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Abstract 

Currently the design standards for single case experimental designs (SCEDs) are based 

on validity considerations as prescribed by the What Works Clearinghouse. However, 

there is a need for design considerations such as power based on statistical analyses. We 

compute and derive power using computations for (AB)k designs with multiple cases 

which are common in SCEDs. Our computations show that effect size has the maximum 

impact on power followed by the number of subjects and then the number of phase 

reversals. An effect size of 0.75 or higher, at least one set of phase reversals (i.e., where k 

> 1), and at least 3 subjects showed high power. The latter two conditions agree with 

current standards about either having at least an ABAB design or a multiple baseline 

design with 3 subjects to meet design standards. An effect size of 0.75 or higher is not 

uncommon in SCEDs either. Autocorrelations, the number of time-points per phase, and 

intraclass correlations had a smaller but non-negligible impact on power. In sum, power 

analyses in the present study show that conditions to meet power requirements are not 

unreasonable in SCEDs. The software code to compute power is available on github for 

the use of the reader.  
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Power Analysis for Single Case Designs Based on Standardized Mean Difference 

Effect Sizes: Computations for (AB)k designs with Multiple Cases 

In all empirical studies, wise design mandates that the data collection plan should 

provide the basis for inferences about the phenomenon under study that are as 

unambiguous as possible.  When studies are conducted for the purpose of evaluating the 

efficacy of an intervention (in this paper we will use the word “treatment”), design 

focuses on organizing the data collection to ensure that unambiguous inferences about the 

treatment effect are possible.  In experimental studies that use statistical hypothesis 

testing as a primary means of analysis, statistical power analysis plays an important role 

in design.  Power analysis is often used to help the investigator determine whether the 

study, as planned, is sufficiently sensitive to detect effects that are expected (that is, 

whether the design has a sufficiently large probability of detecting a treatment effect of 

the size that is expected).  Alternatively, sometimes power analysis is used to ensure that 

a study is likely to detect the smallest treatment effect deemed to be practically 

meaningful. 

Power analysis plays a major role in designing experimental studies where the 

probability of detecting an effect (the statistical power) depends on several design 

parameters in complex ways.  For example, in cluster randomized experiments (the most 

common design for randomized experiments used in education), statistical power 

depends on several factors that are under the control of the investigator: the number of 

clusters used, the sample size per cluster, and the significance level used.  It also depends 

on several factors that are not under the control of the investigator: the treatment effect 

size, the ratio of between-cluster variation to total variation (also known as the intraclass 
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correlation), and the effectiveness of any covariates that are used to control variation at 

various levels of the design.  Power analysis informs decisions about how to choose 

values of the design parameters that are under the control of the investigator (e.g., 

number of clusters and sample size per cluster) given the assumed values of the design 

parameters that are not under the control of the investigator (e.g., the intraclass 

correlation and the covariate-outcome correlations).  For obvious reasons, agencies that 

fund experimental work involving statistics, such as the US Institute of Education 

Sciences (IES) or the National Institutes of Health (NIH), require power analyses to 

support claims about the sensitivity of the designs in studies proposed for funding. 

Research using single case designs does not always use statistics as a primary 

mode of analysis.  However, funding agencies typically expect that proposals for research 

should provide evidence that the designs chosen are sufficiently sensitive to detect the 

effects that treatments are expected to produce. As single case designs are increasingly 

used in research that will be evaluated by funding agencies like IES and NIH, and as 

statistical analyses for those designs become increasingly accepted, some principled 

means of addressing the issue of design sensitivity is needed. 

One approach to the issue of design sensitivity builds on the work on statistical 

analysis of data from single case designs, namely statistical effect size measures (Hedges 

et al., 2012; Hedges et al., 2013).  The focus of that work is not specifically the statistical 

analysis of single case designs, but the representation of effects obtained via measures of 

effect size that are in the same metric as those employed in between-subjects designs, so-

called design-comparable effect sizes (Shadish et al., 2014).  However, because the null 

hypothesis corresponds to an effect size of zero, the statistical properties of the effect size 
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estimate provide one method of statistical hypothesis testing and power analysis of the 

associated statistical test provides one means of assessing design sensitivity in single case 

designs.  We would argue that this principled method of evaluating design sensitivity is 

useful even if the ultimate analysis does not use the associated hypothesis testing 

apparatus. 

