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Twenty students who earned A or B course-grades in the proof unit(s) of a secondary course that 
addressed proof in geometry were asked to work on two proof tasks while sharing their thinking 
aloud and using smartpens. Students were classified into two categories: those who were successful 
with both proofs and those who were unsuccessful with both proofs. Large differences were observed 
in how often students in the two groups exhibited certain competencies. The largest gaps occurred in 
the ways that students: attended to the proof assumptions; used warrants in their proofs; and 
demonstrated logical reasoning. 
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Introduction  
Proving is an important aspect of mathematical competence, and geometry is the site which has 

historically been considered to be a good starting point to teach and learn mathematical 
argumentation and proving in secondary mathematics (Reiss, Hellmich, & Reiss, 2002). Hoyles 
(2002) suggested that proving involves a range of non-trivial “habits of mind” such as looking for 
structures and invariants; identifying assumptions; and organizing logical arguments. These 
processes, she noted, must be coordinated with visual or empirical evidence and mathematical results 
and facts. The need to coordinate the linguistic and visual registers is a particularly distinguishable 
feature of proof in geometry (Sinclair, Cirillo, & de Villiers, 2017). Yet, a number of studies 
conducted in the context of secondary geometry provide evidence that the teaching and learning of 
proof in secondary geometry is a challenging endeavor (Balacheff, 1988; Cirillo, 2011; Healy & 
Hoyles, 1998; Senk, 1985). To make progress on this challenge, we sought to gain insight into the 
competencies and behaviors displayed by students who were successful and unsuccessful with two 
proof tasks. 

Theoretical Framework 
A number of studies have documented students’ difficulties with proof in geometry. For example, 

Senk (1985) conducted a study wherein she administered six proof-writing tasks to 1520 students in 
the U.S. After scoring the tasks on a scale of 0-4 where scoring >3 deemed a student to be 
“successful” on an item, Senk concluded the following: only about 30% of students in a full-year 
geometry course reached a 75% mastery of proof, and approximately 29% of students could not write 
even one valid proof. In another study, in this case, a study of high-attaining 14-15 year-old students 
in England and Wales, Healy and Hoyles (1998) found that only 19% of students were able to 
construct a proof of a familiar geometry statement, and fewer than 5% of students could construct a 
proof of an unfamiliar geometry statement. Last, in their study of 81 German upper secondary 
students, Reiss, Klieme, and Heinze (2001) found that only 20% of students were able to construct 
correct Euclidean geometry proofs. Various recommendations and student difficulties were noted in 
these studies. 

Based on study results, Senk recommended that we must look for more effective ways to teach 
proof in geometry, noting, for example, that we must find ways to support students to start a chain of 
reasoning. In the studies conducted by Healy and Hoyles (1998) and Reiss and colleagues (2001), the 
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researchers found that students were better at judging others’ proofs than they were at constructing 
their own proofs. Also, in Reiss et al.’s (2001) study, only 10% of students were able to provide a 
definition of the central concept of “congruence” and name a mathematical theorem related to 
congruence (i.e., a triangle congruence theorem). Furthermore, this study provided evidence that 
geometric competence with respect to proving is dependent on a combination of metacognition, 
spatial reasoning, methodological knowledge, and declarative knowledge (e.g., the notion of 
congruence).  

Some researchers have elaborated on why proof is so challenging for students. For example, Healy 
and Hoyles (1998) explained that the process of building a valid proof is complex in that it involves 
sorting out what is “Given” from what can be deduced, and then organizing the conclusions that can 
be drawn from the “Given” into a coherent and complete argument that meets the proof goal. When 
considering the large number of possible inferences that could be made from the “Given(s)” in a 
typical school geometry proof problem, Koedinger and Anderson (1990) noted: “Geometry proof 
problem solving is hard” (p. 512). To better understand this “hard” situation, they observed geometry 
“experts” and found that, prior to writing up the details of their proofs, experts tended to quickly and 
accurately develop an abstract proof plan that skips many of the steps required in the full proof. In 
other words, they first applied global thinking (i.e., considered the “big picture”) rather than local 
thinking (i.e., worked on one step at a time) at the start of the process. This conclusion is consistent 
with Cai’s (1994) finding in a study of problem solving in geometry that the more-experienced 
participants spent the majority of their time on orientation and organization, while less-experienced 
students spent the majority of their time on execution (i.e., doing rather than thinking or planning).  

