the task, we assigned a High code. Behavioral 
indicators for a High code included asking for the question to be repeated during the solution process, 
expressing doubt throughout the task, unsure or repeated rehearsal needed to convince themselves of 
the task solution, and losing track of units during the solution process. The Over code meant that the 
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PST clearly was unable to assimilate the task or unable to resolve it without significant support from 
the interviewer or figurative material. This code often provided the easiest behavioral indicators with 
participants saying things like “Ah, it’s just hard to do it in my head. Umm…” or “my brain is 
confused now.”  

The following pair of transcripts, from PST G provide an example of the difference between a Low 
code and a High code. The first transcript is for Task 6 (rank 10), and the second is for Task 8 (rank 
12). In her response to Task 6, we see that PST G is quickly successful in solving the task with 
minimal rehearsal needed. Indeed, she seemed to have an answer ready (one-thirtieth) before saying 
anything, so that her verbalizations served as explanations to the researcher, rather than a necessary 
process in generating a solution to the task. The verbal run through of her solution process was 
succinct and confident. 

Researcher:  This is the next task [Task 6]. Imagine a rectangular cake that is cut into fifteen equal 
pieces. You decide to share your piece of cake fairly with one other person. So, how much of the 
whole cake would that person get? 

PST G:  [pauses for seven seconds and looks up.] You get one fifteenth of the cake and split that in 
half. My first thought was one-thirtieth…Of the cake, because…[makes splitting motion with 
hands in the air.] Splitting that in half, like if you were to split every piece of fifteen in half, then 
that would be like one thirtieth of the entire cake. 

In comparison to Task 6, Task 8 seemed to induce additional cognitive demands for PST G, who 
required verbal rehearsal of her thought process to determine the answer to this new task. While she 
was successful in the end, throughout the solution processes there were several times she expressed 
doubt about a step or result. She would say things like, “Wait, that doesn’t seem right,” and “I don’t 
know if that’d give you the same answer.” She was eventually able to be successful on this task after 
attempting it twice. The fact that she was able to work through and solve the task despite some 
expressed doubt meant it did not qualify for an Over coding. However, Task 8 appeared to require 
substantial mental effort to produce a correct solution, indicating demand was High. 

PST G:  So, it’s split up into nine equal pieces. So, then, you would split one ninth into…Two people 
come, but you still have a little bit? So, that… So, you would split that up into three. So, then I… 
Well, I guess you would do one ninth times two thirds to get how much they equal, like how 
much both their pieces would be. And then whatever that is, I guess it would be… two over… 
two eighteenths? Wait, that doesn’t seem right. [pauses for five seconds] I feel like… I mean, I 
guess… You take those nine pieces, splitting that one ninth into thirds. But to find out how much 
two of those thirds are, you’d multiply one ninth by two thirds… Or no. You’d… you’d multiply 
the one ninth by one third, and then just do that twice? I don’t know if that’d give you the same 
answer. 

Researcher:  Okay. Uh, let’s… Maybe I can help you. 
PST G:  Okay. 
Researcher:  If you want me to be your calculator again, I’ll do it. 
PST G:  [begins to draw on table with finger] So, you do one ninth, which divided by three, so you 

could times it by one third. So, then you’d have one over um… [pauses for five seconds.] Oh 
wait… [whispers to self] Three times nine, that’s twenty-seven. Oh no, one over twenty-seven. 
And then you multiply that by two… to get two-thirds or to get two parts of the thing… So, then I 
guess… What’s one over twenty-seven times two? Is that just two-twenty-sevenths? Okay. 

Researcher:  Nice, I like the way you reasoned through it. Yeah. 
PST G:  Okay. I was like, because I was thinking one over twenty-seven times two over one and I was 

like I guess that’s just two, twenty-sevenths. 

Quantitative analysis. The variable we measured was cognitive demand. This ordinal categorical 
data was coded as Low, High, and Over as described above. To test whether the task ranking system 
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was valid, we only considered instances where a PST experienced a change in cognitive demand 
between two successive and differently ranked tasks. We excluded any cases where the same 
cognitive demand was experienced on successive tasks and instances where the demand changed 
within the same ranked task. For example, if Task 6 (rank 10) was coded as High but Task 7 (rank 
10) was coded as Low, we did not count this as a trial. In fact, such instances were common and 
expected because PSTs might rely on their solution to the first task within a given rank to facilitate 
their solution to the second task of that rank. After excluding these cases, we were left with 21 trials. 
The trials are labeled in Table 3 with the number placed in the cell of the higher ranked task where 
the change occurred. Since our theory assumes an increase in task ranking predicts an increase in 
experienced cognitive demand, we consider a successful trial to be one where the change in cognitive 
demand increased for successively given tasks of increasing rank. There are 18 successful trials. The 
three unsuccessful trials occurring with PSTs F, G, and J, denoted in Table 3 with an asterisk (Trials 
7, 11, and 17).  