Analysis of the results of single subject designs has typically involved the visual 

search for functional relations between treatment assignment and outcome.  That is, the 

study is designed so that each treatment (or baseline) phase is continued for enough 

measurements that the pattern of outcome values is clearly established.  To establish 

functional relations, researchers often emphasize stability within treatment phases.  

Treatment effects are conceived as differences in these stable patterns between treatment 

and baseline phases.   

Stability, however, can be conceptualized in several different ways.  For example, 

the pattern could be one of fluctuation around a constant value with a common mean 

within a phase with a common residual variance within all phases.  The pattern could also 

involve systematic increase or decrease across measurements in a phase, such as a linear 

or quadratic trend and a common residual variance within phases.  Alternatively, the 

pattern could include a constant mean or a trend over measurements accompanied by 

systematic, increasing or decreasing residual variation around the trend.  From this 

perspective, functional relations between treatment and outcome (what one would call 

treatment effects in between subject designs) are understood to be differences between 

the stable states established within treatment phases.  The simplest pattern of stability, 

and the one that a given set of data has most information about, is one that involves 
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fluctuation around a constant value (a common mean with a common residual variance 

within phases).   In this model of stability, treatment impacts correspond to shifts in the 

mean level of the outcome, although other models of stability are possible but not 

recommended for commonly seen SCED data conditions (see Natesan Batley & Hedges, 

2021).  We offered a statistical model in which the effect size parameter estimated 

corresponds to the standardized mean difference (Cohen’s d), a well-known effect size 

parameter in between-subjects designs (Hedges, Pustejovsky, & Shadish, 2012).   

In this article, we discuss power in the (AB)k design, the focus of Hedges, 

Pustejovsky, and Shadish (2012). In that design, A is typically a baseline phase, B is 

typically a treatment phase, and k indicates the number of times that the AB pair is 

repeated. For instance, (AB)2 indicates an ABAB design in which the initial baseline 

phase (A) is followed by a treatment phase (B), then treatment is removed in a return to 

baseline (A), and the treatment is reintroduced (B). Shadish and Sullivan (2011) found 

that the (AB)k design was the second most frequently used design in their systematic 

sample of single-case designs in 2008.  

Model for the (AB)k Design with n Observations Per Phase 

Suppose that the Yij are normally distributed and that the data series for each 

individual i is weakly stationary within each phase with first order autocorrelation 𝜑𝜑.  

Specifically, if there be n observations in each phase for each individual, the statistical 

model for the jth observation which occurs in the pth phase is 

 Yij = 0.5[1 + (–1) (p–1)]μC + 0.5 [1 + (–1)p] μT + ηi + εij,  i = 1, …, m;  

j = n(p – 1) + 1, …, pn; p = 1, …, 2k. 
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The expressions in square brackets just assure that, in odd numbered phases (baseline 

phases), the coefficient of μC is one and the coefficient of μT is zero and that in even 

numbered phases (treatment phases), the coefficient of μT is one and the coefficient of μC 

is zero.  Thus, for example, the statistical model for the first (baseline) phase, where p = 

1, is 

Yij = μC + ηi + εij, i = 1, …, m; j = 1, …, n, 

and the statistical model for the second (treatment) phase, where p = 2, is 

 Yij = μT + ηi + εij, i = 1, …, m; j = n + 1, …, 2n. 

Here μT – μC represents the shift between baseline and treatment periods.  We assume that 

individuals are independent and that the individual effects ηi are independently normally 

distributed with variance τ2.  The assumption that the time series is weakly stationary 

implies that the covariance of Yij with Yi(j+t) depends only on t.  We assume further that 

the εij have variance σ2 and first order autocorrelation 𝜑𝜑 within individuals.   This 

autocorrelation model implies that the 2kn x 2kn covariance matrix of the errors within 

individuals for 2k phases is of the form given in notation N1 

                                          (N1) 

The Effect Size Parameter 

It is conventional to assume that observations from different individuals are 

independent.  Let us define the variance of observations within individuals within phases 

to be σ2 and the variance of observations between individuals to be τ2, so that the total 

variance of each observation is σ2 + τ2. Define the mean of the observations in the 
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treatment phase by μT and the mean of the observations in the baseline (control) phase by 

μC.  Under this model, define the effect size parameter as  

.        (1) 

This definition of the effect size is precisely the standardized mean difference (Cohen’s 

d-index) that is widely used in between-subjects experiments.  As we discuss below, this 

effect size parameter can be estimated from single case experiments as long as there are 

replications across individuals (that is m > 1). Note that the effect size parameter is the 

same in either the single subject design or a corresponding between-subjects design (see 

Hedges, Pustejovsky, and Shadish, 2012).   

