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Abstract 
Automated scoring for divergent thinking (DT) seeks to overcome a key obstacle to 

creativity measurement: the effort, cost, and reliability of scoring open-ended tests. For a 
common test of DT, the Alternate Uses Task (AUT), the primary automated approach casts the 
problem as a semantic distance between a prompt and the resulting idea in a text model. This 
work presents an alternative approach that greatly surpasses the performance of the best existing 
semantic distance approaches. Our system, Ocsai, fine-tunes deep neural network-based large-
language models (LLMs) on human-judged responses. Trained and evaluated against one of the 
largest collections of human-judged AUT responses, with 27 thousand responses collected from 
nine past studies, our fine-tuned large-language-models achieved up to r = .81 correlation with 
human raters, greatly surpassing current systems (r = .12 – .26). Further, learning transfers well 
to new test items and the approach is still robust with small numbers of training labels. We also 
compare prompt-based zero-shot and few-shot approaches, using GPT-3, ChatGPT, and GPT-4. 
This work also suggests a limit to the underlying assumptions of the semantic distance model, 
showing that a purely semantic approach that uses the stronger language representation of LLMs, 
while still improving on existing systems, does not achieve comparable improvements to our 
fine-tuned system. The increase in performance can support stronger applications and 
interventions in DT and opens the space of automated DT scoring to new areas for improving 
and understanding this branch of methods. 

Keywords: divergent thinking; alternate uses test; large-language models; automated 
scoring 
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Introduction 
Historically, divergent thinking (DT) research has been restrained by measurement 

challenges. By their nature, tests of DT are formulated in an open-ended way, which increases 
the time, effort, and cost of measurement. Recent advances in DT research, however, have found 
that automated methods can reliably score at least one type of DT task, the Alternate Uses Task 
(AUT; Beaty & Johnson, 2021; Dumas & Dunbar, 2014; Dumas et al., 2020). These methods 
capitalize on the natural property of text-mining models to calculate semantic distance or 
relationships between words as a measurable distance and use that distance as a proxy for how 
divergent an idea is from a prompt. An elegant feature of this approach is that it is effectively 
unsupervised, in that it does not require learning from training examples. 

However, there are limitations to the current semantic distance approach to automated 
DT scoring. First, the specific semantic models that are used have been outperformed in most 
other applications within natural language processing (Wang et al., 2018; Wang et al., 2019). 
New advancements in a class of deep-neural network-based models have shown a consistently 
stronger and more robust grasp of the relationships between word concepts (Devlin et al., 2018; 
Liu et al., 2019; Radford et al., 2018; Raffel et al., 2020; Vaswani et al., 2017; Yang et al., 2019). 
Further, the semantic models currently used in automated scoring only understand text as a set of 
independent words, whereas newer models account for the complexities of context when words 
are used together to communicate a sentence or passage. 

In this paper, we demonstrate a significant improvement in performance over existing 
AUT scoring methods by fine-tuning Large Language Models (LLMs)—a class of neural 
network-based approaches to modeling text—to score originality of AUT responses based on 
learned examples. We also measure the ability of this approach to scale to new prompts, the 
effect of training size on model strength, and the strength of LLMs without any fine-tuning. Our 
system, Ocsai, is available for free online.  

The new approach that we introduce here is supervised, in that it is given a set of input-
output pairs to learn from, toward being able to predict outputs for never-before-seen inputs. 
Supervised learning was previously applied to the AUT by Buczak et al. (2022), who used 
feature engineering to extract salient information for use with machine learning regression,  and 
Stevenson et al. (2020), who paired clustering on semantic model embeddings with human 
judged responses, assigning new responses the score representative of their closest cluster. In 
contrast, our approach uses fine-tuning, where neural network-based model that has already been 
trained–in this case, a Large Language Model trained on general texts–is further trained on task-
specific data. In doing so, a classifier can build from a strong foundational knowledge of 
language in learning how to interpret the relationship between an input and out – such as that 
between an AUT response and a multi-rater judgement of its originality. 

The improvements presented here are a strong leap over the current state-of-the-art 
approaches and provides evidence suggesting that they can be further improved with additional 
training data, larger models, and more iteration of the approach. LLMs such as the ones applied 
here—T5 (Raffel et al., 2020) and GPT-3 (Brown et al., 2020)—better reflect the current best 
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approaches in other text-based domains, in tasks such as sentiment analysis (Socher et al., 2013), 
commonsense reasoning (Roemmele et al., 2011), and question answering (Rajpurkar et al., 
2016). LLMs also introduce new challenges to the study of automated DT scoring. For one, deep 
neural network models, with millions or even billions of parameters, require novel approaches 
toward explaining their complex and nuanced internal logic (Barredo Arrieta et al., 2020; 
Gunning et al., 2019; Kojima et al., 2022). Additionally, the use of training data requires large, 
high-quality item-level ground truth, and may require more data-sharing coordination within the 
DT measurement community. 

This study asks the following research questions representing performance, robustness, 
and transferability: 

RQ1: How do LLMs affect performance for automated AUT scoring? 
RQ2: What is the performance effect of different training size, including prompt-based 
few-shot and zero-shot contexts? 
RQ3: How well do trained LLMs transfer to unseen prompts? 

These three questions study whether LLMs improve on existing automated scoring models, to 
what degree and in what contexts, and how well the perform in previously unseen situations. In 
addition to fine-tuning LLMs, we also measure a prompt-based approach without fine-tuning. 

Background 
Divergent Thinking and the Alternate Uses Task 

Tests of DT date back to the cognitive assessment efforts that emerged in the early 20th 
century (Plucker et al., 2022). Beginning with Guilford (1950), along with the seminal works by 
Torrance (1966, 1980; see Kim, 2006 for a review) and Runco (1991; 2013), DT tests have 
become the most popular method of creativity assessment (Snyder et al., 2019) in both 
psychoeducational settings and research. Quite a few longitudinal (Cramond et al., 2005; Runco 
et al., 2010; Torrance, 1972; Zaccaro et al., 2015) and meta-analytic studies (Kim, 2008; Said-
Metwaly et al., 2022) have provided evidence of their predictive power. DT tests are often used 
to predict creative potential (Runco & Acar, 2012) and are sometimes used for gifted 
identification. 

There are various types of DT tests besides AUT such as Consequences, Instances, 
Similarities, Realistic, Problem-Generation, Line Meanings, Picture Construction, Picture 
Completion, Pattern Meanings, and Asking Questions (Runco et al., 2016; Torrance, 1966; 
Wallach & Kogan, 1965). Due to the open-ended nature of these tasks, there are many different 
methods of scoring, but the conventional indices comprise fluency (number of produced 
responses), flexibility (diversity of responses), originality (unusual, uncommon responses), and 
elaboration (level of elegance and detail). Torrance Tests of Creative Thinking  is one example 
of a creativity assessment that builds on the principles and structure of DT tests where several 
DT tasks with varying type of task structures are integrated (Acar, 2023). For the past several 
decades, AUT has been the most popular type of DT test used in research, though not necessarily 
the strongest (Runco et al., 2016). In AUT, participants are asked to generate uses for everyday 
objects. Besides this essential structure, AUT has some variations in terms of explicit 
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instructions and specific prompts used. For example, the AUT in the verbal form of the Torrance 
Tests of Creative Thinking (referred to by Torrance as the Unusual Uses Test) uses the prompts 
tin can and cardboard box, whereas Wallach and Kogan’s test (1965) uses newspaper and knife. 
Like other DT tasks, AUT has been scored manually using human judges until recently. The next 
section presents these novel methods that are successful in quickly scoring responses produced 
for DT tests.  
Automated AUT Scoring 

