
 

    

 

Optional ERIC Coversheet —  Only for Use with U.S. Department of Education
Grantee Submissions 

This coversheet should be completed by grantees and added to the PDF of your submission if the 
information required in this form is not included on the PDF to be submitted. 

INSTRUCTIONS  
• Before beginning submission process, download this PDF  coversheet  if you will need to provide  information not on the PDF.

• Fill in all  fields—information in this form must match  the information on the submitted PDF  and  add  missing  information.

• Attach completed coversheet to the PDF  you will  upload  to ERIC [use Adobe Acrobat or other program to combine PDF
files]—do not upload the coversheet as a separate document.

• Begin completing submission form at  https://eric.ed.gov/submit/  and upload the full-text  PDF with attached coversheet
when indicated. Your full-text PDF will display in ERIC after the 12-month embargo period.

GRANTEE  SUBMISSION  REQUIRED  FIELDS  
Title  of  article,  paper,  or other content  

All author name(s) and affiliations on PDF. If more than 6 names, ERIC will complete the list from the submitted PDF. 

Last Name, First Name Academic/Organizational Affiliation ORCID ID 

Publication/Completion Date—(if In Press,  enter year  accepted or completed)

           Check type of content being submitted and complete one of the following in the box below: 
o If  article:  Name of  journal, volume,  and  issue number  if  available
o If  paper: Name of  conference, date of  conference, and  place of  conference
o If  book  chapter: Title of  book, page range, publisher  name and  location
o If  book: Publisher  name and  location
o If  dissertation: Name of  institution,  type of  degree,  and  department  granting  degree

DOI or URL to published work  (if available) 

Acknowledgement of Funding—  Grantees should check with their grant officer for the preferred 
wording to acknowledge funding. If the grant officer does not have a preference, grantees can use this 
suggested wording (adjust wording if multiple grants are to be acknowledged). Fill in Department of 
Education funding office, grant number, and name of grant recipient institution or organization. 

“This work was supported by “This work was supported by U.S. Department of Education [Office name][   
.The opinions expressed are 

 
through [Grant number]      to Institution] 
those of the authors and do not represent views of the [Office name] 
or the U.S. Department.  of Education.

https://eric.ed.gov/submit/
https://eric.ed.gov/submit


Maximum Likelihood Estimation of Hierarchical Linear

Models from Incomplete Data: Random Coefficients,

Statistical Interactions, and Measurement Error

Yongyun Shin

Virginia Commonwealth University

830 East Main Street

Richmond, VA 23298-0032

yshin@vcu.edu

and

Stephen W. Raudenbush

University of Chicago

sraudenb@uchicago.edu

1



Abstract

We consider two-level models where a continuous response R and continuous co-

variates C are assumed missing at random. Inferences based on maximum likelihood or

Bayes are routinely made by estimating their joint normal distribution from observed

data Robs and Cobs. However, if the model for R given C includes random coefficients,

interactions, or polynomial terms, their joint distribution will be nonstandard. We pro-

pose a family of unique factorizations involving selected “provisionally known random

effects” u such that h(Robs, Cobs|u) is normally distributed and u is a low-dimensional

normal random vector; we approximate h(Robs, Cobs) =
∫
h(Robs, Cobs|u)g(u)du via

adaptive Gauss-Hermite quadrature. For polynomial models, the approximation is ex-

act but, in any case, can be made as accurate as required given sufficient computation

time. The model incorporates random effects as explanatory variables, reducing bias

due to measurement error. By construction, our factorizations solve problems of com-

patibility among fully conditional distributions that have arisen in Bayesian imputation

based on the Gibbs Sampler. We spell out general rules for selecting u, and show that

our factorizations can support fully compatible Bayesian methods of imputation using

the Gibbs Sampler.

KEY WORDS: Provisionally known random effects; the EM algorithm; adaptive Gauss

Hermite quadrature; compatibility; missing at random.
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1 Introduction

Large-scale surveys and experiments within the social and health sciences frequently meet

four conditions that supply the focus of this article. First, the data typically have a hierarchi-

cal structure, with respondents nested within local organizational units such as schools and

hospitals or repeated measures nested within persons. Second, missing data are pervasive.

Third, partially observed covariates may be measured with error. Finally, the covariates of

interest may have random coefficients, statistical interactions or polynomial terms.