Estimation and Testing Hypotheses About δ 

The numerator of the effect size is the unweighted difference between the means 

in the baseline and treatment phases, namely  
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(2) 

where 𝑌𝑌𝑖𝑖∙
2𝑝𝑝is the mean of phase 2p and 𝑌𝑌𝑖𝑖∙

2𝑝𝑝 −1 is the mean for phase 2p – 1 for individual 

i. Equation 2 assumes that there are equal number of observations in each phase. 

The denominator of the effect size S is the square root of the variance across 

individuals at each timepoint but pooled across timepoints (and across phases).  Thus, S2 

is defined as 
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where 𝑌𝑌∙𝑖𝑖 is the average across individuals of the jth observations within individuals, 

given by 
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The effect size estimate ES is therefore  

,         (4) 

where is given in (2) and S2 is given in (3).  The sampling distribution of this effect size 

is related to that of the noncentral t-distribution and was given in Hedges, Pustejovsky, 

and Shadish (2012).  In equation 4, the expected value of is the average of within-

person contrasts.  Let the constant a be the variance of , while b and c are the 

(standardized) expectation and variance of S2.  When σ2 ≠ 0 (so that ρ ≠ 1), the statistic 

          (5) 

has the noncentral t-distribution with h degrees of freedom and noncentrality parameter 𝜆𝜆 

that are given as1 

 h = 2b2/c         (6)

 .         (7) 

 
1 In the R program the non-central t-distribution is solved using the F distribution as a squared value of t 
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In equations 5, 6, and 7, the expressions for the constants a, b, and c depend on k, n, m, ϕ, 

σ, and τ and are given in the appendix to this paper.  It turns out that these constants and 

the sampling distribution of the statistic t depend on σ and τ only through the ratio 

 ,         (8) 

the proportion of the total variance that is between persons.  Thus, ρ is a kind of intraclass 

correlation for single case designs.    

Generally, h is a decreasing function of ρ, taking a maximum (which depends on 

φ, k, n, and m) when ρ = 0 and a minimum of h = m – 1 when ρ = 1, as expected.  When ρ 

= 1, σ = 0, so the statistic t is just a one sample t-test on the baseline-treatment mean 

differences, which has m – 1 degrees of freedom. One interpretation of this behavior is 

that, when ρ = 1 (which implies σ2 = 0), pooling the standard deviation across timepoints 

provides no more information about σ2 + τ2 = τ2 than can be obtained from a single 

timepoint (because σ2 = 0, observations do not vary across timepoints within individuals).  

However, when σ2 > 0, pooling the standard deviation across timepoints does increase the 

information about σ2 + τ2, so that the effective degrees of freedom are typically larger 

than m – 1.  When both ϕ = 0 and ρ = 0, h = 2kn(m – 1) as expected since the m 

observations at any one of the 2kn timepoints (with m – 1 degrees of freedom at each 

timepoint) are independent of the observations at other timepoints.   

When the null hypothesis is true λ = 0 so the statistic t has the central t-

distribution with ν degrees of freedom. The relation between ν and the autocorrelation φ 

is more complex. Holding other parameters constant, ν takes a maximum for a negative 

value of φ and decreases for larger or smaller values.  In general, for moderate values of 
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φ (e.g., -0.5 ≤ φ ≤ 0.5), the dependence of ν on φ is less pronounced than the dependence 

of ν on ρ.  Thus, a formal test of the hypothesis  

 H0: δ = 0 

(conditional on ρ and φ) involves computing the statistic t given in (5) and rejecting H0 if 

|t| > cα/2, where cα/2 is the two tailed level α critical value of the t-distribution with ν 

degrees of freedom.  Note that the degrees of freedom will typically be fractional, so that 

interpolation between tabled critical values (or computation of exact values based on non-

integer degrees of freedom) will be necessary. 

Power Analysis 

 The statistical power of the level α two-tailed test is 

 p = 1 – f(cα/2| λ, ν) + f(–cα/2| λ, ν) ,      (9) 

and the power of the level α one-tailed test is 

 p = 1 – f(cα|λ, ν)        (10) 

where f(x| λ, ν) is the cumulative distribution function of the noncentral t with 

noncentrality parameter λ and ν degrees of freedom, and λ and ν are given in (7) and (6).  

