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In this theoretical paper we compare the Piagetian perspective on knowledge construction to 
mathematical model construction, with the aim to understand how mathematical modeling enables 
learning of mathematics and learning of science, as is often claimed. We do this by examining data 
through two lenses:(i) examining the role of cognitive conflict as it arises during validation of a 
model and (ii) viewing model validation as a reflection on activity-effect relationship. We explain 
why we chose to look deeply into model validation specifically, present examples for each lens, and 
consider implications. 
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There has been much interest over the past few decades in the teaching and learning of 
mathematical modeling. Typically, investigations seek to understand the process of model 
construction. However, research has also looked into how learning of curricular mathematics beyond 
modeling may occur as students generate and validate their mathematical models (Zbiek & Connor, 
2006). Taking on a Neo-Vygotskian, socio-cultural perspective, Zbiek and Connor elaborated on the 
cognitive processes that constitute modeling as to situate thinking about how learning takes place 
during mathematical modeling. In addition, empirical studies have also shown how a modeling 
approach to instruction may have an impact on student achievement (e.g. Czocher, 2017; Schukajlow 
et al, 2012). At the same time, two lines of inquiry have used mathematical modeling as an 
instructional paradigm to guide students’ construction of mathematical knowledge. The first uses 
mathematical modeling tasks to teach mathematical concepts (Lesh et al., 2000) and the second uses 
the term model to capture the evolution of conceptual models through mathematical activity 
(Gravemeijer, 1999; Lesh, Doer, Carmona, & Hjlmarson, 2003). Both lines of inquiry agree that 
mathematics can be learned through constructing models. However, for one to know how 
mathematical modeling can best be leveraged to learn mathematical concepts, one first needs to 
understand how mathematical modeling may enable learning. In this paper, we illuminate data drawn 
from cognitive modeling task-based interviews using two theoretical lenses on mathematical 
modeling in order to elaborate how learning may enabled through mathematical modeling.  

Perspective on Learning and Knowledge Construction 
In order to understand how learning is occasioned through modeling we take on a Piagetian view on 

learning and knowledge construction. In this view, learning is considered as a process of 
transforming one’s way of knowing and acting. According to Piaget, all construction consists of 
activity and all activity is goal-directed. In this sense, all construction (of cognitive structure) is goal 
directed (von Glasersfeld, 1983). Hence, we begin from the position that mathematical modeling is a 
goal-directed activity and the modeler is working towards an anticipated model as a goal. Two 
theories have been highlighted in the constructivist perspective as ways of learning to occur: the 
theory of equilibration and reflective abstraction. To support our view of modeling as a process of 
construction, we adapt both these views to mathematical modeling and compare their merits.  
Theory of equilibration 

One tenet highlighted in constructivist theory is that conceptual transformation is induced by a 
perturbing experience. Perturbation is experienced when the cognizing subject is met with a 
constraint or clash in the externalized world and therefore goes through adaptation to regain 
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equilibrium (absence of clashes). According to Piaget, disequilibria is stimulated by conflict, either 
between an individual’s action schemes and external realities or among different schemes within an 
individual. The cognitive structure undergoes assimilation and accommodation repeatedly until it 
seems “fit” in the externalized world. A scheme is an intellectual structure that organize events as 
they are perceived and classified according to common characteristics. Assimilation is the cognitive 
process by which a person integrates new matter into existing schemata or patterns of behavior. 
Assimilation does not result in a change of schemata, but it does affect the growth and its part of the 
development. Accommodation modifies the cognitive structure (scheme) to make it “fit” the 
external world. According to Piaget, accommodation can happen in two ways: one can create a new 
scheme in which to place the new stimulus or modify an existing schema so that the stimulus fits 
into. Both forms of accommodation result in change in the configuration. Piaget refers to the process 
of assimilation and accommodation as adaptation (Wadsworth, 2004). 