Computational approaches to scoring creativity have existed for over fifty years 
(Forthmann & Doebler, 2022; Paulus, 1970; Paulus & Renzuli, 1968). The modern study of 
automated AUT scoring, however, has its roots in a method known as Latent Semantic Analysis 
(LSA; Deerwester et al., 1990; Landauer & Dumais, 1997). LSA is a method from information 
retrieval research that finds relationships between words by analyzing their cooccurrence in 
texts. It does so by building a term-document matrix of word counts and performing Singular 
Value Decomposition to reduce it to a lower-dimensional representation. A component of this 
decomposition is a semantic term-document space where similar words are closer together in a 
measurable, geometric sense (i.e., they are a similar mix of latent topics). Landauer and Dumais 
(1997) popularized LSA in psychology, noting that this approach approximated how humans 
themselves parse information from a relatively terse language. Since LSA, there have been 
several similar types of modeling approaches (e.g., pLSA, Hofmann, 2013; Non-Negative Matrix 
Factorization, Lee & Seung, 1999; Latent Dirichlet Allocation, Blei et al., 2003). More recently, 
a class of ‘word embedding models’ have trained semantic models on co-occurrences in word 
context windows (e.g., Word2Vec, Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013; 
GloVe, Pennington et al., 2014; fastText, Bojanowski et al., 2017). With word embedding 
models, it also became more commonplace to share models pre-trained on massive corpora of 
generalized English texts. 

The current state-of-the-art automated AUT scoring approach is a clever use of semantic 
scoring models like LSA. In a well-trained semantic model similar concepts hold council near 
each other, while disjoint concepts are further apart. The AUT seeks to measure thinking that is 
divergent, surprising, or disjoint from a given prompt: a goal that aligns neatly with distance 
within a semantic model. For automated scoring, each prompt and response are projected to 
vectors in the semantic space. The cosine of the angle is then used to calculate the distance 
between these vectors, or the semantic distance. This is the underlying approach taken by 
currently utilized automated AUT systems like Open Creativity Scoring (OCS, Organisciak & 
Dumas, 2020; https://openscoring.du.edu) and SemDis (Beaty & Johnson, 2021; 
http://semdis.wlu.psu.edu/). OCS and SemDis differ in terms of how texts are preprocessed, how 
phrases are handled, the training texts used to inform the models, and the semantic space that 
they use, but both operate under the same semantic space distance principle. 

Overall, these approaches have sought similar goals with varying methods. In this paper, 
semantic model is used to refer to the general body of modeling approaches that allows linearly 
comparable distances between words as a stand-in for similarities of semantics between those 
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words, whether by LSA or a word embedding approach. This approach to automated AUT 
scoring is unsupervised, as word distance can be calculated without any underlying knowledge of 
the task or responses. Recent work has also explored supervised approaches. As previously 
mentioned, Buczak et al. (2022) took a feature engineering and classification approach, 
augmenting word embeddings with other features and training predictive models using 
regressors such as Random Forests and XGBoost. Stevenson et al. (2020) clustered word 
embeddings of human-judged responses, assigning each cluster a mean human score and scoring 
new responses based on the cluster they best fit with. Finally, though not pursued as a supervised 
learning application, Beaty and Johnson (2021) found that raw semantic scores could be 
improved by a latent factor weighting, suggesting that tuning based on prior knowledge may 
provide a much higher ceiling for explaining originality scores than semantic distance alone. 

The present study approaches automated AUT scoring directly as supervised learning. 
Our underlying premise is the same, though the methods differ from Buczak et al.’s (2022) 
approach. Prior work has used the paradigm of fully supervised learning with feature engineering 
(Liu et al. 2021), which extracts salient information in responses and trains classifiers with that 
information. Our work follows the paradigm of pre-train and finetune (Liu et al., 2021), where a 
neural network model is pre-trained on a great deal of general data and is then trained to a task-
specific objective with training label. In this study, we use pretrained large language models 
from Text-to-Text Transfer Transformer (T5; Raffel et al., 2020) and Generative Pre-trained 
Transformer-3 (GPT-3; Brown et al., 2020). 
Recent Innovations in Natural Language Processing 

Recent years have seen a great deal of change in natural language processing approaches. 
Improvements to deep neural networks in the machine learning community have unlocked ways 
to model text with more nuance and complexity. One major innovation in text modeling is the 
transformer architecture, which utilizes a concept called attention (Vaswani et al., 2017). 
Modeling language as sequences of words has been a long-time goal in natural language 
processing, but traditional recurrent neural networks have run into limits due to computational 
complexity. Attention makes it computationally tractable for a transformer model to consider a 
long sequence of text, by selecting parts of the sequence that are most important. This allows 
training large models on not just words, but the complex contexts in which those words occur. 
Two notable early transformer-based architectures were Bidirectional Encoder Representations 
from Transformers (BERT; Devlin et al., 2018) and GPT (Radford et al., 2018). BERT was a 
landmark model and other architectures subsequently optimized or improved upon it including a 
Robustly Optimized BERT (RoBERTa; Liu et al., 2019), XLNet (Yang et al., 2019), and T5 
(Raffel et al., 2020). Transformer-based models—sometimes called Large Language Models 
(LLMs)—generally outperform word embedding models (WEMs) on standard tasks in natural 
language processing, and often by large margins (Wang et al., 2018; Wang et al., 2019). This 
includes tasks which are notably similar to AUT scoring, such as semantic textual similarity 
(e.g., Raffel et al., 2020).  
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With LLMs, a process called transfer learning is often practiced in which the models are 
trained on extraordinary quantities of text and are released publicly for use so that other 
researchers and practitioners can build on their model of language rather than rebuilding it. In 
applications, a pre-trained model undergoes a form of supervised learning where it is fine-tuned 
to a given problem. In fine-tuning, some or all the neural network layers are unfrozen so the 
model can continue being trained for specific tasks that individual researchers choose, except 
examples represent a task-specific objective rather than generic texts. In some cases, an 
additional classification layer is appended to the end of the network. 

In addition to transfer learning, larger LLMs have been found to be few-shot learners and 
even effective at some zero-shot tasks (Brown et al., 2020). Few-shot and zero-shot tasks do not 
fine-tune a pre-trained LLM, and instead directly query the ‘out-of-the-box' or ‘vanilla’ model to 
respond from its general understanding of language. This works well with generative models 
(e.g., GPT-3; Brown et al., 2020) or text-to-text-models (e.g., T5; Raffel et al. 2020), which can 
take a plain text input and provide a text response. For zero-shot, no examples of correct answers 
are provided (e.g., an input might ask, ‘how original is this use for a brick: {user response}?’. 
Few-shot functions similarly but shows a small number of examples of correctly scored 
responses, still in the input to a vanilla model. Both zero-shot and few-shot are sensitive to the 
manner of constructing the input prompt. 

This study focuses on the efficacy of LLM approaches for AUT scoring, measuring the 
value of both fine-tuning and few-shot, prompt-based scoring. In fine-tuning, a standard LLM 
model is fine-tuned with examples of human creativity judgments to gain a better sense of 
originality. Later, we measure few- and zero-shot approaches with GPT-3, ChatGPT, and GPT-4, 
finding that the raw model without fine-tuning does have some sense of originality out of the 
box, but it is improved with training. 