This distribution function is available in many statistical packages, including R, STATA, 

SAS, and SPSS.   

 Power values can also be computed using standard power tables (such as those in 

Cohen, 1977) for the one sample t-test.  To use such tables, one typically enters the table 

on a row corresponding to the sample size and the column corresponding to the effect 

size and the value corresponding to that row and column is the power.  Because those 

tables were designed for a slightly different purpose, it is necessary to enter the table with 

a synthetic sample size and a synthetic effect size to use such tables to compute the 
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statistical power of the test for treatment effects in single case designs. The synthetic total 

sample size is 

 NSynthetic = h + 1        (11) 

and the synthetic effect size is 

   ,       (12) 

where ν is given by (6) above and a and b are given in the appendix. Note that 

interpolation between tabled values will usually be necessary because NSynthetic will 

usually not be an integer. 

 Generally, the parameters δ,φ, and ρ are not entirely under the control of the 

investigator.  However, the number of subjects m and the number of observations per 

treatment period n are under the control of the investigator and they can be varied to 

ensure that the design has adequate sensitivity, given the values of δ, φ, and ρ.  The 

situation is similar to that in the design of cluster randomized experiments, where power 

depends on the effect size, intraclass correlation, and covariate-outcome correlations, 

which are not under the control of the investigator, but are determined by the context of 

the experiment.  The number of clusters randomized and the number of individuals per 

cluster are under the control of the investigator and can be varied to ensure that the 

design has adequate sensitivity to detect the effect size expected. 

Expression (5), (6), (7), and (9) conceal the somewhat complicated relation 

between the design parameters m, n, δ, φ, and ρ and statistical power.  The most obvious 

fact that follows from (7) is that power is an increasing function of the effect size δ and 

the number of cases m.  Calculations using the results of this paper reveal other, less 
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obvious, relations.  First power is a decreasing function of ρ, so that the larger the 

between-individual variance (as a fraction of the total variation), the lower the power.   

Results 

Table 1 gives the eta-squared values of an ANOVA where power is the dependent 

variable and the data conditions such as 𝑚𝑚,𝑚𝑚,𝑛𝑛, 𝜌𝜌,𝜑𝜑, 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎. The italicized values show 

the total variance explained by planned contrasts. Effect size explains the most variation 

in power (36.69%) followed by the number of subjects (16.71%), and the number of 

phases (10.11%). Interestingly, the number of observations, the autocorrelations, and the 

intraclass correlation had a small effect on power with each having an effect size of 2.7% 

or lower. Having an effect size of 0.5 versus higher explained the most variation in power 

(27.09%) followed by 0.75 versus higher values (7.10%). However, effect sizes of 1 or 

larger had very little variability in power. Similarly, increasing the number of participants 

beyond 3 did not lead to much increase in power. Finally, the power for an (AB)k design 

where 𝑚𝑚 = 1 was much smaller than the power for a design where 𝑚𝑚 ≥ 2 (8.82%). 

Beyond that, adding more phases did not lead to more power. 

INSERT TABLE 1 ABOUT HERE 

Figure 1 gives the statistical power as a function of ρ for φ = 0.1, 0.3, and 0.5 

when m = 4, n = 4, k = 2, and δ = 0.75. These values for m and n are reasonably 

representative of the average single-case (AB)k design in the literature (Shadish & 

Sullivan, 2011); and (AB)k designs rarely have more pairs of phases than k = 2. 

Preliminary research suggests that effect sizes in single-case designs are typically used to 

investigate treatment that have relatively large effects (by the standards of between-

subjects designs) and that effects are often larger than δ = 0.75 on average.  Thus, the 
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calculations we report here may underestimate the typical power of single case designs 

that expect larger effects.  

INSERT FIGURE 1 HERE 

The relation between statistical power and autocorrelation is not monotonic across 

the entire range of possible values.  Holding k, n, m, and ρ equal, power decreases 

towards a minimum as ϕ increases from 0, but at some point, begins to increase again as 

ϕ approaches 1. Although there is a decrease in power followed by increase in power, 

since the effect size of ϕ was only 2.1 we did not deem this to be practically significant 

enough to warrant an investigation. The location of the minimum depends primarily on ρ.   