Scholars have since explored the contours of disequilibria and cognitive conflict in different ways. 
Limon (2001) defined cognitive conflict as something that occurs when a students’ mental balance is 
disturbed by experiences that do not fit their current understanding. Zazkis & Chernoff (2007) stated 
cognitive conflict is “invoked when a learner is faced with a contradiction or inconsistency of his or 
her ideas” (p. 196). Berlyne (1970) elaborated cognitive conflict as “a condition in which mutually 
interfering processes occur simultaneously and in which selection of a motor response from a set of 
competing alternatives is therefore hampered” (p. 968), which is more amenable to empirical work 
seeking to understand it in the context of mathematics teaching and learning. Zazlavasky (2015) 
argued that perplexity, confusion and doubt are often associated with and evoked by cognitive 
conflict, suggesting that they may be used as proxies for identifying instances of cognitive conflict. 
Within the literature on mathematical modeling, Lesh et al (2003) identified three kinds of cognitive 
conflicts arise as models are constructed: within-model mismatches, model-reality mismatches, and 
between-model mismatches. Researchers have studied how cognitive conflict influences or changes a 
students’ conceptual understanding (Chan, Burtis, & Bereiter, 1997; Ernest, 1996). At the same time, 
there is also a body of research questioning the role of cognitive conflict in the learning of a concept 
with evidence that cognitive conflict is only one of the many important factors contributing to 
learning a concept (Kang, et al., 2004; Zimmerman & Bloom, 1983). 
Theory of Reflective Abstraction 

The theory of equilibration only considers how a conceptual change is established when there is a 
presence of clashes between the cognizing subject and the stimuli. However, it is incapable of 
explaining how we learn during the absence of clashes. Reflective abstraction addresses this issue.  
Piaget’s (2001) reflective abstraction is a process by which higher level mental structures could be 
developed from lower level structures. This is done in two phases. In the first phase, the structure at 
the lower developmental level is projected onto a higher level and in the second phase these 
structures are reorganized (Campbell,2001). Piaget (2001) acknowledged that reflective abstraction is 
not necessarily a conscious process.  

Reflective abstraction was a significant contribution to addressing the learning paradox (Pascual-
Leone, 1976) because it allows for knowledge to be constructed from already-existing knowledge. 
Simon and colleagues elaborated on reflective abstraction, offering a new explanation for conceptual 
learning in mathematics that not only addresses the learning paradox but also can contribute to the 
basis for the design of mathematics instruction (Simon, Tzur, Heinz, & Kinzel, 2004). The 
mechanism, Reflection on Activity-Effect Relationship (Ref*AER) builds on von Glaserfeld’s (1995) 
tripartite model of a scheme: (1) recognition of a certain situation (S), (2) specific activity associated 
with that situation (A), and (3) the expectation that the activity produces a certain, previously 
experienced result or the anticipated the activity-effect relationship (A/E) (Tzur & Simon, 2004). 
According to Simon and colleagues, an occasion that can result in learning is present when a learner 
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sets a goal (G). The goal is then assimilated into situations (S) that are part of the learner’s existing 
conceptions. From the set of conceptions related to S, activities (A) are called upon to work towards 
the goal to which the learner anticipates the effect of these activities (A/E). While carrying out these 
activities, the learners’ mental systems engage in continual monitoring, including distinguishing 
effects of the activity that advance the goals from effects that do not advance them. During the 
reflection, the learner identifies patterns in the outcomes and abstracts a relationship between the 
activity and the effect it had on reaching the goal. This abstraction results in a new activity-effect 
relationship. Here, activities refer to mental activities, the learners’ goal are not necessarily 
conscious, and the effects are the assimilatory conceptions that the learner brings to the situation. 

Perspective on Mathematical Model Construction 
We view mathematical modeling as a goal-directed activity. To elaborate the modeling process, we 

appeal to the cognitive perspective on modeling (Kaiser, 2017) where a mathematical model is 
considered to be a cyclic process that transforms a real-world problem into a mathematical problem. 
From this perspective it is common to represent model construction through a mathematical 
modeling cycle (MMC) such as Blum & Leiß’s (2007) characterization. Empirical studies have 
described dimensions along which a model can change as it is constructed (Czocher & Hardison, 
2019) and different ways a modeler can validate her model (Czocher, 2018). Validation is a crucial 
part of mathematical modeling, because non-viable models are of little use for solving real-world 
problems. In many mathematical modeling cycles, validating occurs at the end of the process (e.g. 
Blum & Leiß’s, 2007). However, Czocher (2018) argued that validating not only occurs when one 
checks the final results against the real-world phenomena, she attempted to model but in different 
ways throughout model construction. When a student attempts to validate her model, she holds two 
models in her mind: the model she is constructing and the model she anticipates constructing.  As a 
consequence of this comparison, the modeler chooses to accept, revise, or reject the model she is 
constructing. In this way, validating is responsible for the iterative nature of modeling as well as 
ongoing monitoring (Czocher, 2018). Therefore, we conclude that since (a) the outcomes of 
validating lead to modifications of the model, and (b) modelers validate both their final products and 
monitor their evolving models, validating has a significant contribution in model construction.  