These characteristics have received some attention in recent methodological research. A

popular approach conceives the response variables and partially observed covariates as out-

comes within a multivariate, hierarchical linear model (HLM) under the assumption that the

data are missing at random (MAR; Rubin, 1976), an assumption often thought reasonable

given a presumably rich set of covariates (Schafer and Yucel, 2002; Goldstein et al., 2014).

Missing values are imputed from their posterior predictive distribution of the missing val-

ues using what has been termed a “fully conditional specification” (FCS) using the Gibbs

sampler. FCS requires the analyst to impute missing values for each variable subject to

missingness, conditional on all other unknowns. This approach has been shown to function

well when the process generating the joint distribution of unknowns is reasonably assumed

multivariate normal. Under the four conditions just described, however, multivariate nor-

mality is not possible even if the separate conditional distributions are normal. A concern

involves the bias that can arise from the incompatibility between the multiple normal condi-

tional distributions that generate the imputations and the assumed joint distribution of the

observed data (Erler et al., 2016; Enders et al., 2016; Enders et al., 2020).

In this article, we propose to address the problem of compatibility (Arnold and Press,

1989; Liu et al., 2014; Bartlett et al., 2015) within the framework of maximum likelihood

(ML) estimation under the ignorable missing data assumption that data are MAR and that

the parameter spaces for the multivariate HLM and the missing data mechanism are distinct

(Rubin 1976; Little and Rubin 2002).
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We will first review currently popular methods of inference for normal-theory multilevel

models given incomplete data and show how to modify such approaches in which random

effects often become explanatory variables, allowing us to model fallible measurement as a

source of incomplete data. We’ll then describe our approach when incompletely observed co-

variates have random coefficients or polynomial terms, including statistical interactions. If a

carefully selected subset of these random effects is conditionally assumed known, the model

of interest can plausibly follow a normal-theory specification. The “provisionally known

random effects (PKREs)” thus selected can be integrated out of the likelihood using numer-

ical methods. Capitalizing on the invariance properties of ML estimates (MLE), we show

that our re-parameterized model can be translated back to the original model’s parameter

space. Auxiliary variables are introduced to increase the robustness of the MAR assumption.

We will illustrate application of the model by studying income inequality and mathemat-

ics achievement in US elementary schools. Although we base our case study on MLE, the

likelihood factorization we propose can readily be implemented within a Bayesian approach

with assurance of compatibility between conditional distributions and the joint distribution

of observed data elements. We elucidate general rules for selecting low-dimensional “provi-

sionally constant” random effects for a general class of models involving random coefficients

or polynomial terms, including interactions.

Section 2 reviews estimation of normal-theory hierarchical models from data MAR. Sec-

tion 3 explains how to estimate an analytic hierarchical model with random coefficients and

cross-level interaction effects given data MAR via a PKRE. Section 4 describes estimation

of the analytic model using auxiliary covariates to strengthen the MAR assumption. Section

5 extends the model with polynomial terms including within-level interactions and spells

out rules for selecting provisionally constant random effects. Section 6 illustrates analysis of

income inequality in math achievement. Section 7 evaluates our estimators by simulation.

Finally, section 8 discusses the limitations and extensions.
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2 Inference for Multivariate Normal HLMs from In-

complete Data Using Random Effects as Predictors

We begin with a review of the normal theory case. Following Schafer and Yucel (2002), our

scientific interest focuses on the regression of a response variable R∗ on covariates C∗. The

elements of R∗ and C∗, which are continuously measured, are partially observed. Ours is

a two-level HLM (Lindley and Smith, 1972; Dempster et al., 1981) in which the response

variable R∗ is a characteristic of “level-1 units” (e.g., students) who are clustered within

level-2 units (e.g., schools). In contrast, the covariates may be characteristics of either level-

1 units or level-2 units. In longitudinal studies, the level-1 units might be repeated occasions

of measurements clustered within persons at level 2. Our scientist is primarily interested in

the conditional distribution f1(R
∗|C∗) assumed normally distributed. However, to account

for the missing values in C∗, we propose a normal linear model f2(C
∗). Because of missing

data, we cannot separately estimate the parameters of f1 and f2 without discarding the

cases with missing values on any element of R∗ or C∗. It is well known that a procedure that

analyzes only the cases with complete data is prone to bias and/or loss of efficiency (Little

and Rubin, 2002). The cost can be particularly high when a missing item of C∗ varies at

level 2, in which case all of the level-1 units in the level-2 unit having missing values are

discarded along with that level-2 unit itself.