Figure 2 gives the statistical power as a function of φ for ρ = 0.2, 0.5, and 0.8 when m = 

4, n = 4, k = 2, and δ = 0.75.  While the shape of the functions is somewhat different for 

different values of ρ, they all seem to have a minimum in the vicinity of φ = 0.6 to 0.8. 

INSERT FIGURE 2 HERE 

 Figures 1 and 2 provide some insight into the impact of design parameters that are 

not under the control of the investigator and will need to be imputed for the purposes of 

power analysis.  Because the exact values of these parameters are unknown to the 

investigator planning a study, it is sensible (and likely considered essential by reviewers 

of research proposals) to estimate these parameters conservatively.  That is, they should 

be imputed in a manner that is likely to err by underestimating, rather than 

overestimating, statistical power.  The systematic behavior of power as a function of φ 

and empirical evidence from single case design studies (Shadish and Sullivan, 2011; 

Shadish, Rindskopf, Hedges, and Sullivan, 2013) suggests that using the value φ  = 0.5 

may be a sensible conservative default value for power analyses.  Logical grounds dictate 
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that the between subject variation τ2 is likely to be greater than within-subject-within-

phase variation σ2, an argument for which there is also some empirical support (Shadish 

& Sullivan, 2011; Shadish, Rindskopf, Hedges, & Sullivan, 2013).  This would imply 

that ρ = 0.5 is a sensible conservative default value for power analyses.  We urge the user 

to be skeptical of these default values and neither should be used if there is empirical or 

strong theoretical evidence about the values of these parameters when the study is being 

designed. 

Turning to the variables under the control of the investigator, power is an 

increasing function of both m and n, but changes in m (the number of subjects) generally 

have a larger effect than corresponding changes in n (the number of observations per 

phase) when both are small.  Figure 3 gives the statistical power as a function of m for n 

= 3, 6, and 9 where k = 2, ρ = 0.5, φ = 0.5, δ = 0.75.  In contrast Figure 4 gives the 

statistical power as a function of n for m = 3, 6, and 9 where k = 2, ρ = 0.5, φ = 0.5, δ = 

0.75.  Comparing these two figures, the stronger dependence of power on m than on n is 

evident. 

INSERT FIGURES 3 AND 4 HERE 

Implications of Design Sensitivity for Standards for Single Subject Designs 

 Power calculations can shed some light on general recommendations about single 

case designs, like the standards that have been proposed by the US Institute of Education 

Sciences What Works Clearinghouse (WWC) (Kratochwill, et al., 2010).  Those 

recommendations were made based on many factors, and design sensitivity was only one 

of them.  However, it is interesting to evaluate the consequences of those 

recommendations for design sensitivity.  In the context of (AB)k designs, their 
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recommendations imply at least k = 2 (to obtain 3 reversals) and n = 3 measurements per 

phase to meet standards with reservations or n = 5 measurements per phase to meet 

standards without reservations.  

 Consider first the implications for design sensitivity of the recommendation that k 

= 2 as opposed to k = 1 so that there are at least two reversals.  Figure 5a gives the 

statistical power of the test for treatment effects as a function of δ for k =1 and k = 2 

where n = 3, m = 3, ρ = 0.5, and φ = 0.5.  This figure shows that the statistical power is 

quite low even for effect sizes as large as δ = 1.5, but that power is much higher for k = 2 

than for k = 1.  Figure 5b is analogous to Figure 5a, except that the number m of 

individuals is increased to m = 5.  Comparing Figure 5a with Figure 5b when k = 2, we 

see that power is generally larger with m = 5 than with m = 3, and power to detect effect 

sizes greater than or equal to δ =.8 is greater than 0.80 is achieved with when m = 5, but 

the power to detect effects of size δ = 0.75 is still only 0.39.  With k = 2, n = 3, ρ = 0.5, 

and φ = 0.5, a total of m = 7 cases is required to obtain a power of 0.80 to detect an effect 

of δ = 0.75, but it would require m = 15 cases to do so when k = 1.   Therefore, the 

requirement that studies have k ≥ 2 is quite sensible from the perspective of design 

sensitivity and power.   