Data 
The data used in this study was compiled from several prior studies with available item-

level human judgments of AUT responses as well as recent research with elementary-aged 
participants from the Measure of Original Thinking in Elementary Students (MOTES) project 
(Dumas et al. 2023; Acar et al. 2023). The federated data in this study is potentially the largest 
collection of human-judged item-level AUT responses compiled, with 27,217 responses from 
2,039 participants across nine datasets. 

The overview of the datasets is as follows, organized by the identifier for each that is 
used for reporting. 

1. betal18 (Beaty et al., 2018): This dataset used AUT prompts for box and rope, 
administered to 171 adult participants, resulting in n = 2,918 total responses. Responses 
were judged by four raters, with an averaged random Intraclass correlation coefficient 
(ICC2k) of .81.1 

 

1 Data is available at https://osf.io/gz4fc/ 
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2. bs12 (Beaty & Silvia, 2012): This dataset used a single prompt, brick, with 133 college-
aged adults. Responses were judged by three raters (n = 1,807, ICC2k = .72).1 

3. dod20 (Dumas et al., 2020): This dataset consists of 10 AUT prompts - book, bottle, 
brick, fork, pants, rope, shoe, shovel, table, tire—administered to 92 participants, and 
comprises 5,435 total ratings. It was scored by three raters (n = 5,435, ICC2k = .85). 

4. hmsl (Hofelich Moer et al., 2016): This data comprises 638 participants and two AUT 
prompts, for paperclip and brick. Four judges rated the responses (n = 3,843, ICC2k 
=.67).2 

5. motesf: This dataset is a previously unreleased dataset associated with the Measuring 
Original Thinking in Elementary Students (MOTES) project, a study developing a DT 
test for elementary-aged students. The data used here is spelling-corrected data from an 
AUT portion of the measure, with 8 prompts administered to 385 participants and judged 
by 4 raters (n = 2,924, ICC2k = .73). 

6. motesp: This data corresponds to a pilot version of the motesf data, with 35 participants 
and the same prompts, as well as backpack and shoe. (n = 339, ICC2k = .81). 

7. setal08 (Silvia et al., 2008): This research studied DT through six tasks, including 
consequences, instances, and AUT. This study uses the AUT, which asked 241 
participants for creative uses for a brick and a knife. Three judges rated the originality of 
responses, with (n = 3,425, ICC2k = .48).3 

8. snb17 (Silvia et al, 2017): In this data, 142 college students were administered two AUT 
prompts: box and rope. Responses were judged by three raters (n = 2,272, ICC2k = .67).1 

9. snbmo09 (Silvia et al., 2009): Finally, in this dataset, 202 college-aged students were 
asked to develop alternate uses for three tasks: brick, knife, and box. In the originating 
study, 13 participants were removed for low engagement; this study uses all data 
available. Responses were judged by four raters (n = 4,099, ICC2k = .69). 

 

Table 1 

Counts of Rated AUT Responses Prior to De-duplication 

Dataset Responses 
motesp 963 
bs12 1807 
snb17 2372 
betal18 2918 
motesf 2924 
setal08 3425 

 

2 Data is available at https://conservancy.umn.edu/handle/11299/172116 
3 Data is available is at https://osf.io/9dnx7. 
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hmsl 3843 
snbmo09 4099 
dod20 5490 

 

 

In all datasets, individual AUT responses were coded by multiple human raters. In past 
research, this process involved multiple raters who scored the responses individually (Hass et al., 
2018; Silvia, 2011), selected maximal subset (Benedek et al., 2013; Shaw, 2021; Silvia, 2011) or 
as a total response set (Acar et al., 2023; Runco & Mraz, 1992; Silvia, 2008). Scoring originality 
can be considered as more of a normative task than an objective one. What this means is that if 
enough raters are asked, they generally move toward a consensus on originality ratings, even if 
well-trained individual raters may differ on the difference between highly and moderately 
original responses. We considered the breadth of different raters from different projects to be a 
benefit to the flexibility of the trained model. However, despite the contextual diversity, raters 
tend to be students or scholars, and future work could benefit from a more deliberately approach 
to demographic diversity among human judges. This study used the mean of multiple ratings for 
a ground truth judgment of each response’s originality. Data was rounded to the nearest 0.1. 
Datasets were remapped to a five-point scale if they did not originally use one, scaling linearly 
between the minimum and maximum score.  

Data items were deduplicated, so only one of each prompt/response pair was preserved. 
In total, 7,015 responses were removed for being repeated responses, 25.8% of the data, resulting 
in a final data size of 20,202 responses. The most repeated response was to use a brick as a 
paperweight; the ten most common are shown in Table 2. Deduplication was done only on exact 
duplicates, so for example ‘build a house’ and ‘make a house’ were not considered duplicates.  

 
Table 2 

Most Repeated Responses to Prompt Items 

prompt response count 
brick paperweight 169 
brick weapon 124 
brick paper weight 93 
brick door stop 89 
rope belt 84 
box hat 76 
brick build a house 67 
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In applied work with the AUT, deduplication would not necessarily be done, because it is 
common to see different participants give the same response. Some tests rely on past information 
about the common responses to help score originality (Torrance 1966, Torrance 1972).  The 
motivation for excluding duplicate responses here is that duplicates greatly advantage supervised 
learning without revealing much about the underlying robustness of the tool. It is a form of data 
leakage, where some of the testing data makes its way into training data, and a serious challenge 
to reproducible results commonly seen in fields newly adopting machine learning (Kapoor & 
Narayanan, 2022). While in this case it is not necessarily an unrealistic advantage, this study 
aims to focus more on the robustness of LLMs in learning the bounds of the AUT and extending 
it to new responses or even new prompts. To put it another way, without de-duplication our 
system would look much stronger–but the source of that strength would tell us less about the 
generalizability of the approach or how well the system understands the task. It would also make 
the findings more biased to our specific corpus, because the level of duplication seen in our 
corpus is not particularly what other studies may have. We briefly report on an un-deduplicated 
model, however, for comparison with prior work. 

Ground truth scores (i.e., human judged originality ratings) for repeating responses were 
averaged. For example, each participant that had ‘paperweight’ as a use for ‘brick’ was rated by 
a panel of human judges, and the ground truth presented in this study combined all those 
judgments into a single consistent score prior to de-duplication. In this way, although the 
repeated responses did not appear in our training dataset more than once, all the trained human 
judges who rated those repeated responses provided equally weighted information about what the 
true originality of that response was, because we averaged those ratings. 

Input data was randomized and split into training, cross-validation, and test data. The 
response-level randomization and deduplication are incongruous with participant-level metrics, 
since no participants are wholly represented within the test data, and only response-level 
judgements are reported.  

Computer Experiments 
Data was prepared for experiments in performance, robustness, and transferability. 

These experiments align to the three research questions.  
Performance: How do LLMs affect performance for automated AUT scoring? 

To determine the measure a general performance of different scoring approaches, an 80-
5-15 fully randomized training-cross-validation-testing split was used, where supervised learning 
methods were trained with 80% of the entire data and evaluation was performed on 15% of the 
dataset. The remaining cross-validation data is optionally used for seeing progress against a held-
out set during training without compromising the testing data. 
Robustness: What is the performance effect of increases in training data size? 