In Battista’s (2007) review of school geometry research, he posed several unanswered questions 
related to students’ learning of proof, including: Why do students have so much difficulty with 
proof? What components of proof are difficult for students and why? and How can proof skills best 
be developed in students? (pp. 887-888). Ten years later, speaking back to these questions in their 
research review, Sinclair et al. (2017) concluded that while some researchers have attempted to 
address these questions, the reported studies tended to focus on only one or a few teachers or did not 
provide evidence of effectiveness at scale. They also suggested that more research is needed on 
students’ development of geometric proof skills and their understanding of the nature of proof. The 
lack of research in this area led us to pursue this topic. Thus, this study addresses the following 
research questions: (1) What proving competencies and behaviors are observed in students who were 
successful with solving geometric proofs? and (2) How do these competencies and behaviors 
compare to those of students who were unsuccessful with the proofs? 

Methods 
The study reported on in this paper is part of a larger research project titled: Proof in Secondary 

Classrooms: Decomposing a Central Mathematical Practice (PISC; PI: Cirillo).The goal of the PISC 
project is to better understand the difficulties involved in the teaching and learning proof in 
secondary geometry and to develop a new and improved intervention to address these challenges. 
Students who earned high marks (grades of A or B) in the geometry proof unit(s) were selected for 
individual clinical interviews for this sub-study. The rationale for interviewing students with high 
marks was to understand what high-performing students were taking away from the proof unit(s). 
Because past studies have shown that even high-attaining students struggle with non-routine as well 
as routine proof tasks in geometry (see, e.g., Healy & Hoyles, 1998; Cirillo, 2018), two proof tasks 
that, in theory, should have been somewhat familiar to the students, were selected for data collection 
and analysis. We chose triangle congruence proof as a topic for exploration because it is considered 
to be a central concept in school geometry and because limited time to conduct the interviews in the 
school setting did not permit us to take up large amounts of students’ time with longer problems.  
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The criteria for participant selection for this sub-study were as follows: (1) students were enrolled in 
a secondary course that addressed proof in geometry; (2) students earned an A or a B in the proof 
unit(s); (3) students were identified by their teacher as students who would be willing to share their 
thinking aloud during the interview; and (4) students completed the full interview protocol in the 
allotted time; (5) there were no technology glitches during the data collection, and (6) students’ 
success results on each of the two proof tasks were the same (i.e., successful or unsuccessful on both 
proofs). This selection process reduced the sample size from 31 students interviewed to 20 selected. 
Participating students spanned Grades 8-11 (ages 13-17).  

The first author conducted all student interviews. The goal was to spend about 35 minutes with each 
student; the mean interview length was about 32 minutes. The full interview protocol consisted of 
seven items. The first item was a simple “warm-up” task about geometric notation. The next four 
tasks were selected or adapted from Cirillo and Herbst (2011). The last two tasks, which were the 
ones selected for this analysis, were full-proof tasks (see Figure 1). Students spent an average time of 
7.28 minutes on Task 6 and 5.95 minutes on Task 7. Students were asked to read each task aloud to 
ease them into talking through the task and guarantee that they had read the “Given” information for 
each task. Smartpen technology (i.e., Livescribe pens) was used to audio-record the students’ 
explanations of their thinking and capture their pen strokes as they worked through the proofs. This 
methodology allowed us to capture students’ thinking in the form of verbal explanations and 
simultaneous diagram markings and other written work. 