INSERT FIGURES 5A AND 5B HERE 

The WWC requires that there be at least three measurements per phase, that is n ≥ 

3, to meet standards with reservations and at least five measurements per phase (n ≥ 5) to 

meet standards without reservations.  Figure 6a illustrates the statistical power of the test 

for treatment effects as a function of δ for n = 2, 3, and 5 where m = 2, ρ = 0.5, and φ = 

0.5.  This figure shows that the statistical power is quite low even for effect sizes as large 
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as δ = 1, but that power is higher for n = 3 than for n = 2.  Figure 6b is analogous to 

Figure 6a, except that the number m of individuals is increased to m = 5.  In Figure 6b, 

when m = 5, the difference between the power with n = 2 and n = 3 is smaller than in 

Figure 6a where m = 3.  Comparing Figure 6a with Figure 6b when n = 3, we see that 

power is generally larger with m = 5 than with m = 3, and the difference between the 

power with n = 2 and n = 3 is smaller.  Power to detect effect sizes of δ = 0.75 is greater 

than 0.80 when m = 5 and n = 5, but the power to detect effects of size δ = 0.75 is still 

only about 0.62 with n =2 and 0.652 with n = 3.  With k = 2, n = 3, ρ = 0.5, and φ = 0.5, a 

total of m = 7 cases is required to obtain a power of at least 0.80 to detect an effect of δ = 

0.75, but it would require 8 cases to do so when n = 2.   Therefore, the requirement that 

studies have n ≥ 3 is also sensible from the perspective of design sensitivity. 

INSERT FIGURES 6A AND 6B HERE 

The number of replications across cases (the value of m) has profound 

implications for design sensitivity.  Figures 3 and 4 demonstrate that m has a greater 

effect on design sensitivity than does n.  However, power is an increasing function of 

both m and n, and there are likely to be practical tradeoffs in the choice to increase one or 

the other.  However, a case can be made, on design sensitivity grounds, that a sample size 

of m = 2 is too small to yield sensitive designs unless the effect size is exceptionally 

large.  In the rest of this paragraph, consider a case where k = 2, ρ = 0.5, and φ = 0.5.  To 

detect an effect of δ = 0.75 with at least 80% power, it would require n = 35 observations 

per phase (a total of 140 observations per case over the 4 phases of the design) if m = 2 

and n = 18 observations per phase (a total of 72 observations per case) if m = 3, but only 
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n = 12 observations per phase (a total of 48 observations per case) if m = 4, and n = 8 

observations per phase (a total of 32 observations per case) if m = 5. 

The findings mimic some of the earlier findings of simulation-based approaches 

in computing power for masked visual analysis (Ferron, Joo, & Levin, 2017), multilevel 

models (Shadish & Zuur, 2014), or other complex models (Heyvaert, Moeyaert, 

Verkempynck, et al., 2017; Natesan Batley & Hedges, 2021; Natesan Batley, Minka, & 

Hedges, 2020; Natesan & Hedges, 2017). All these studies, as expected show that more 

data means more information which means more power. However, not all types of data 

are the same. For instance, in this study we see that number of people can lead to more 

power than the number of observations.  

The results given in this paper involve the assumption that the number of 

measurements in each phase for each subject is the same.  This is analogous to the 

assumption of balance in experiments such as cluster randomized trials.  This is typically 

a sensible assumption for assessing design sensitivity, but may be unrealistic in some 

studies, for example where the design is planned to give more observations during 

treatment phases than during baseline phases, or when k > 2 and its plan involves fewer 

observations in later phases of design.  In such cases, the notation becomes considerably 

more complex as given in Appendix B. 

Example 

 Suppose that we are contemplating an (AB)2 design to investigate a treatment that 

is expected to have an effect size of δ = 0.75 and wish to obtain a statistical power of at 

least 80% (0.80).  We are unsure of the values of ρ and φ so we choose conservative 

values of ρ = 0.5 and φ = 0.5.  We begin with the idea that we will observe n = 3 times in 
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each phase and consider a sample size of m = 3 cases.  Substituting k = 2, n = 3, and φ = 

0.5 into expressions (8), (9), and (10), we obtain a = 0.1670, b = 1.6667, and c = 0.4571.  