To make efficient inference possible, and following Schafer and Yucel (2002), we compose

each outcome vector Y ∗ = [R∗ C∗T ]T and write a multivariate HLM h(Y ∗)

Y ∗ = X∗α + Z∗b+ r∗ ∼ N(X∗α, V ∗ = Z∗ΩZ∗T + Σ∗) (1)

where b ∼ N(0,Ω) and r∗ ∼ N(0,Σ∗). Here, X∗ and Z∗ are composed of completely observed

covariates; α is a vector of fixed regression coefficients while b and r∗ are independent random

effects that vary at levels 2 and 1, respectively. We partition the complete data (CD) Y ∗ into
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components Y ∗ = (Yobs, Ymis). In particular, if Y ∗ is N by 1 but we observe only M(≤ N)

elements Yobs = Y of Y ∗, we construct an M -by-N matrix O in which every row contains a

single entry equal to unity indicating which value of Y ∗ that is observed. All other entries

in the same row are 0. Our model for the observed Y is therefore

Y = Xα+ Zb+ r ∼ N(Xα, V = ZΩZT + Σ) (2)

where Y = OY ∗, X = OX∗, Z = OZ∗, r = Or∗ and Σ = OΣ∗OT . Assuming data MAR, we

can make efficient estimates of the parameters θ = (α,Ω,Σ∗) using ML or Bayes inference

from the observed data according to Equation (1). The most common method in recent

literature is a Bayesian approach based on multiple imputation (MI) that we will consider

in the final section of this article (see “Discussion”). However, Schafer and Yucel (2002)

showed how one can obtain MLE using the EM algorithm and use the estimates for MI. Shin

and Raudenbush, SR hereafter, (2007) showed how to recover MLE for the analytic model

f1(R
∗|C∗) by constructing model (1) carefully and estimating the model without a need for

imputations. This approach allows some components of Y ∗ to vary at level 2.

2.1 Estimation via the EM algorithm

The EM algorithm (Dempster et al. 1977) requires evaluation at each iteration m+1 of the

conditional expected CD score given the observed data and parameter estimates at iteration

m. To find the CD score, our model for the CD Y ∗ is a multivariate HLM (1). Write model

(1) at the level of cluster j and let φ be an arbitrary scalar element of (Ω,Σ∗). The CD score

equations are well known (c.f., Raudenbush and Bryk 2002, Chapter 14):

Sα,CD =
∑
j

X∗T
j V ∗−1

j (Y ∗
j −X∗

j α),

Sφ,CD =
1

2

∑
j

(
dvec(V ∗

j )

dφ

)T

(V ∗−1
j ⊗ V ∗−1

j )vec
[
(Y ∗

j −X∗
j α)(Y

∗
j −X∗

j α)
T − V ∗

j

]
. (3)
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The conditional expected score equations given the observed Yj thus clearly depend on the

conditional mean and variance of Y ∗
j which we readily derive from the fact that Y

∗(m+1)
j |Yj, θ̂

(m) ∼

N
(
Ŷ

∗(m+1)
j , V̂

∗(m+1)
j

)
given iteration-m estimates θ̂(m) = (α̂(m), Ω̂(m), Σ̂∗(m)) (SR 2007) where

Ŷ
∗(m+1)
j = X∗

j α̂
(m) + V̂

∗(m)
j OT

j V̂
(m)−1
j (Yj −Xjα̂

(m)),

V̂
∗(m+1)
j = V̂

∗(m)
j − V̂

∗(m)
j OT

j V̂
(m)−1
j OjV̂

∗(m)
j . (4)

2.2 Example 1: Contextual Effects Model

We apply this framework to the “contextual effects model” (Willms, 1986) for the study of

income inequality in the mathematics achievement of US elementary school children. This

model decomposes the association between family income and educational achievement into

a within-school component and a between-school component. In its simplest form, the model

is typically written as

Rij = γ00 + γ10(Cij − C̄j) + γ01(C̄j − C̄) + u0j + eij (5)

where Rij is a measure of math achievement for student i in school j, Cij is a measure

of the income of that child’s parents, C̄j is the sample mean of Cij within school j, and

C̄ is the overall sample mean income for i = 1, · · · , nj and j = 1, · · · , J . Here γ10 is

known as the “within-school coefficient” while γ01 is the “between school” coefficient; and

u0j and eij are independent, normally distributed random effects that vary at levels 2 and

1, respectively. Of interest is the “contextual component” γc = γ01 − γ10 which, if positive,

suggests that attending a school with high-income peers predicts elevated achievement net

of the contribution of a student’s family income.