 
Figure 1: The two full-proof interview tasks analyzed for this study 

 
Smartpen data were digitized to create a “pencast,” or video, that simultaneously replays each 

student’s handwriting and audio-recording (Livescribe, 2012). Prior to analyzing the smartpen data, 
students’ final proofs were quantitatively scored from the paper hardcopies in ways that followed 
Senk’s (1985) methods. Specifically, we adapted the rubrics for Senk’s full-proof tasks so that every 
proof was scored on a scale of 0-4. Following Senk’s approach, if students scored a 3 or a 4 on a 
proofs, they were considered to be Successful with the Proof tasks (abbreviated as SP; n=7). Students 
who scored less than 3 were considered Not successful with the Proof tasks (abbreviated as NP; 
n=13). The resulting data set consisted of two Proof Task Interviews (PTIs) from 20 students. The 
units of analysis are the individual proof tasks, resulting in 40 units of analysis. Tables 1 and 2 
include age, grade level, course grade (A or B), and task scores (0-4) for each participant in the NP 
and SP groups. 

We used constant comparative analysis (Boeije, 2002) to develop a coding dictionary. To develop 
the codes, the research team watched the PTI pencasts for six participants for both Tasks 6 and 7. 
Codes were developed for observed problem-solving behaviors and competencies that were exhibited 
through spoken and written work. This iterative process resulted in 45 possible codes for both NPs 
and SPs. After garnering an 86.59% interrater reliability and reconciling incongruent decisions, the 
second author coded the remaining data. The final phase of analysis involved looking across the 
coding results for patterns and themes.  
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Table 1: Study participants who were Not successful with both Proof tasks (NPs) 
Participant 

Number Age Grade Level Course Grade Task 6 Score Task 7 Score 

P1 14 8 A 0 0 
P2 16 10 B 0 0 
P3 15 10 B 0 0 
P4 15 10 B 0 0 
P5 14 8 A 0 1 
P6 14 8 A 1 1 
P7 17 9 B 1 1 
P8 17 10 B 1 1 
P9 16 10 B 1 1 

P10 15 9 A 1 1 
P11 13 8 A 2 1 
P12 17 11 B 2 2 
P13 17 11 A 2 2 

 
Table 2: Study participants who were Successful with both Proof tasks (NPs) 

Participant 
Number 

Age Grade Level Course Grade Task 6 Score Task 7 Score 

P14 14 8 A 3 3 
P15 14 8 A 3 4 
P16 13 8 A 4 4 
P17 13 8 A 4 4 
P18 14 8 A 4 4 
P19 14 8 A 4 4 
P20 13 8 A 4 4 

Findings 
In reporting the findings, we first describe the most prevalent competencies and behaviors among 

the students who were Successful with both Proof tasks (SPs; n = 7). Because there were multiple 
competencies and behaviors that were exhibited by a high percentage of the SPs, we chose a 
threshold of 60% for the occurrences that would be reported. That is, we report on behaviors and 
competencies observed at least 60% of time for the SPs. This decision yielded five findings across 
the data set and includes behaviors related to working with the “Givens,” marking the diagram, 
demonstrating logical thinking, and so forth. 
Regarding the second research question about the competencies and behaviors of the students who 

were Not successful with either Proof task (NPs; n = 13), the data were more inconsistent. We first 
compare NPs with SPs by reporting on the frequencies (as a percentage of the total occurrences for 
each PTI) with respect to the six findings from the SP group. Table 3 provides a summary of these 
behaviors and the frequency of occurrence. We then share three additional findings that relate to 
behaviors observed at least 20% of the time in the NP group. 
Competencies and Behaviors of Students Who Were Successful with the Proofs 