Supervised learning requires training examples, but how many examples? Where the 
primary performance evaluation was split from all ground truth, it is also worth measuring the 
robustness of supervised learning relative to training dataset size. Using the same split as used 
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above, models were trained with smaller subsets of the training data, to see how the availability 
of training data affects the quality of the model. 

Additionally, we evaluated prompt-based approaches (Liu et., 2022) which do not use 
any fine-tuning. Rather, they explicitly (i.e., in plain English) ask a pre-trained model to score 
the originality of a response. We compared prompts with five example scores provided, as well 
as with none. 
Transferability: How do trained LLMs transfer to unseen prompts?  

The above experiments focus on how the model learns to score new responses of known 
prompts. In considering transferability, this study also looks at how well LLMs can generalize 
the AUT task, to score new responses for never-before-seen prompts. 

For this experiment, input data is split by prompt. The prompts represented in the training 
data and test data are mutually exclusive. Training prompts included brick, rope, box, knife, 
book, table, tire, ball, lightbulb, pencil, shoe, sock, fork, hat, toothbrush, and backpack. Prompts 
in the test set were paperclip, spoon, bottle, shovel, and pants.	

Methods 
This study compared supervised learning with two LLM architectures—T5 (Raffel et al, 

2020) and GPT-3 (Brown et al., 2020) with a typical unsupervised semantic model baseline, 
using the implementations from Dumas et. al., (2020) and Beaty and Johnson (2021). 
Additionally, an embedding-distance unsupervised application of GPT-3 and T5 more in-line 
with semantic approaches is compared. 
Baseline: Semantic Distance Methods  

As a baseline, the current state-of-the-art automated scoring models are applied, which 
use distance metrics in semantic spaces. Specifically, scoring is applied from Open Creativity 
Scoring (OCS, Organisciak & Dumas 2020; Dumas et al., 2020), and SemDis (Beaty & Johnson, 
2021). 

SemDis includes five trained models, as well as an ensemble score which takes the mean 
of all five scores (Beaty & Johnson, 2021). The ensemble is chosen for reporting here, as 
SemDis_MEAN, as it is the authors’ recommendation and the best performer. Additional 
parameter recommendations from Beaty and Johnson (2021) are also followed: using text 
cleaning with stoplist word removal and applying multiplicative rather than additive composition 
of words into phrases. 

The Open Creativity Scoring baseline is based on work from Dumas et al. (2020) and 
uses the GloVe-based model recommended in that paper. GloVe is a form of word embedding 
model first described by Pennington et al. (2014) and released with a set of pretrained models. 
Here, the 300-dimension Gigaword 6B pre-trained model is used (Pennington et al., 2014), 
which was trained on 6 billion words from Wikipedia and the Gigaword 5 corpus (Parker et al., 
2011). As with SemDis, the author-recommended parameters are followed: the system removes 
function words (stoplisting), composes phrases with a mean of word vectors weighted by their 
relative importance (term weighting), and avoids penalizing responses that reuse a prompt word 
by excluding the prompt word from responses. 
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Both baseline systems are available online: SemDis at http://semdis.wlu.psu.edu and 
Open Creativity Scoring at https://openscoring.du.edu. 
Semantic Distance with Large Language Models 

LLMs are generally not successful at out of the box semantic distance (Reimers & 
Gurevych, 2019). However, it is possible to build downstream semantic distance models on top 
of LLMs, learned from rated pairs of sentences (Neelakantan et al., 2022; Ni et al., 2021; 
Reimers & Gurevych, 2019). LLM-based embedding could potentially leverage the stronger 
internal representation of language seen in an LLM and better handling of phrases while still 
allowing for unsupervised use in the tradition of earlier automated DT scoring systems. 

Here, embedding-based semantic distance scores are reported from GPT-3 Embeddings 
(Neelakantan et al., 2022) and Sentence-T5 (Ni et al., 2021). Each of these models have different 
sizes, as listed in Table 3. Note that the architecture of the Sentence-T5 models only include half 
of their corresponding T5 model, which is why the model named st5-3B has half of the 3 billion 
parameters that its naming suggests. 
Table 3 

Size of Embedding Models Trained on LLMs 

Model Model size Embedding size 
gpt-text-similarity-ada 300M parameters 1024 
gpt-text-similarity-babbage 1.2B parameters 2048 
st5-base 110M parameters 768 
st5-large 335M parameters 768 
st5-3b 1.24B parameters 768 

 
 

Fine-Tuned Large Language Models 
Large Language Models are the primary focus of this study. Here, two architectures are 

evaluated: T5 (Raffel et al., 2020) and GPT-3 (Brown et al., 2020). 
T5: T5  is set of architectures introduced by Raffel et al. (2020). T5 was the product of a 

study comparing various improvements to BERT-like models. Since LLMs can often be 
improved by larger models and more training texts, it is sometimes difficult to determine where 
improvements are coming from. Raffel et al. (2020) compared different modeling approaches 
while controlling for computational resources and data contexts, releasing models for the best-
performing architectures.  

This study uses the T5-Base model, which has 220 million parameters in its network. 
There are three larger released T5 models, up to 11 billion parameters, which would likely 
improve task performance with a greater cost to implementation and transferability. 
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T5 is a text-to-text model, which casts all use into a format where text is given as input, 
and the model in turn provides output as text4. This may seem an ill-fit for AUT scoring, where 
the intent is to generate a continuous quantified variable, not unrestrained text generation. We 
apply no constraint to make the output a number; T5 could generate a soliloquy in the style of 
Hamlet if it desired to. Nonetheless, after fine-tuning, it learns that the response is expected to be 
numerical. 

To accommodate the text-to-text format, training and inference inputs were formatted to 
the follow template: 

{prefix} {prompt} {response} , 
where the prefix is ‘autscore:’, the prompt is structured as “question: What is 

a surprising use for X” and the response is structured as “response: Y”. For 
training, the target output was the ground truth score, with one precision point, input as a string 
of the number. For inference, this number was predicted and interpreted as a number. 
Demonstrative examples are shown in Table 4. 

 
Table 4 

Example Inputs and Outputs for T5 

Input Output 
autscore question: What is a surprising use for a BOOK response: relay race marker 5.0 
autscore question: What is a surprising use for a PANTS response: take them off 1.5 
autscore question: What is a surprising use for a SHOE response: fungus grower 5.0 
autscore question: What is a surprising use for a FORK response: utensil 1.0 

 
GPT-3: GPT-3 is a model from OpenAI (Brown et al., 2020) that prioritizes text 

generation, aiming to predict what text follows an input. Generating realistic human-like text 
requires some variability, which would make for poor classification. However, it is possible to 
turn down the ‘temperature’, the parameter which affects how variable the sampling of new 
tokens is. With the temperature at zero, the model outputs best guess text, allowing it to be used 
in a similar text-to-text manner as T5. 

The largest GPT-3 models have up to 175B parameters, while smaller released models 
have approximately 350M, 1.3B, and 6.7B parameters. This study fine-tunes a version of each 
model, which are referred to – from smallest to largest—as ada, babbage, curie, and davinci. 
GPT-3 is only available through a paid application programming interface (API) from OpenAI. 
This means its use and tuning have some costs, but processing occurs on a hosted server, 
lowering the complexity and computational needs of applying it. 