Two problems arise in the conventional analysis (SR, 2010). First, past analyses have

treated parental income as completely observed when, in fact, most surveys report substantial

fractions of missing data on income. Second, the sample mean C̄j will be a noisy proxy for
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the actual mean income of parents in a school if the sample size per school is modest, as is

the case in most US national surveys. Using random effects as explanatory variables within

the MAR framework addresses both issues. Reflecting that income is partially observed, we

propose the CD model

R∗
ij = γ00 + γ10ϵ

∗
ij + γ01νj + u0j + e∗ij, C∗

ij = δ + νj + ϵ∗ij (6)

where νj and ϵ∗ij are independent, normally distributed random effects at levels 2 and 1,

respectively. The joint distribution of R∗
ij and C∗

ij may be written

 R∗
ij

C∗
ij

 =

 1 0

0 1


 γ00

δ

+

 1 0

0 1


 γ01νj + u0j

νj

+

 γ10ϵ
∗
ij + e∗ij

ϵ∗ij

 . (7)

Stacking the equations within level-2 unit j, we have the general form of the model

Y ∗
j = X∗

j α + Z∗
j bj + r∗j ∼ N(X∗

j α, V
∗
j = Z∗

jΩZ
∗T
j + Inj

⊗ Σ∗) (8)

for X∗
j = Z∗

j = 1nj
⊗ I2, bj ∼ N(0,Ω) and r∗j ∼ N(0, Inj

⊗ Σ∗) where we denote 1m as a

vector of m unities and Im an m-by-m identity matrix for a positive integer m. The HLM

score equations for θ are familiar (Raudenbush and Bryk, 2002, Chapter 14; SR 2010) and

will therefore not be elaborated here.

2.3 Compatibility

A set of conditional distributions f1(R
∗|C∗, θ1) and f2(C

∗|R∗, θ2) is said to be compatible if

there exist a joint distribution {h(Y ∗|θ) : θ ∈ Θ} and surjective maps {tj : Θ → Θj : j = 1, 2}

such that for each j, θj ∈ Θj and θ ∈ t−1
j (θj) = {θ : tj(θ) = θj}, we have f1(R

∗|C∗, θ1) =

h(R∗|C∗, θ) and f2(C
∗|R∗, θ2) = h(C∗|R∗, θ) (Liu et al. 2014). Assuming a prior p(θ), Schafer

and Yucel (2002) developed the Gibbs sampler based on multivariate normal (MN) h(Y ∗|θ)
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that is compatible with an analytic HLM f1(R
∗|C∗, θ1) when C∗ is linearly associated with

R∗. The MN h(Y ∗|θ), however, cannot be compatible with f1(R
∗|C∗, θ1) when C∗ has non-

linear effects (Kim et al. 2015; Enders et al. 2020). Goldstein et al (2014) and Enders

et al. (2020) factored h(Y ∗|θ) = f1(R
∗|C∗, θ1)f2(C

∗|θ′2) and estimated a compatible HLM

f1(R
∗|C∗, θ1) with the non-linearities by the Gibbs sampler via a Metropolis algorithm. We

extend the HLM further with the nonlinear effects of C∗ that includes random effects as

latent covariates. We estimate h(Y ∗|θ) efficiently by ML via a PKRE and translate the

estimates to the ML estimates of the compatible HLM as explained in the next section.

3 Coping with Random Coefficients and Interactions

Our scientific focus is again on f1(R
∗|C∗, ν) assumed normal in distribution as in Equations

(6). However, the model now includes elements of C∗ that have non-linearities including

random coefficients, polynomial terms, or interactions. In this case, even if we can reasonably

assume that f2(C
∗) is normal, the joint distribution h(Y ∗) cannot be normal.