All seven SPs made productive and explicit use of the “Given” information for both tasks (i.e., 
100% of the time). They did so either as they were planning their proofs or as they began to work on 
a proof. They explicitly identified the relevant mathematical objects from the assumptions (i.e., the 
“Given”). Here is an example of P14 thinking aloud about Task 7 (P14-T7; from here forward, we 
will use the notation PX-TY to denote each participant and task): “First thing we know is that ABC 
and DE bisect each other at B. Why? Because it's the Given. Next. Well you know that B, B is the 
midpoint. Why? Because definition of line segment bisector…” 
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Table 3: Frequencies of observed competencies and behaviors for both groups  

Observed Competencies & Behaviors (rounded to nearest whole percentage) SPs 
(%) 

NPs 
(%) 

*Students productively attended to the “Given” information 100 23 
 Students correctly identified bisectors 100 12 
 Students indicated what object was being bisected 93 12 
  Students used the diagram as a resource 100 47 
 Students marked the diagram  
 Students used the diagram as a check list or planning tool 

100 
100 

65 
46 

       Students made valid claims supported by assumptions about the diagram 100 31 
*Students identified warrants as postulates, axioms, definitions, or theorems 
       Students clearly connected claims to definitions 

86 
86 

8 
12 

       Students stated or explained a definition 
       Students articulated a definition of congruent triangles 

79 
100 

4 
8 

*Students demonstrated that they were thinking in a logical manner 93 8 
  Students attended to important details while working through their proofs 
       Students articulated a plan for the proof prior to writing the proof 

68 
64 

13 
15 

       Students attended to rigor in sub-arguments 100 4 
       Students attended to triangle congruence criteria 79 15 
       Students attended to the “Prove” statement in explicit ways 64 23 
* Indicates the main findings with the largest percentage gap between SPs and NPs (> 75%) 
 

All SPs accurately marked the diagrams for both proofs (i.e., 100% frequency). The smartpen 
technology enabled us to see noticeable differences in the ways this occurred. For Task 6, SPs tended 
to mark the diagram in two distinct ways. Either they worked through the details of the proof, 
marking off congruent parts as they made their inferences, or they marked the congruent parts, using 
the diagram as a checklist to show that they had proven the triangles congruent. For Task 7, three SPs 
seemed to immediately recognize how to solve the proof, so they explained a plan for the proof and 
marked the congruent parts prior to beginning the proof (see Figure 2). Each proof task included 
some type of bisector in the “Given.” SPs were clear about what type of bisector they were working 
with 100% of the time (e.g., line segment bisector). They explicitly indicated what was being 
bisected 92.9% of the time.  

When SPs wrote or articulated their warrants (i.e., reasons for their statements), they typically 
indicated the typology in explicit ways 85.7% of the time. SPs appropriately connected claims to 
definitions 85.7% of the time, sometimes even stating the exact definition (78.6%). For both proofs, 
the concept of congruent triangles was critical toward developing a valid proof. All SPs wrote 
CPCTC as the warrant for their triangle congruence statements. When asked what it meant or stood 
for, 100% of SPs were able to articulate what CPCTC stood for or explain what it meant (i.e., 
Corresponding Parts of Congruent Triangles are Congruent). 

As they were thinking aloud, SPs’ explanations contained logical connectives, such as “next,” “and 
then,” and “we can conclude,” in 92.9% of the PTIs. The P18-T6 excerpt above is a good example of 
this. Also, P20-T6 used logical connectives “then” and “so” in various ways:  

So, we have this is congruent to that and we have that this is perpendicular to that so I guess 
we could use the right angles theorem to prove that these are congruent and then we could 
prove that this is congruent by the reflexive property of congruence. And then we can get the 
angles congruent by C-P-C-T-C. 