Then substituting the values of b and c, along with φ = ρ = 0.5 into (6), we obtain h = 

5.95.  Substituting the values of a and b, along with m = 3, and ρ = 0.5 into expression 

(7), we obtain λ = 1.982.  Substituting the value λ = 1.982 and h = 5.95 into expression 

(11), we obtain a two-tailed statistical power of p = 0.38, which is less than the target 

value of p = 0.80.  At this point, we could consider increasing n, the number of 

measurements per phase, or m, the number of cases.  Computing the statistical power 

with m = 3 but n = 7, 8, and 9 yields power of p = 0.47, 0.51, and 0.55, respectively, still 

less than the target value.  Computing the statistical power with n = 3 but m = 5 yields 

power of p = 0.65, and increasing n to 6, 7, and 8 with m =  5 yields power values of 

0.78, 0.81, and 0.84.  If we both increase m to m = 6 and increase n to n = 5, the statistical 

power becomes p = 0.80.  Design choices that yield power at or above 0.80 might depend 

on costs and feasibility of a larger number of measurements per phase versus a larger 

number of cases, a decision that would be best made in the context of a particular 

investigation. 

Conclusions 

The planning of research designs involves many considerations.  Design 

sensitivity (statistical power) is only one of them.  We would never advocate that power 

or design sensitivity should be the only consideration in planning a research design.  

However sufficient design sensitivity is essential for statistical conclusion validity, and 

therefore should always be one consideration in planning research.  We have provided 

one formal method of assessing design sensitivity of single case research.  These methods 
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are consistent with recently developed methods for characterizing the effect size from 

single case designs.  Thus, they provide a natural complement to statistical analysis 

procedures involving effect sizes. 

We argue that these methods may also be useful in planning research even if 

researchers do not intend to use statistical methods to analyze their findings or numerical 

effect sizes to characterize their magnitude.  One reason is that visual methods do not 

offer an analogue to numerical methods for assessing design sensitivity.  While rigorous 

visual analyses have many advantages, it is difficult to believe that they would be 

substantially more sensitive than statistical methods.  Therefore, in the absence of visual 

analogues to power analysis, these numerical methods may be useful substitutes as input 

for planning single case research studies. 

One important caveat is that the effect sizes on which these methods are based 

address a specific kind of treatment effect: Shifts in the mean level of the outcome.  The 

effect size measure, its associated significance test, and the power computations would 

not be relevant if a different kind of treatment effect were anticipated, such as a change in 

variation.  However, a parallel method leading to numerical effect size measures, 

associated significance tests, and power analysis could be developed for treatment effects 

reflecting impacts on different stable patterns of outcome measurements. We are 

currently developing such methods. The power computations in the present study are 

only based on standardized mean difference effect sizes. However, there are several other 

effect sizes used in SCEDs for which power calculations would vary. This is an avenue 

for future research.  
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Power, as prescribed by the current study, can be computed only in designs with 

more than 1 subject. A typical ABAB type design uses only one participant, but 

investigations of treatments show that almost always ABAB type studies involve more 

than one subject. The power computations in the present study are only applicable to 

balanced designs, that is, with equal number of observations in each phase. This is a 

limitation considering that researchers might want to use longer phases for implementing 

their treatments and shorter baseline phases just to obtain consistency in data. We 

recognize that computing power using the codes given on github 

(https://github.com/prathiba-stat/ABk-power/blob/main/Power) might be challenging to 

applied researchers and having a graphical user interface (GUI) for this purpose would be 

helpful. We are also developing power computations for multiple baseline designs which 

are most used in SCEDs. These efforts are already underway. SCED data are often not 

intervally scaled and might be count or percentage data (Natesan Batley, Shukla Mehta, 

& Hitchcock, 2020), in which case the current power calculations might not hold to be 

very accurate. We are currently developing effect sizes for count data that are also 

computing power using Monte Carlo simulations (Natesan Batley & Hedges, under 

review). It might be interesting to explore the extent to which other violations of 

assumptions would affect power in (AB)k designs.   

 

 

https://github.com/prathiba-stat/ABk-power/blob/main/Power
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Technical Appendix 

The theory leading to the distribution of ES is described in Hedges, Pustejovsky, 

and Shadish (2012) using a theorem from the appendix of Hedges (2007). It is somewhat 

simpler to explicate for balanced designs in matrix notation. Order the vector of 2kn 

observations for the ith individual as  

 yi = (yi1, …, yi(2kn))                                                            (A1) 

and define the 2kn x 1 contrast vector consisting of k repeats of the sequence (1n′, -1n′) as  

 w = (1n′, -1n′, 1n′, …, -1n′)′,                                                          (A2) 

where 1n is an n-dimensional column vector of 1’s.  Then the covariance matrix of yi is 

 

                        (A3) 