For these reasons, we argue that looking deeply into model validation will lead us to understand 
how learning happens through modeling. To move the field forward, the paper focuses on what 
happens during validation that leads to the acceptance, rejection or revision of the model, specifically 
by looking at model validation through two related but different lenses: (1) cognitive conflicts during 
model validation and (2) viewing validation as a ref*AER. Informed by the review of the relevant 
constructs, we conceptualize cognitive conflict that arises during validating the model as a 
discomfort the modeler experiences due to a perceived discrepancy between the model under 
construction and the model she anticipates constructing.  At the same time, validating can be seen as 
a reflection on Activity-Effect relationship. When a student engages in a modeling task, she is 
working towards a goal(G) of modeling a real-world situation. To reach this goal, she calls upon 
activities or activity sequences (A), which she had previously abstracted as having certain effects 
(A/E), that will help her to map her understanding of the real-world situation to a mathematical 
structure. While executing these activities, she then monitors the effects of these activities through 
the interpretation of her constructed model. Then, validation is the reflection that compares the 
anticipated effect to the constructed effect. As Simon and colleagues stated, “the ability to set the 
goal subsumes the ability judge the results” (2004, p.318).  

We make the case that if cognitive conflicts and reflective abstraction contribute to the construction 
of knowledge, then in the mathematical modeling context, it is through model validation that 
cognitive conflict and ref*AER enable learning. This paper first presents an analysis using the first 
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lens to investigate the decisions made during validation, addresses the constraints, and then presents 
the second lens that could address the limitations of the first.  

Methods 
Data for this study were drawn from a larger study of one-on-one modeling task-based interviews 

with undergraduate STEM majors at a large university in the United States.  The students were 
enrolled in a semester course on differential equations. The overarching goal of the interviews were 
to explore and document students’ mathematical reasoning during modeling.  We present examples, 
to illustrate our case, from one student Jayden, working on the falling body problem.  

The falling body problem: On November 20, 2011, Willie Harris, 42, a man living on the 
west side of Austin TX died from injuries sustained after jumping from a second-floor 
window to escape a fire at his home. What was his impact speed?  

Jayden was purposefully selected to look deeply into the mechanisms of model validation, because 
he employed multiple strategies to model the scenario and exhibited observable modeling 
mechanisms that helped us in explaining our lenses on model validation. Our primary research goal 
was to build second-order models (Steffe & Thompson, 2000) of his mental activities to explain the 
factors that shaped his decisions about revising his mathematical model (or not) as an outcome of his 
engagement in model validation. Since we did not have direct access to Jayden’s mental activities, 
the second-order models are what we inferred from Jayden’s observable activities including his 
language, verbal descriptions and discourse, written work, and on occasion gestures, when they were 
salient.  

For our retrospective analysis of Jayden’s engagement with the falling body task, we carried out 
five rounds of data analysis to arrive at examples that could serve for theory-building. First, we 
coded the interview for instances of validating, using the method of constant comparison and 
according to the operationalization in Czocher (2018).  Next, we surveyed the validating instances 
for any identifiable cognitive conflicts and these instances were isolated. Third, we selected examples 
illustrating cognitive conflict to seek evidence of learning. Fourth, we catalogued instances of 
validation that failed to be instances of cognitive conflict. Fifth, we applied ref*AER to explain the 
failed examples. Below, we share illustrations of the third and fifth steps. 

Findings 
Lens 1 - Cognitive Conflicts during Model Validation 

We offer two illustrations of when cognitive conflict arose for Jayden during model validation. We 
leverage the illustrations to explain how Jayden modified the model under construction to 
accommodate the anticipated model or otherwise left the conflict unresolved.  

Jayden began from kinematics equations and successfully modeled the falling body situation 
without accounting for air resistance. He justified his choice, asserting that air resistance would be 
negligible “when there is either no air or no fluid to fall through, or you were infinitely close to the 
ground.”  The interviewer challenged Jayden to take air resistance into consideration. In response, he 
constructed a first order, linear, homogeneous equation to model the falling body. He wrote 
!"(!)
!" + !" = 0, where Q represented the position of the body and !"!"  represented its velocity. He 

then wrote the generic solution ! ! = !!!!". Jayden wrote ! ! = !!!!" with the intention of 
figuring out “what λ has to equal”. Jayden modeled the situation with the initial condition for 
position as ! 0 = 0. Later, Jayden indicated that he was not sure if the model he constructed was 
correct. Jayden stated, “I’m not sure if that’s right, I’m not sure if there should be some sort of 
constant increase as you get faster”. He drew two graphs showing an increasing relationship between 
velocity and the air resistance (figure 1). However, he was unsure which representation best matched 
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the situation. He indicated that the linear relationship or the exponential relationship will determine if  
!"(!)
!" + !" would equal zero or would equal a forcing term, respectively. 