To test the validity of the task ranking system, we asked the following: What is the probability of 18 
successes in a sample of 21 trails if the chance of changed cognitive demand is 50%. To answer this 
question, we used a binomial test with a p-value of 0.05. We assume the independence of observation 
needed for a binomial test holds across PSTs since each was interviewed separately and any 
discussion of the interview between PST outside of the interview setting was negligible. We also 
assume the independence of observation holds within a PTS’s interview because of the novelty of the 
tasks and the exclusion of same ranked tasks from the trials. We analyzed the data using Microsoft 
Excel (version 15.33).  

Results 
Table 3 illustrates the cognitive demand of tasks as experienced by each PST. Green indicates Low 

demand, yellow High, and red Over. Two pairs of tasks, 6-7 and 8-9, have the same rank; if a PST 
was given both tasks of the same rank, we only consider the first of the same ranked task given to 
eliminate familiarity with the task as a confounding variable of cognitive demand. At a glance, we 
can see that the predicted trend of increasing rank with increased cognitive demand did occur. There 
are three PSTs (F, G, and J) for whom this pattern did not strictly hold outside of same ranked tasks. 
For PST F, the codes followed the pattern of Over, High, then Over again. PST G had a High code 
after two Over codes. Lastly, PST J had one High code in the middle of two Low codes before 
getting coded as Over. We attribute PST F’s deviation from the predicted pattern to her initial 
assimilation of fractions in an unconventional manner (e.g., assimilating “three-sevenths” as one-
third of 1/7) before adjusting this understanding in subsequent tasks as parts out of wholes. The 
switch from Over to High that PST G experienced was a case of persistence in trying to solve a task 
as she made use of new strategies used on previous tasks. For PST J, she experienced a perturbation 
with her scheme for “one-ninth” in Task 5 that led to an Over code but was resolved for subsequent 
tasks.  

 
Table 3: Summary of cognitive demand by task and PST 

Task Rank A B C D E F G H I J K L 
12 16       11*  15    
11 16/17             
10 14      8 10 13   20  
9 12             
8 12   3  6 7* 9 12 14 18 19 21 
7 10 1            
6 10  2  4 5     17*   
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5 8          16   
4 7             
3 5             

 
With 18 successes out of 21 trials, and a probability of success for a single trial of 50%, we obtained 

a p-value of 0.0006. This statistical result validates the task ranking system. In particular, it supports 
the hypothesis that increased length in sequences of units/actions required to solve fractions tasks 
predicts cognitive demand, as experienced by the PSTs and evidenced by their behavioral responses 
to the tasks.  

Discussion 
In validating the task ranking system with a simple statistical test, we have affirmed the hypothesis 

that informed it. In turn, the affirmation of this hypothesis demonstrates the utility of our 
framework—a framework that integrates the psychological construct of working memory (Pascual-
Leone, 1970) with the mathematics education construct of units coordination (Steffe, 1992). 
Furthermore, it supports the Piagetian perspective of mathematics as a coordination of actions (Beth 
& Piaget, 1966), while recognizing students’ mental actions as the source of their own mathematical 
power.  

Other mathematics education studies have addressed cognitive demand (e.g., Stein, Grover, 
Henningsen, 1996) or have identified how students might rely on sequences of mental actions to 
solve mathematical tasks (Simon, Placa, Avitzur, & Kara, 2018; R. Tzur & Simon, 2004). We used 
unit transformation graphs to account for both: mental actions constitute the atoms of students’ 
mathematical knowledge, as represented by the circles (unit constructions) and arrows (unit 
transformations) in our graphs. We enumerated cognitive demand by the number of circles and 
arrows in each graph. Although this characterization of cognitive demand aligns best with the 
psychological construct of working memory, it also relates to Stein and colleagues’ (1996) 
categorization. 

Stein and colleagues were especially concerned with maintaining high cognitive demand of 
instructional tasks, where high demand referred to aspirations of engaging their students in 
“procedures with connections” and “doing mathematics” (Boston & Smith, 2009; Stein et al., 1996). 
Unit transformation graphs might support such aspirational goals by informing teachers of ways they 
can help students manage the demands of mathematical tasks without reducing them to the lower 
categories of “memorization” or “procedures without connections.” Within our framework, 
maintaining such demand would involve facilitating students’ coordination of the mental actions 
involved in a task’s solution by providing appropriate figurative supports, such as manipulatives and 
opportunities for student drawings. Such supports could allow students to offload demands on 
working memory, especially in long sequences of units/actions, without eliminating the demand for 
their coordination (cf., Costa et al., 2011). 
Prior research has highlighted additional factors that contribute to cognitive demand. For example, 

Pajares (1994) demonstrated that self-efficacy and math anxiety can moderate the cognitive demands 
that students experience in response to mathematical tasks. Although we did not take such factors 
into account in our study, the complexities of teaching necessitate that teachers do. We recognize 
these complexities and intend unit transformation graphs as a tool teachers and researchers might use 
to manage them.  

Ultimately, we see unit transformation graphs as a means of recognizing and empowering students’ 
mathematics by explicitly accounting for their available mental actions and coordinations thereof. 
We might expand the program by relying on research that identifies students’ mental actions in other 
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domains of mathematics, such as algebra (e.g., Lee & Hackenberg, 2014) and covariation (e.g., 
Carlson et al., 2002).  
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