 

4 The title of this manuscript was suggested by an LLM in this manner, an example of the text-to-text principle that 
seemed appropriately demonstrative at the time of manuscript preparation in early 2022, but which has likely grown 
familiar to most readers in light of the widely-popular release of ChatGPT at the end of that year. 
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Zero-Shot GPT-3: Finally, a novel zero-shot approach is compared to test the inherent 
knowledge of a GPT-3, without fine-tuning. Zero-shot is a type of unsupervised learning where, 
despite not seeing prior examples, a model can infer sensible classes from a briefly described 
context. For example, one might ask “What is the originality of [sentence x] on a scale of 1-10”, 
and a model may infer the nature of the task and the criteria (1-10). However, this approach does 
benefit from prompt engineering (i.e., carefully wording the input to the model to get the most 
useful output) to determine what types of questions are best understood by the model.  

 
Results 

Overall Performance for Replicating Human Judgements 
The overall performance of the large language model methods, on randomized, 

deduplicated AUT responses, is presented in the ALL column of Table 5. Pearson correlation 
between the human-judged ground truth and the model prediction is reported. Additionally, 
correlation with humans on each sub-dataset is shown. Performance ranges from r = .12 to r = 
.81. Since the fine-tuned approaches are on the same scale as the human judgements, Root Mean 
Square Error (RMSE) is also provided. In addition to overall correlation, a mean of per-prompt 

correlations is provided, ∑ !!

"($)&∈$  for all prompts P (Table 6). Mean prompt correlation is less 

sensitive to difficulties with individual prompts and different prompt sample sizes. Mean prompt 
correlations range from r = .19 to .80.  

The hmsl (Hofelich Moer et al., 2016) and setal08 (Silvia et al., 2018) datasets were 
previously used for automated scoring by Buczak et al (2022), achieving response-level 
correlations of up .73 and .57, respectively, and RMSE of up to .51 and .45. Their work did not 
do a deduplication step, so for comparability, we trained a GPT-3 Davinci-sized model on data 
without deduplication, achieving respective performance on hmsl and setal08 of r= .82 and 
r=.77, with RMSE of .48 and .38. Though we caution again about data leakage, the overall 
performance of this un-deduplicated model does offer a glimpse into how it might perform in 
practice, where previously seen responses are typical. This model’s overall correlation across all 
datasets is r =.86 (RMSE=.45). 
Table 5 

Overall Performance of Each Model 

 ALL betal18 bs12 dod20 hmsl motesf motesp setal08 snb17 snbmo09 
Baseline           
semdis-mean .120 .210 .167* .243 .155 .191 -.045† .064† .157* -.020† 
ocs-main .256 .319 .178 .371 .364 .257 .337* .328 .193 .295 
LLM Embeddings           
st5-base .223 .443 .227 .451 .278 .221 .421 .257 .295 .253 
st5-large .227 .425 .219 .385 .309 .226 .403* .245 .307 .267 
st5-3b .204 .393 .260 .349 .280 .199 .455 .234 .288 .231 
gpt3_emb-ada .285 .396 .284 .429 .396 .382 .480 .314 .369 .254 
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gpt3_emb-babbage .173 .320 .214 .352 .252 .214 .340* .243 .319 .151 
LLM Fine-tuned           
t5-base .756 (.595) .602 .593 .716 .725 .661 .484 .660 .627 .655 
gpt3-ada .764 (.573) .627 .611 .715 .724 .686 .594 .694 .615 .686 
gpt3-babbage .792 (.541) .704 .671 .758 .729 .730 .755 .723 .619 .727 
gpt3-curie .791 (.543) .749 .651 .780 .725 .732 .616 .648 .643 .739 
gpt3-davinci .813 (.518) .762 .712 .802 .730 .801 .717 .697 .698 .744 

Note: Performance measured in Pearson Correlation. Root Mean Squared Error of overall 
performance in parentheses for fine-tuned models. Overall performance presented as ALL; other 
columns present individual datasets. Best results, per condition, are marked in boldface. All 
results are significant at p < .01, except: *p < .05 and †p > .05. 

Table 6 shows the performance of each prompt per model, along with the mean and 
standard deviation. The LLM models have lower standard deviation, while the semantic distance 
methods vary per prompt. 
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Table 6 

Performance of Each Model Per Prompt 
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M SD 
semdis-mean .09 .09 .22 .10 .11 .11 .19 .30 .01 .28 .34 .14 .33 .19 .24 .10 .04 .34 .36 .16 .19 .10 
ocs-main .11 .38 .45 .46 .24 .30 .26 .41 .30 -.07 .41 .28 .30 .21 .17 .34 .35 .48 .61 .26 .31 .14 
st5-base .63 .51 .41 .43 .32 .22 .40 .08 .36 .23 .52 .34 .25 .33 .62 .54 .36 .34 .34 .27 .36 .15 
st5-large .35 .43 .34 .36 .33 .22 .46 .11 .31 .11 .48 .30 .23 .35 .54 .44 .37 .29 .30 .44 .33 .12 
st5-3b .39 .39 .23 .34 .29 .25 .38 .10 .28 .08 .41 .29 .24 .30 .47 .25 .38 .27 .38 .45 .30 .11 
gpt3_emb-ada .35 .60 .42 .45 .38 .29 .37 .42 .38 .29 .42 .45 .57 .31 .71 .38 .39 .39 .40 .53 .42 .11 
gpt3_emb-
babbage .29 .47 .28 .33 .28 .21 .42 .24 .28 .26 .38 .37 .47 .30 .65 .42 .36 .30 .28 .55 .34 .12 

t5-base .55 .70 .77 .82 .61 .61 .53 .54 .72 .57 .86 .75 .76 .49 .70 .70 .51 .85 .82 .71 .68 .12 
gpt3-ada .40 .78 .68 .80 .65 .60 .79 .66 .75 .75 .83 .77 .73 .45 .73 .80 .53 .84 .85 .75 .70 .13 
gpt3-babbage .62 .81 .70 .88 .69 .64 .76 .65 .78 .72 .88 .73 .85 .48 .87 .83 .69 .69 .83 .86 .73 .75 
gpt3-curie .17 .79 .78 .86 .73 .61 .79 .60 .77 .71 .90 .75 .80 .54 .86 .81 .71 .87 .86 .80 .73 .16 
gpt3-davinci .80 .84 .71 .88 .74 .64 .83 .77 .81 .83 .91 .79 .85 .56 .91 .79 .69 .90 .92 .81 .80 .09 

Note. Per-prompt mean correlation offers an alternative overall measure of performance. Best 
results, per condition, marked in boldface. 

Robustness to Size of Training Data 
How does training size affect quality? It has been noted that LLMs are few-shot learners 

(Brown et al., 2020), meaning they can learn a task from very few examples. Figure 1 shows the 
performance of the GPT-3 ada and babbage-sized models fine-tuned with different proportions 
of rating data. With 5% of the data (804 training labels), r = .61 for babbage and r = .55 for ada 
are still notable improvements over the baseline models. Additional training data is important 
early but begins to level off. For babbage, four-fifths of the total improvements seen in Figure 1 
occur with just 40% of the data. 
  