Although, in this explanation, P20 seemed to skip over the step of stating that the triangles were 
congruent, it was included in the written proof. 
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Figure 2: P15-T6 Used Diagram as a Checklist & P20-T7 Used Diagram as a Planning Tool 

 
Arrow 1 

 
 
 
 
 
 
 
 
 
 

Arrow 2 
 

Arrow 3 and Triangle 
Congruence Statement 

Figure 3: P16-T6 attends to sub-arguments and triangle congruence criteria 
 

SPs attended to the details of their proofs in multiple ways. They articulated a plan for the proof 
before writing the proof 64.3% of the time. SPs attended to rigor in their sub-arguments 100% of the 
time. They attended to triangle congruence criteria in explicit ways 78.6% of the time. And they 
explicitly attended to the “Prove” statement 64.3% of the time. P16-T6’s work provides evidence of 
attending to sub-arguments (i.e., branches of a proof claim and consequence) and triangle congruence 
criteria. His written work (see Figure 3) is very methodical in that he established three congruent 
parts prior to drawing in the arrows in his flow proof to connect the three congruent statements to the 
triangle congruence statement: 

Ok so then we have our three parts [draws three arrows]. So, we know that these are 
congruent and then we can say that triangle ABD is going to be congruent to triangle C, 
CBE. [Pause] I had to take a moment there to see which point was corresponding with point 
A. So, then we have our two triangles. And we can say this, because of S-A-S theorem. And 
after this, we can use my favorite theorem again to say that line segment AD is congruent to 
line segment EC because of C-P-C-T-C. So yeah. 

The smartpen allowed us to see how the student worked out the three congruence statements prior to 
writing and then drawing arrows to the triangle congruence statement. We can see from the 
combination of transcript and smartpen images that he attended to triangle congruence criteria when 
he said: “we have our three parts,” paused to accurately write the triangle congruence statement in a 
way that matched up the corresponding parts, and drew the three arrows before writing the triangle 
congruence statement. 
Competencies and Behaviors of Students Who Were Unsuccessful with the Proofs 

Large discrepancies between SPs’ and NPs’ behaviors were noted in the data. Table 4 includes 
frequencies from the PTIs (as percentages) for both groups for each finding and sub-finding. The 
differences in occurrences of the six main findings range from 35-92% with a gap of more than 80% 
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for 3 of the 6 main findings (as indicated in the table by *). For the second research question, it is not 
so productive to go through each finding one-by-one because there is little to say about the absence 
of something. Instead, we address the kinds of behaviors observed in NPs given the absence of many 
of the competencies exhibited by high percentages of SPs. Because the percentages of occurrences of 
common behaviors were much lower in this data set, we chose a lower threshold of  >20% for the 
codes that we discuss in this section.  

First, there were multiple issues noted with the ways in which students dealt with the “Given” 
information. In particular, 23.1% of the time, NPs incorrectly stated the “Given” when they read it 
aloud. The most common error for both tasks was saying “line” rather than “line segment.” Second, 
46.2% of the time, NPs omitted notation or information when they wrote the “Given” statement in 
the first line of their proof. 

NPs’ warrants were vague 61.5% of the time. They often did not identify warrants as postulates, 
definitions, or theorems, and they frequently did not seem to know definitions of relevant concepts. 
For example, P12-T6 wrote “Definition of bisect” as a reason for Line 3. Yet, in order for the 
corresponding statement, ∠ABD ≅ ∠CBD, to be true, !" would have had to have been an angle 
bisector rather than a perpendicular bisector. In the next line of the proof, the student’s warrant 
references the particular diagram, rather than a definition. 

NPs displayed a lack of confidence in 34.6% of the PTIs. They sometimes would say that they 
could not remember definitions or reasons for their statements. For example, when asked about a 
reason for one of the steps in her proof, one NP said, “I don’t have one.” This statement also 
indicates a lack of using logical reasoning. Other comments made by NPs as they shared their 
thinking included: “I don’t know how to do this one” [P1]; “I don’t know how to explain it” [P4]; 
and “I remember having a lot of trouble on this because I didn’t understand” [P11]. 