Recent research on the problem of non-linearities has focused primarily on two widely

used methods of analysis of multilevel incomplete data. Perhaps the most popular method

of imputation for HLMs under the MAR assumption imputed missing values by a series

of sequential univariate regression models (Raghunathan et al. 2001), which is also known

as MI by fully conditional specification or FCS (van Buuren et al. 2006). However, these

conditionals will not be compatible with the joint distribution of interest in the presence of

the non-linearities of interest in this article, as shown by Enders et al. (2016) and Enders et

al. (2020). The main alternative approach estimates the joint distribution of the outcome

and covariates subject to missingness. Missing values may be imputed based on their fully

conditional distributions (Liu et al. 2000; Schafer and Yucel 2002; Goldstein et al. 2009)

and by maximum likelihood (SR 2007, 2010; Ren and Shin 2016). These normal-theory

models were not designed to handle the non-linearities of interest here. By means of a Gibbs
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sampler via the Metropolis Hastings algorithm, Goldstein et al. (2014) imputed missing

values of a response and covariates including interaction and polynomial terms having fixed

effects in a multilevel model where covariates and response may be continuous or categorical.

Similarly, Erler et al. (2016) took the sequential fully Bayesian approach (Ibrahim et. al.

2002) that expresses the joint distribution of variables MAR, including the outcome, into a

series of univariate conditional models to handle missing values of cluster-level continuous

and discrete covariates having fixed effects. Erler et al. (2019) extended the approach to

imputing missing values of level-1 covariates having fixed effects. Enders et al. (2020) showed,

however, that these approaches do not guarantee compatibility when the partially observed

covariates have random coefficients. Lacking a formal model for the joint distribution of

interest, these approaches appear to fall short of ensuring compatibility.

3.1 Factorization of the Likelihood Based on Provisionally Known

Random Effects

To cope with nonlinearities induced by partially observed covariates having random co-

efficients, polynomials, or interaction terms, we model the joint distribution h(Y ∗|ν)p(ν)

induced by the scientific model of interest f1(R
∗|C∗, ν) and the model for the covariates,

f2(C
∗|ν)p(ν). The problem is similar to the problem of estimation of generalized linear

mixed models (Hedeker and Gibbons, 1994; Raudenbush et al., 2000). Using the notation

of Equation (2), we must evaluate

h(Y ) =

∫
h(Y |b)p(b)db. (9)

The integral just defined does not have closed form in the presence of non-linearities and

must be approximated numerically. To facilitate the approximation, we choose a PKRE, call
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it u such that

h(Y |u) =
∫

h(Y |b, u)p(b|u)db (10)

is a normal HLM discussed in Section 2. The problem of approximation is then to evaluate

h(Y ) =

∫
h(Y |u)g(u)du. (11)

The computational challenge is to select u such that the dimension of the analytic integral

(10) is maximized while the dimension of numerical approximation (11) is minimized.

3.2 Example 2: A Partially observed covariate having a random

coefficient

We return to our example of income inequality in US elementary schools. A common find-

ing in multilevel studies of educational achievement is that relationship between student

socioeconomic background and achievement varies from school to school (Raudenbush and

Bryk, 1986). This variation could reflect variation in school organization, composition, and

resources. To assess the variation in income inequality within schools, we expand the con-

textual model (6) to allow for a random coefficient

R∗
ij = (γ00 + u∗

0j) + (γ10 + u∗
1j)ϵ

∗
ij + e∗ij, C∗

ij = δ + νj + ϵ∗ij (12)

where u∗
0j ∼ N(0, τ00), u

∗
1j ∼ N(0, τ11), νj ∼ N(0, τνν), cov(u

∗
0j, u

∗
1j) = τ01, cov(u0j, νj) = τ0ν

and cov(u∗
1j, νj) = τ1ν . This is model (6) for u∗

0j = γ01νj + u0j if τ11 = 0. Let var(u∗
j) = τ

for u∗
j = [u∗

0j u
∗
1j νj]

T . Level-1 random effects e∗ij ∼ N(0, σ2) and ϵ∗ij ∼ N(0, σcc) are assumed

independent of each other and of the level-2 random effects. We denote the parameters of

the CD model (12) as θ∗(12) = (γ00, γ10, τ, σ
2, δ, σcc).