DIVERGENT THINKING SCORING WITH LARGE LANGUAGE MODELS  
 

   
 

17 

Figure 1 

Effect of increasing training size 

 

The larger model learns more effectively with fewer training examples. This is 
particularly apparent with even less training data: 160 labels, or 1% of the full set. With that low 
count of training labels, r = .48 with babbage while ada has a performance of r = .31, .64 of the 
performance of the bigger model. That relative performance ratio grows quickly to .91 with 804 
labels, then is relatively stable between .95 – .97 from 10 – 100% of the training labels.  
Prompt-based Few-shot Learning 

With less than 200 training labels, the performance of a large language model is still 
notably stronger than the baseline models from SemDis and OCS. This begs two questions: how 
little data is needed to match baseline performance (few-shot), and how good can an LLM be 
without any training data (zero-shot), solely on the strength of its understanding of language. 

We approached this question without any fine-tuning. Rather, we used an out-of-the-box 
‘vanilla’ model and its own internal understanding of language. Using GPT-3’s largest model 
size as of August 2022, as well as March 2023 snapshots of ChatGPT (based on Ouyang et al. 
2022) and GPT-4 (OpenAI 2023). we constructed two prompt types. For few-shot engineering, 
we constructed a text prompt asking for a rating of how original each use is, then enumerated 5 
training examples and 10 test examples, and provided ratings for the training examples. The 
choice to use 5 training examples in few shot was motivated by a conservative consideration of 
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costs per scored response, allowing for both training examples and multiple unscored responses 
to be contained within the prompt. As LLMs grow to allow longer input texts as well as lowering 
in cost, a worthwhile avenue for future research will be to measure few-shot with more training 
examples. This change is already being seen with ChatGPT (referred to as GPT 3.5), which has 
costs at a fraction of other models, and GPT-4, which allows 8,192 token in its base model. We 
present a brief example of prompt-based scoring with GPT-4 with 20 training examples and 20 
test examples. Table 7 shows an example prompt in this style. The scale was multiplied by 10, 
due to how text generation functions: full numbers count as a single token whereas decimal 
numbers are three tokens, which means three predictive decisions for each score rather than one. 
Table 7 

Example of a Few-Shot Text-to-Text Prompt and Completion 

Example Prompt Model Completion 
Below is a list of uses for a SOCK. On a scale of 10-50, judge how 
original each use for a sock is, where 10 is 'not at all creative' and 
50 is 'very creative': 
 
USES 
1. to use it like a puppet. 
2. You can put googly eyes and make a sock puppet show. 
3. You can color it and maybe make a snake. 
4. a cool and funny puppet. 
5. maybe you could put it on your hands and pretend to have superpowers. 
6. using it as gloves. 
7. you could use it for ASMR 
8. Cut them and make a 3D sculpture. 
9. you can make a dress for your doll 
10. to use it like a backpack or store money in it 
 
RATINGS 
1. 27 
2. 27 
3. 32 
4. 24 
5. 36 
6. 

20 
7. 40 
8. 50 
9. 45 
10. 35 
 

Note: The prompt is what is provided to the model, including ratings for the first five items here. 
The completion is how the model continues from the prompt, starting after ‘6.’ in this example. 
 

For zero-shot, a similar prompt was used, but with no examples whatsoever. Rather, the 
model had to rely entirely on its own interpretation of ‘how original each use for X’ is. Since 10-
50 is an unusual scale, we used 1-10 and divided by 2, meaning the few-shot completions were at 
a half-point step. Results are shown in Table 8. 
Table 8 
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Zero-shot and Few-shot performance (GPT-3 DaVinci, ChatGPT, GPT-4), Overall and By 
Dataset 

N Model ALL betal18 bs12 dod20 hmsl motesf motesp setal08 snb17 snbmo09 
0 GPT-3  .13 .15 .17 .19 .17 .25 .09 .10 .31 .18  

ChatGPT .19 .24 .17 .29 .26 .37 .52 .15 .28 .22 
 GPT-4 .53 .57 .52 .71 .64 .71 .67 .62 .52 .68 
5 GPT-3  .42 .18 .38 .43 .43 .38 .37 .24 .09 .36 
 ChatGPT .43 .32 .28 .52 .30 .50 .43 .12 .27 .34 
 GPT-4 .66 .64 .61 .72 .56 .72 .71 .62 .49 .62 

20 GPT-4 .70 .63 .63 .75 .71 .73 .68 .62 .57 .67 
 

Transferability to Unseen Prompts 
In addition to scoring unseen responses, can large language models learn the format of 

the alternate uses task itself, and be applied to never-before-seen items? Table 9 addresses this 
question, reapplying models trained on one set of unique prompt items and evaluating on 
another, entirely unseen set. This was conceptualized as the strongest test of the usefulness of 
supervised LLMs, because this is the use case that the previously established unsupervised 
learning approach (i.e., the semantic distance approach) should excel at since it never uses any 
training data to begin with. The best model performed at an overall r = .63 (.66 at prompt-level), 
while baselines showed r = .14 –.28 (mean of prompt r = .19 –.32). 

Table 9 

Per-Prompt Performance for Held-Out Prompts (Pearson Correlation) 

model bottle pants paperclip shovel spoon ALL M SD 
semdis-mean .24 .20 .14 .15 .21 .14 .19 .04 
ocs-main .46 .27 .20 .44 .23 .28 .32 .11 
t5-base .49 .43 .46 .34 .29 .47 .40 .08 
gpt3-ada .71 .65 .55 .45 .54 .60 .58 .09 
gpt3-babbage .78 .69 .56 .67 .52 .63 .64 .09 
gpt3-curie .76 .69 .54 .72 .58 .63 .66 .08 

 

Discussion 
Fine-tuned Large Language Models Greatly Outperform Current Automated Scoring 
Approaches  

The results demonstrate that fine-tuned large-language models outperform the current 
state-of-the-art approaches from Open Creativity Scoring (Dumas et al., 2020) and SemDis 
(Beaty & Johnson, 2021). The magnitude of the improvement is extraordinary. Evaluated against 
what may be the largest multi-human-judged dataset of AUT responses, the best SemDis model 
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showed performance of r = .12 (mean of prompts = .19), while OCS performed at r = .26 (mean 
of prompts = .31). The fine-tuned LLMs presented here, T5 and GPT-3, ranged from r = .76 to r 
= .81. This held true not only across datasets, each with variation in raters and participants, but 
also across prompts. 

Previous work has shown the value of supervised learning for AUT scoring (Buczak et 
al., 2022). This study supports those findings with a different style of supervised learning, fine-
tuning deep neural network text models to learn the style of the AUT task and prompts. 
Presented is an initial exploration of these methods, and we expect there is a good deal of 
potential improvements yet to explore. 

For context, the limit at which humans correlated with themselves is likely not much 
higher than the correlation between the LLMs and the humans in this study. For example, we 
examined responses given more than once, and found that among randomized pairings of 
duplicated response, human-judges correlated with other human judges at an average correlation 
of r = .83. Comparing a single response judgement to the less noisy mean of all judgments of its 
duplicates, the correlation was r = .88. This value might be interpreted as the approximate ceiling 
at which we could expect a model to correlate with human judgements.  

The question remains: why are LLMs so capable in this context? Most of the benefit is 
likely from the apparent source: that LLMs have a strong and very robust understanding of 
language. The robustness of the models with few training labels supports this view. Yet, some of 
the improvements may also follow from other hidden patterns, beyond just understanding the 
task. For example, even though we removed exact duplicates, there are inexact duplicates, where 
the same concept is expressed with different words, punctuation, or spelling. For example, our 
deduplication removed 260 responses of ‘paperweight’ or ‘paper weight’, but one of each 
remained, as well as ‘weight to hold objects in place’ and ‘use as a weight’.  