Therefore, the within person contrast is yiw, which has variance w′Viw and the variance 

of is  

                                                                       (A4) 

 The constants b and c are obtained from the expectation and variance of S2.  Let yij 

be the jth measurement (j = 1, …, 2kn) on the ith person (i = 1, …, m).  Order the 2knm 

observations from all m individuals as 

 y = (y11, y21, …, ym1, y12, …, ym2, …, y1(2knm), …, ym(2kn))′,                   (A5) 

then partition the 2knm x 2knm covariance matrix of y as  
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 ,                                                        (A6) 

where  

 ,                                                           (A7) 

τ2 is the between subject variation, and Im is an m x m identity matrix.  We can write S2 as 

a quadratic form in y as y′Ay/2kn(m - 1), where A can be partitioned as  

 ,                                                     (A8) 

where Aii = Im – 1m1m/m.  then    

 b = tr(AΣ)/ 2kn(m – 1)(σ2 + τ2)                                            (A9) 

and  

 c = 2tr(AΣ AΣ)/ (2kn(m – 1)(σ2 + τ2))2,                                  (A10) 

where tr(X) is the trace of a square matrix X.  
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Appendix B 

Power Computations in Unbalanced (AB)k Designs 

For unbalanced designs power computations can be carried out by using the 

results from (Hedges et al., 2012; Hedges et al., 2013) Hedges, Pustejovsky, and Shadish 

(2012) in place of those given in this paper for balanced designs.  Specifically, the 

noncentrality parameter λ given in expression (7) of this paper is replaced by  

, 

where V{S2} is the variance of S2 given in expression (26) and is given in 

expression (25) of Hedges, Pustejovsky, and Shadish (2012).  Similarly, the degrees of 

freedom h in expression (6) of this paper is replaced by ν in expression (28) of Hedges, 

Pustejovsky, and Shadish (2012).  Once the substitutions are made, the power analysis in 

unbalanced designs proceeds in the same way as in the balanced case described in this 

paper. 

 

 

 

 

 

  



Power analysis in single case designs   28 

Table 1: Eta-squared effect sizes in percentages with power as the dependent variable 
Effect Planned Contrast Eta-sq 
k (Number of phase repetitions)  10.11 

 k = 1 vs 2, 3, 4 8.82 
m (Number of subjects)  16.71 

 m = 2 vs 3,...,10 12.17 
n (Number of observations per phase)  0.59 
phi (Autocorrelation)  2.1 
rho (Intraclass correlation)  2.68 
d (Effect size)  36.69 

 d = 0.5 vs 0.75, 1, 1.5, 2, 2.5, 3 27.09 
 d = 0.75 vs 1, 1.5, 2, 2.5, 4 7.10 
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Figure 1 
Power of the α = 0.05 two-tailed test as a function of ρ when φ = 0.1, 0.3, or 0.5 for effect 
size δ = 0.75, when k = 2, m = 4, and n = 4 
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Figure 2 
Power of the α = 0.05 two-tailed test as a function of φ when ρ = 0.2, 0.5, or 0.8 for effect 
size δ = 0.75, when k = 2, m = 4, and n = 4 
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Figure 3 
Power of the α = 0.05 two-tailed test as a function of m when n = 3, 6, or 9 for effect size 
δ = 0.75, when k = 2, φ = 0.5, and ρ = 0.5 
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Figure 4 
Power of the α = 0.05 two-tailed test as a function of n when m = 3, 6, or 9 for effect size 
δ = 0.75, when k = 2, φ = 0.5, and ρ = 0.5 
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Figure 5a 
Power of the α = 0.05 two-tailed test as a function of effect size δ for k = 1, k = 2, and k = 
3, when n =3, m = 3, φ = 0.5, and ρ = 0.5 
 

 

Power = 0.39 
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Figure 5b 
Power of the α = 0.05 two-tailed test as a function of effect size δ for k = 1, k = 2, and k = 
3, when n =3, m = 5, φ = 0.75, and ρ = 0.5 
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Figure 6a 
Power of the α = 0.05 two-tailed test as a function of effect size δ for n = 2, 3, and 5 when 
m = 3, φ = 0.5, and ρ = 0.5 
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Figure 6b 
Power of the α = 0.05 two-tailed test as a function of effect size δ for n = 2, 3, and 5, 
when m = 5, φ = 0.5, and ρ = 0.5 
 

 

 

 

 

 

 

 

 

 