Clearly R∗
ij cannot be marginally normal in distribution because of the multiplication of
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the two normal random effects u∗
1j and ϵ∗ij. Our strategy is to select one of these two random

effects to be considered “provisionally known;” we choose u∗
1j for this purpose because it

has lower dimension varying across schools than does ϵ∗ij which varies across students within

each school. Therefore, we write

 u∗
0j

νj

 ∣∣∣∣u∗
1j ∼ N


 α0|1

αν|1

u∗
1j,Ω =

 τ00|1 τ0ν|1

τν0|1 τνν|1


 (13)

where αk|1 = τk1τ
−1
11 and τkk′|1 = τkk′ − αk|1τ11αk′|1 for k, k′ = 0, ν. We can therefore write

the “provisional” joint model h(Y ∗
j |u∗

1j) for Y
∗
j = [Y ∗T

1j · · ·Y ∗T
njj

]T as

Y ∗
j = X∗

j α + Z∗
j bj + r∗j ∼ N(X∗

j α, V
∗
j = Z∗

jΩZ
∗T
j +Ψ∗

j) (14)

where X∗
j = 1nj

⊗ [I2 I2u
∗
1j], α = [γ00 δ α0|1 αν|1]

T , Z∗
j = 1nj

⊗ I2, bj = [u∗
0j − α0|1u

∗
1j νj −

αν|1u
∗
1j]

T ∼ N(0,Ω) and r∗j = [r∗T1j · · · r∗Tnjj
]T ∼ N(0,Ψ∗

j = Inj
⊗ Σ∗

j) for

r∗ij =

 1 γ10 + u∗
1j

0 1


 e∗ij

ϵ∗ij

 , Σ∗
j =

 (γ10 + u∗
1j)

2σcc + σ2 (γ10 + u∗
1j)σcc

(γ10 + u∗
1j)σcc σcc

 . (15)

The CD score is therefore familiar; see Equations (3). To complete the EM algorithm to

estimate h(Y ∗
j |u∗

1j)ϕ(u
∗
1j; 0, τ11), we will maximize the likelihood L(θ) =

∏J
j=1 h(Yj) for

h(Yj) =

∫
h(Yj|u∗

1j)ϕ(u
∗
1j; 0, τ11)du

∗
1j, h(Yj|u∗

1j) ∼ N(Xjα, Vj = ZjΩZ
T
j +Ψj) (16)

where h(Yj|u∗
1j) is from Equation (14), Xj = OjX

∗
j , Zj = OjZ

∗
j and Ψj = OjΨ

∗
jO

T
j = ⊕nj

i=1Σij

for Oj = ⊕nj

i=1Oij and Σij = OijΣ
∗
jO

T
ij. We use adaptive Gauss-Hermite Quadrature (AGHQ)

to numerically approximate integral (16) (Naylor and Smith 1982; Pinheiro and Bates 1995;

Rabe-Hesketh et al. 2002).

An additional AGHQ step is needed to complete the E step by evaluating the expectation
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of a CD score component SCDj of cluster j from Equations (3)

E(SCDj|Yj) =

∫ ∫
SCDjf(Y

∗
j |Yj, u

∗
1j)g(u

∗
1j|Yj)dYmisjdu

∗
1j (17)

where f(Y ∗
j |Yj, u

∗
1j) has the familiar form of the empirical Bayes posterior normal density

with the means and covariance matrix in Equations (4). We use AGHQ to approximate the

outer integral with respect to the univariate random effect, u∗
1j; see Appendix C for detail.

Because g(u∗
1j|Yj) is nonstandard, we use the Bayes theorem to find

g(u∗
1j|Yj) =

h(Yj|u∗
1j)ϕ(u

∗
1j; 0, τ11)

h(Yj)
. (18)

By the invariance property of MLE, we translate the MLE of the “provisional” parameters

θ = (α,Ω, γ10, σcc, σ
2, τ11) of model (14) to a one-to-one transformation θ̂∗(12) via model (13).

3.3 Example 3: Cross-level interaction effects involving partially-

observed covariates

Following Lee and Bryk (1989), we wish to extend the contextual effects model in two ways

to allow the level-1 covariate: (i) to have random coefficients as in the previous section; and

(ii) to interact with the level-2 covariate. We therefore write the model

R∗
ij = (γ00 + γ01νj + u0j) + (γ10 + γ11νj + u1j)ϵ

∗
ij + e∗ij, C∗

ij = δ + νj + ϵ∗ij (19)

where u0j and u1j are, as before, bivariate normal, but conditional on νj with variances τ00|ν

and τ11|ν , respectively, and covariance τ01|ν . Other random effects are as defined in model

(12). The parameters are θ∗(19) = (γ00, γ01, γ10, γ11, τ00|ν , τ01|ν , τ11|ν , σ
2, δ, τνν , σcc).