It's also likely that LLMs find another hidden pattern: the behaviors of given rater groups. 
Some raters may be more averse to the lowest or highest range, some may distribute their ratings 
more while others may strongly adhere to the mode. For the sake of discussion, Figure 2 shows 
the distribution of model predictions, along with their skew and Kolmogorov–Smirnov D to 
show goodness of fit. It shows how the LLM fine-tuning models hew much more closely to the 
human distribution than the baselines and LLM embedding approaches. Interestingly, the 
entropy of human judgments for a given item – a measure of how unpredictable the distribution 
is – does not correlate with our approach’s performance on that item (r =.004). Further work 
could benefit from embracing rater variance or disagreement, challenging supervised learning 
models with more of the unpredictability of humans to encourage more generalizable models. 
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Figure 2 

Plots of Model Prediction Distribution Density Compared to Ground Truth Human Judgments 

 

 
Note: Ground truth judgments shown in dotted line. Kernel density estimation used to compare 
distribution with different scales. Skewness and Kolmogorov-Smirnov statistic D noted. Ground 
truth skew is 0.51. 
 

Large Language Models Can Be Robust with Only a Small Number of Training Examples 
A benefit of unsupervised semantic-distance-based approaches such as those used by 

OCS and SemDis is that they do not need training. Yet, the advantage is small: Ocsai surpasses 
the performance of semantic distance models with only a small number of training examples, as 
low as 1% of our full training data. Our experiments trained for 18 AUT prompts 
simultaneously; in settings with only a handful of prompts, even fewer labels would be needed. 

Further, the internal understanding of language in LLMs is competitive without any fine-
tuning, particularly with new models such as ChatGPT and GPT-4. For a text-to-text model, 
crafting an appropriate prompt for text completion, referred to as prompt engineering (Liu et al., 
2021), may be sufficient. Simply asking – literally, in plain English – a non-finetuned model to 
rate originality without having shown it examples of a good rating, we found a statistically 
significant but relatively low correlation for GPT-3 (r = .13, p < .001) and ChatGPT (r=.19, 
p<.001). comparable to the baseline models. The March 2023 release of GPT-4 (OpenAI) 
showed remarkable progress, far exceeding semantic models even for zero-shot (r=.53). 
Providing five examples of good scores in the question raised that performance to as high as 
r=.66 (GPT-4). Given its larger input limit, GPT-4 can take more examples in its prompt; with 
20 prompt-based examples, performance is yet higher (r=.70). LLMs are sensitive to prompt 



DIVERGENT THINKING SCORING WITH LARGE LANGUAGE MODELS  
 

   
 

22 

engineering tweaks, and there are likely adjustments which improve the performance of this 
approach. 

There is still a benefit to adding more labels, even though the performance improvements 
brought by each new label begin to level off. Observing so, it will be valuable for more DT 
researchers to share their response-level coded items, as done by the authors of the datasets 
studied here (Beaty et al, 2018; Beaty and Silvia, 2012; Dumas et al., 2020; Hoeflich Mohr et al., 
2016; Silvia et al., 2008; Silvia et al, 2017; Silvia et al., 2009). Further, we argue that the 
community would benefit from a common benchmark dataset, normalized and doublechecked 
for consistency and quality, and with standardized response splits for training, cross-validation, 
and testing. Similar benchmarks are used in different communities (e.g., TREC for information 
retrieval, Voorhees & Harman 2005; SemEval, GLUE, and SuperGLUE for various natural 
language processing tasks, Wang et al., 2018; Wang et al., 2019; MIREX for digital musicology, 
Downie 2008), and would allow future supervised learning work to be comparable across 
publications. 
There are Limits to the Semantic Distance Theoretical Model 

In considering the future of semantic distance models, perhaps the finding of greatest 
import was what we observed in applying semantic distance embedding models based on LLMs. 
The LLM embeddings did improve on the baselines, but only marginally: an average 
performance of .22, compared to an average of .19 for the baselines. However, within the 
different models compared, a surprising trend occurred. 

Among LLMs, the most important factor for performance is the size of the model 
(Kaplan et al., 2020). While the scale and quality of input data are also important (Hoffman et 
al., 2022, Raffel et al., 2020), when using the same data and architecture, we nearly always 
observe performance improvements with large models (Kaplan et al., 2020). This pattern did not 
hold for LLM embeddings in this paper: st5-base outperformed st5-3b, gpt-3’s ada outperformed 
babbage. 

This result challenges the assumption underlying the use of semantic distance as a proxy 
for DT, suggesting an upper limit to how effective semantic distance can be. As a model’s 
understanding of language improved, the relationship of its semantic distance to originality 
began to weaken. The reason is yet unclear but the consequences for the automated scoring 
community are significant, and it bears future investigation to understand these limits, by 
studying how the smaller and larger models differ. 
Transparency and Explainability of Machine Learning Models 

A challenge of all automated scoring, semantic distance models and LLMs alike, is the 
risk of importing various biases from the training texts, or from the human judges used as a 
ground truth. In training the underlying models, the goal is generally to reflect the language seen 
in the originating text as realistically as possible. However, any broad corpus of texts will 
contain a litany of pervasive cultural biases. Some such biases are subtly applied in the English 
language, such as gender bias in discussing or representing various professions yet are 
undeniably harmful if codified going forward. In building automated models, particularly ones 
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which may one day be used in high-stakes educational settings (i.e., identifying gifted students in 
schools), we should hope for something better: more equitable and less biased than a general 
cross-section of human-written language. 

There are some theoretical benefits of automated systems in tracking bias, though they 
need attention and action from researchers. Unlike open-ended tests which need to be scored by 
various trained judges, they can operate consistently across all collected datasets, and can be 
inspected for biases more directly. Whether a model is biased and to what degree is out in the 
open, and able to be published. In practice however, how the field would inspect for biases and 
what we would do about them could be a logistic challenge. 

Inspecting for biases as well as developing ‘explainable’ artificial intelligence systems 
are active areas of study (e.g., Barredo Arrieta et al., 2020; Gunning et al., 2019). Generally, the 
reduced complexity of semantic approaches has been a benefit in this respect: cosine similarity is 
an explainable process rather than a tangle of complex decisions—a ‘black box’—and the 
models themselves are easier to inspect for undesirable correlations. LLMs work much more 
closely to how we hope they would, but their complexity may allow for undesired biases to 
escape notice (Rudin 2019), or for other stakeholders (e.g., parents of respondents) to develop 
distrust in the artificially intelligent judgements. Some newer large language models even pre-
empt high stakes use, out of concern for uninspected biases (BigScience, 2022). There are 
emerging approaches for making LLM rationale more explicit. Recent work reported that when 
presented with a reasoning task, asking LLMs to ‘think it through step by step’ not only results in 
a description of how they arrived at their conclusion, but the conclusions themselves tend to be 
more accurate (Kojima et al., 2022). A challenge, however, is that an LLM’s explanation of its 
thought process can be ‘hallucinated’: it can offer a description, but that does not necessarily 
mean that is how the LLM made the choice. Another approach would be a regression analysis, to 
see how much of the LLM’s score can be explained by a model of textual and contextual 
features. For example, elaboration has confounded semantic models (Forthmann et al., 2019) and 
the treatment for varying numbers of words has remained in debate, from term weighting 
(Dumas et al., 2020) to multiplicative composition (Beaty & Johnson 2021). If the confound still 
remains in LLM scoring, and to what degree relative to its effect on human judges, would be a 
valuable question for further investigation.  