 
Figure 1: Students’ representation of the relationships between drag force and velocity 

 
He continued to solve the differential equation assuming the initial positions and initial velocity to 

be zero. He substituted the general solution ! ! = !!!!" in !"(!)!" + !" = 0  and obtained the 
expression λ!!! + !"!! = 0 which resulted in! = −! (figure 2). He then engaged in validating the 
model he presented by commenting on the reasonableness of it by stating the following:  

it doesn’t really tell me a whole lot because I don’t know what the graph should look like. I 
feel like it probably equal some sort of forcing term…because I don’t think that the solution 
would end up being…as he increases in position, I don’t think it’s going to be !!!!" … I 
don’t think that this correctly models it. 

 
Figure 2: First order linear differential equation with initial conditions 

 
Jayden engaged in model validation when he commented on the reasonableness of the model. Here, 

the model under construction is the mathematical expression based on the assumption that the 
velocity and force change linearly and the anticipated model is the mathematical expression based on 
his  assumption that “as the velocity gets larger, the force might get greater and greater and greater” . 
Jayden was experiencing a conflict between the model he constructed and the model he idealized, 
hence anticipated. 

Jayden was able to resolve the conflict when he realized that “the wind is always just an opposing 
force [so] it could be treated like the force of friction.”  He then rejected his mathematical model by 
attempting a different solution that used Newton’s laws of motion because they incorporated the 
surface area of the body and air resistance. In this episode, Jayden attended to the model under 
construction by modifying the assumptions that the model was based on in order to accommodate the 
anticipated model. We inferred, based on his sketches, that his anticipated model was his idealization 
(based on his real-world knowledge) that as the velocity increases the force due to air resistance 
should increase nonlinearly. 

Next is an example where Jayden left the conflict unresolved. Assuming the presence of air 
resistance, Jayden modelled the falling body using Newton’s laws of motion, taking into the 
consideration the surface area of the falling body and a coefficient to capture the influence of air 
resistance. He introduced the downward force that the body would experience as ! = !", the air 
resistance as !!" = !! ∙ !!, and the net force the body would experience as the addition of the two 
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forces. Here !!  is was the coefficient of air resistance and !!  was the surface area (Figure 2). 
However, he mentioned that the velocity should be somewhere in these equations as well. This was 
evidenced by the following statement he made: 

I just kind of thought of something. His velocity should be somewhere in here also. Because 
the faster you go the more the force will be…but I have no clue how to put that in. 

 
Figure 3: Student’s model of the falling body including air resistance and surface area.  

 
In order to incorporate velocity in his model Jayden performed a dimensional analysis to balance 

both sides of the equation in terms of units. He equated 1! = !"∙!
!! , to the units of  !! ∙ !!. While 

performing the dimensional analysis, he decided that the surface area should not be there. He 
scratched out the symbol for surface area and instead added the “change in velocity for a time” of the 
body to the expression (Figure 3). He equated the mass of the body times the coefficient of air 
resistance times the “change in velocity for a time” of the body to net the force that the body would 
experience due to air resistance. After arriving at the aforementioned model, Jayden explained: 

Intuitively I don’t think I trust that…I mean that’s the answer that I reached, but I really 
think that has something to do with the surface area. Because this pencil will drop faster 
[drops his pencil from his hands] than a big piece of paper weighing the same amount…so I 
don’t know. 

In this instance, Jayden validated the model by commenting on the reasonableness of it, appealing 
to his lived experiences. Jayden’s statement that the model was not trustworthy indicates that he 
experienced a cognitive conflict. In this case the model under construction was the mathematical 
expression he produced (without surface area) and the anticipated model was his idealized view of 
the world, where an object’s surface areas affects its velocity through air resistance. Jayden indicated 
that he did not know how to rectify the dispute and therefore presented this as the final expression for 
wind resistance. He then discussed how he would set the force equal to !"(!)!" + !", obtained from 
earlier work, in order to find the falling man’s impact speed. In this scenario, Jayden accepted his 
model. However, the conflict was left unresolved.   

While analyzing cognitive conflicts during model validation was a useful way to look at what 
happened during model validation that led to the acceptance, rejection, and revisions of the model, 
there were limitations to it. First, taking this perspective assumes that learning during mathematical 
modeling only occurs during the rejection or/and revision of the model. This is not necessarily true. 
Learning could also happen when one is satisfied with the model and accepts it because accepting the 
model may also have transformed the modelers way of knowing and acting about the model. This 
perspective ignores this case. Second, not all validating instances coincide with instances of cognitive 
conflict. Therefore, it is necessary to explain such instances where model validation is present, but 



How mathematical modeling enables learning? 