Discussion and Conclusions 
Making use of smartpen technology, we explored the competencies and behaviors of high-attaining 

students with the expectation that even high-attaining students would have gaps in their abilities to 
prove. Clear differences were noted in the approaches taken by students who were successful with 
the two proof tasks, compared to students who were unsuccessful with those tasks. These findings 
contribute to the research on the teaching and learning of proof in geometry, specifically, the first 
part of Battista’s (2007) question: What components of proof are difficult for students and why? 
There are several important take-aways from these findings.  

First, when we compare the frequency percentages of competencies and behaviors observed in the 
two student groups in Table 4, the differences are relatively large. For example, the difference 
between how often SPs were observed productively attending to “Given” information compared to 
how often NPs did so was 77%, with SPs doing so 100% of the time and NPs only 23% of the time. 
This finding indicates that more work is needed to support students to productively attend to proof 
assumptions.  

With respect to geometric diagrams, 100% of SPs marked their diagrams, made valid claims 
supported by assumptions about diagrams, and used the diagrams as a check list or a planning tool, 
particularly when solving a proof at the “global” level (Koedinger & Anderson, 1990; Cai, 1994). In 
contrast, NPs did not always mark their diagrams; they sometimes used the diagrams to plan; and 
they rarely made appropriate assumptions about the diagrams. Rather than using the “Given” 
information to draw valid conclusions, NPs put forth inappropriate inferences which often seemed to 
come from what the diagram “looked like.” Doing so follows the perceptual proof scheme described 
by Harel & Sowder (2007).  
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There was also ample evidence to suggest that SPs had strong understandings related to the 
typology of warrants and that they understood how to use them to develop proof arguments. In 
contrast, this competency was rarely observed in the PTIs of NPs. Instead, NPs were sometimes 
observed justifying statements using reasons related to particular diagrams (e.g., B is the midpoint). 
Additionally, at times, NPs simply wrote, as their warrants, some mathematical object (e.g., bisector) 
without writing anything further, such as clearly identifying the type of bisector or explicitly stating 
whether they were thinking about a theorem or definition. NPs explicitly connected claims to 
definitions, stated definitions, and were able to articulate a definition of congruent triangles less than 
15% of the time. These issues connect to Reiss and colleagues’ (2001) claims about the importance 
of coordinating declarative knowledge with higher order skills. Regarding higher order skills, 
evidence that students were reasoning through their proofs in a logical manner was observed 93% of 
the time for SPs, compared to only 8% of NPs.  

The likelihood of SPs attending to important details in their proofs was also much greater than the 
likelihood of NPs doing so. The area of greatest difference was with respect to sub-arguments. SPs 
attended to sub-arguments in rigorous ways 100% of the time; NPs did so only 4% of the time. This 
finding relates to logical reasoning in that a sub-argument is a chain of reasoning that begins with an 
assumption and involves more than one deduction (Cirillo, Murtha, McCall, & Walters, 2017). SPs 
were also observed attending to other kinds of details in ways that were not observed in the NP data, 
such as: developing a plan for their proof (i.e., thinking at the global rather than local level); 
attending to triangle congruence criteria; and attending to the “Prove” statement. SPs were observed 
doing these things most of the time; while NPs were not. These findings are consistent with Healy 
and Hoyle’s (1998) descriptions of what makes proving so complex. In particular, they argued that 
proving involves: sorting out what is “Given” from what can be deduced and then organizing the 
conclusions that can be drawn from the “Given” into a coherent and complete argument that meets 
the proof goal.  

The use of smartpen technology allowed us to “see” and analyze the data in ways that we would not 
have been able to see or do without it. For example, the active ink feature in the pencast videos 
allowed us to track the ways in which students marked their diagrams and how they shifted back and 
forth between diagram and proof. We conjecture that this kind of analysis is only the tip of the 
methodological iceberg in terms of what is possible to do with this and other tracking technologies. 
What kinds of insights into student thinking might be gained from more studies like this one, is an 
open but exciting question. 
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