In the area of fairness, the supervised learning approaches investigated here present 
progress over semantic models. First, they show a greatly increased ability to mimic human 
raters—specifically, a composite of multiple raters, which softens the challenges of validity and 
possible biases that come with individual graders on open-ended tests. This means the models 
increasingly look more like our best alternative: multiple trained judges. Indeed, it offers us a 
way of thinking of these systems: they are an extra judge, one that hews closer to a panel of 
multiple raters with less inter-response variability than seen with individual raters. At the same 
time, as a reflection of human judgment,  LLM automated scoring should also be critically 
approached and inspected for adverse bias in the same way that we do with humans. Secondly, 
supervised learning can continue to learn and improve. New human judgments or corrections can 
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be used to improve models, where errors found in semantic model scoring do not have easy 
correctives. 

Explainability and fairness will be an important part of the discussion moving forward, 
and it is worth considering the activities of other communities in adapting machine learning 
models in creativity research. For example, the European Union’s proposed AI Act outlines 
protocols for using machine learning in high-stakes decision making, including educational 
contexts. This includes standardized assessment of risks and human oversight or possibility for 
human intervention (Veale & Borgesius, 2021). 
Release of Materials 

The best performing models from this study are available as Ocsai, a free web-based tool, 
at the Open Creativity Scoring website5. In the experiments performed for this study, duplicated 
responses were removed, so that the model cannot ‘cheat’ by seeing the exact same response in 
evaluation as it saw in training. For future applications, we acknowledge the value of the model 
having this knowledge and trained an ALL split without duplicate removal that is also available 
for free online. This condition used a greater portion, 95%, of the full dataset. Code and results 
for experiments are available at GitHub6. This includes the dataset of AUT responses, to 
encourage scholars hoping to work with the same composite of prior AUT datasets, as well as 
applying our normalizations and splits to the data. Experiments and analysis are prepared as 
scientific notebooks which can be run in a web browser. 

Further Work 
The results presented here are an initial investigation into the performance, robustness, 

and transferability of LLMs for automated evaluation of DT tests. The results establish the 
practicality of the approach, but also open the door to a good deal of new inquiry. There remain 
many potential improvements to study, effects that need further investigation, and new 
considerations opened by this body of approaches. There are also additional tests of DT (see 
(Runco et al., 2016 for a comparison) beyond the popular AUT such as such as consequences 
(‘what would happen if…’, Guilford, Christensen, & Merrifield, 1958) and instances (‘list things 
that are…’ Wallach & Kogan, 1965). which may be similarly evaluated with our approach. 
Particularly intriguing are applications on much longer responses that can benefit from the 
natural language understanding of LLMs. For example, Johnson et al. (2022) applied an LLM, 
BERT, to scoring creative narrative writing. Their approach used a pre-trained BERT model to 
extract embeddings from narrative sentences for distance comparison, akin to the way semantic 
models are used in OCS (Dumas et al., 2020) and SemDis (Beaty & Johnson 2021). 

Toward improved performance, a greater breadth of model architectures and sizes may be 
compared, as well as collection of more training data. Auditing our datasets for sources of error, 
toward cleaner data, may also benefit performance. It has also been shown that transformer-

 

5 https://openscoring.du.edu 
6 https://github.com/massivetexts/llm_aut_study 
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based models benefit from domain- and task- adaptive pretraining (Gururangan et al., 2020). 
That is, prior to teaching them how to complete a given classification task, it is valuable to adjust 
the general-by-design language model to specialize more on the language of the domain. For 
example, Organisciak et al. (2023) found that for scoring on elementary-aged children, a model 
that has been pre-trained on children’s and child-facing text (domain-adaptive) performs better 
than a general model. 

This study opens new questions about the limits of semantic models as well as the 
characteristics of how LLMs work on the AUT, as discussed earlier. Future work may also 
expand to consider the tractability of LLMs for additional DT scoring issues scoring, such as 
robustness to cheating, scoring of instances and consequences tasks not just the AUT, working 
with poor spelling, or identifying sexual or violent responses. Another intriguing question is 
whether an LLM’s underlying measure of confidence in its prediction be used to indicate 
responses which need human intervention, an important step toward trustworthy applications in 
high-stakes settings. Further, there has been study to understand the limits of semantic distance 
methods. For example, Beaty and Johnson (2021) found that it primarily is a measure of novelty, 
removed from usefulness. LLMs should likewise be inspected for their quirks and limitations: do 
they improve on those challenges, or can they be modified to do so? Finally, the current study is 
entirely situated in English, but it would be valuable to evaluate if the methods translate to 
scoring in other languages too.  

Conclusion 
In this study, we presented a new approach to automated scoring of the alternate uses 

task, a test of DT. Our approach, Ocsai, applied finetuned large language models and compared 
them to the current state-of-the-art semantic distance models (Beaty & Johnson, 2021; Dumas et 
al., 2020). 

On overall performance, Ocsai greatly improved over existing baselines, where the 
various supervised learning approaches showed an average performance of r = .783 with human 
judges versus r = .188 across the baseline semantic distance systems. It also improved over 
feature-based supervised learning approaches, such as presented in Buczak et al. 2022. LLM-
based semantic distance approaches did not show the same gains as our finetuned models.  

Looking at robustness to the amount of training data, our approach improved with more 
data but already showed gains over the baselines with as little as 1% of the training data. We also 
showed an application where a five-example prompt on an entirely untrained LLM will 
outperform semantic models, which we believe vibrantly illustrate the promise of supervised 
learning in this area. Particularly promising is the recent pace of improvements on prompt-based 
few-shot and zero-shot applications: ChatGPT (Ouyang et al 2022) improved on GPT-3 slightly 
(at greatly reduced cost), while GPT-4 (OpenAI 2023) showed tremendous gains. Though it 
underperformed fine-tuned models, GPT-4 offers a strong alternative that even outperformed 
semantic models with not training examples (i.e. zero-shot). Finally, the transferability of the 
Ocsai approach was evaluated, which still showed significant gains on AUT items that it had 
never seen before.  
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We also compiled and deduplicated a large dataset comprised of nine past studies, with 
each AUT response judged by at least three human judges, which was used to train and evaluate 
our models. It has been noted that individual human raters are imperfect in their own ways 
(Beaty & Johnson, 2021; Dumas et al., 2022), but we observed that the outcome of multiple 
raters can be stable enough to be predictable. As our findings are strongly encouraging for 
supervised learning methods, large composite datasets will be increasingly important in this line 
of research. 

The primary contribution of this paper is in presenting a new avenue for automated DT 
scoring. By showing a very strong ability to align with multi-rater human judgements, our results 
help move automated DT scoring toward applications in creativity research, where automated 
response scorings are more reliable proxies for multiple trained judges. In addition to avoiding 
the challenges associated with human raters, it may be applied in places where a judge is not 
tractable, such as interventions with real-time feedback given to students. The results also re-
calibrate debate and inquiry on the limits of automated scoring, introducing a departure from 
existing methods which merits its own analysis and study within DT research. In all, this current 
work contributes to the ongoing effort within creativity research to develop methods to scale up 
original thinking measurement in a valid, replicable, and affordable way.  
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