	 928	

conflict is not. The second lens of looking at validating was drawn upon to address some of these 
limitations. 
Lens 2 – Validation as a Ref*AER 

The following is an example of model validation which could not be explained through the first 
lens, can now be explained by viewing validating as a Ref*AER. Recall the scenario where Jayden 
modelled the falling body with air resistance with the expression !"(!)!" + !" = 0 and initial values 
! 0 = 0. While considering the initial conditions to solve the differential equation, Jayden stated:  

I’m just trying to think what initial conditions I need to use. I guess I’ll have to just say…  ! 0 =
0 because his position is 0. But I guess it will be better if I said that this was [pause] let’s see 
[long pause] … I guess this is fine [pointing at ! 0 = 0]. 

Jayden validated his model through evaluating the reasonableness of the initial condition ! 0 = 0. 
However, he was not experiencing a conflict because there was no evidence for a discrepancy 
between the model under construction and the anticipated model. When Jayden stated “I’m just 
trying to think what initial conditions I need to use” we take that as an indication of him recalling the 
activities that would lead him to the desired effect and filtering the ones that would not. Here the goal 
is to solve the differential equation (G), the activity is drawing on the appropriate initial condition 
(A), and the effect is what comes out of solving the differential equation using the selected initial 
condition (E). Jayden first considered the initial condition !(0) = 0, and next he considered whether 
they would advance him toward his desired goal. This is evident when he said, “But I guess it will be 
better if I said that this was…” Through reflecting, Jayden ultimately conformed to his initial choice 
! 0 = 0, and therefore accepted his model. In this instance, Jayden was continuously monitoring 
and reflecting on the effect of selecting ! 0 = 0 as the initial condition would have towards 
reaching his ultimate goal.  

The following is an example where Jayden rejected his model, which can also be explained using 
the Ref*AER lens. Jayden’s initial approach was to draw from the equations of motion from 
mechanics. To find the impact speed of the falling body, Jayden wrote the equation ! = !" + !

! !!
! , 

where ! is the distance the body travelled, ! is the initial velocity, ! is the acceleration due to 
gravity, and ! is the time it took to travel a distance s.  As soon as he realized that the equation 
contains the time of fall !, Jayden scratched out the expression and resorted to !! − !! = 2!" .  The 
reason being the first expression required the time of fall, which was not given in the task. This was 
an instance of validation because he scratched out the first expression and attempted a different 
solution. However, there was no evidence of conflict. In this instance, the goal for Jayden was to find 
the impact speed without using the time of fall (G). He stated, “I could find the time of fall, but it’s 
not necessary”. His activity (A) was selecting !! − !! = 2!"  over ! = !" + !

! !!
!  through 

cataloguing existing equations and reflecting on the effect they had in reaching the desired outcome 
(E). As a result of validating, he rejected his initial expression and selected another one to meet his 
desired effect. 

Discussion & Conclusions 
This study investigated the mechanisms of model validation through two lenses: (i) looking at 

cognitive conflicts that arise due to the discrepancy between the model under construction and the 
anticipated model, and (ii) viewing model validation as a reflection on activity-effect relationship. 
Our analysis offers insight into potential mechanisms for model construction and suggests a strong 
link between model construction and Piagetian explanations of knowledge construction. Studying the 
nature of cognitive conflicts students experience while engaging in mathematical modeling and 
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viewing model validation as Ref*AER may be an avenue towards elaborating how learning occurs 
through mathematical modeling because it may inform us about how students make decisions about 
the viability of their models. 

Given the preceding analysis, we close with two considerations: limitations and future directions. 
This study only informs us how learning may be enabled through mathematical modeling and is not 
capable to inform us on what was learned. At the same time, the paper does not discuss the explicit 
treatment of the two lenses and how they can be leveraged to analyze the mechanism of model 
construction, yet. Future analysis will investigate this. In order to understand what was learned 
through modeling, instances of validating will be analyzed closely, using the lenses presented in this 
paper, to see the following: why do modelers chose to accept, revise, and reject the models? how do 
they do so? and in what ways? However, this theoretical paper outlines the extent to which these 
learning theories are applicable to mathematical modeling. This we believe is a significant 
contribution as it sets us open to understanding what is it that is being learned through mathematical 
modeling. These mechanisms can then be leveraged to develop instructional theory that fosters 
mathematical conceptual learning through mathematical modeling. 
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