This model involves two products of normal theory random effects: νjϵ
∗
ij and u1jϵ

∗
ij.

Using the logic of the last section, we wish to choose a PKRE such that, conditional on that

effect, our CD joint model will be a normal-theory HLM. The question is how to choose
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this random effect. We might provisionally hold both νj and u1j constant, but we would

prefer to minimize the dimension of the provisionally constant random effects such that the

computational burden of numerical approximation is a minimum. Alternatively, we could

provisionally hold ϵ∗ij constant. But while ϵ∗ij is a scalar, it varies across all level-1 units,

which could be a very large set. Instead, we choose to provisionally hold constant the scalar

level-2 random effect

u∗
1j = γ11νj + u1j. (20)

In addition, we define u∗
0j = γ01νj + u0j to represent the model parsimoniously as Rij =

(γ00 + u∗
0j) + (γ10 + u∗

1j)ϵ
∗
ij + eij. This model is therefore equivalent to model (12) to imply

Equations (13)-(18) and a one-to-one correspondence between θ∗(12) and θ∗(19).

Consequently, the CD model (12) is a one-to-one transformation of the provisional model

h(Y ∗
ij |u∗

1j)ϕ(u
∗
1j; 0, τ11) in Equation (14) by distribution (13) and, also, of h(Y ∗

ij |νj)ϕ(νj; 0, τνν) =

f1(R
∗
ij|C∗

ij, νj)f2(C
∗
ij|νj)ϕ(νj; 0, τνν) in Equations (19) by Equation (20). We choose to esti-

mate joint model (14) via the PKRE for efficient computation that is guaranteed to be com-

patible with the scientific model f1(R
∗
ij|C∗

ij, νj) by the one-to-one correspondence. Whereas

scientific interest focuses on θ∗(19), we will be estimating the parameters θ = (α,Ω, γ10, σcc, σ
2, τ11)

of the provisional joint model (14). We then exploit the invariance property of MLE again,

translating the MLE of θ back to those of θ∗(19).

The standard approach of replacing νj and ϵ∗ij with C̄∗
j − C̄∗ and C∗

ij − C̄∗
j , respectively,

in model (19) produces biased estimation of (γ01, γ11, τ00|ν , τ01|ν , τ11|ν) even if R∗
ij and C∗

ij

were fully observed; see Appendix A. Model (19) can readily incorporate multiple covariates

having random effects and also having multiple cross-level interactions. Moreover, it is

straightforward to include covariates having fixed coefficients. This is important given the

need to add auxiliary information to strengthen the robustness of the MAR assumption.
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4 Auxiliary Covariates

Our focus is on estimation of income inequality in achievement of model (19). Because certain

variables such as family income have severe missing rates, it robustifies the MAR assumption

to involve auxiliary covariates (e.g., parent occupation and pre-test score) correlated with

missing values or patterns (Collins et al. 2003). We consider two approaches to augment

auxiliary covariates, partially observed or measured with error, to the CD model. One

approach is to assume such covariates to be linearly associated with the outcome and income.

Violation of the linearity, however, may produce biased estimation. The other approach is

to augment them as responses to R∗
ij, thereby allowing them to be non-linearly associated

with the outcome and income. We then transform the MLE of the CD model to those of a

nested model (19).

4.1 Linearly Associated Auxiliary Covariates

To augment auxiliary covariates that are linearly associated with the outcome and income,

we extend the scalar C∗
ij of model (12) to a vector C∗

ij = [C∗
ij A

∗T
1ij A

∗T
2j ]

T consisting of income

C∗
ij and auxiliary covariates A∗

1ij at level 1 and A∗
2j at level 2. We then write the CD model

R∗
ij = (γ00 + u∗

0j) + (γ10 + u∗
1j)ϵ

∗
ij + γT

20ϵ
∗
1ij + e∗ij, C∗

ij = δ + νj + ε∗ij (21)

where δ =
[
δ δT1 δT2

]T
, νj =

[
νj ν

T
1j ν

T
2j

]T
and ε∗ij =

[
ϵ∗ij ϵ

∗T
1ij 0

T
]T

= [ϵ∗ij 0
T ]T for the means

[δT1 δT2 ]
T and school-specific random effects [νT

1j νT
2j]

T of [A∗T
1ij A∗T

2j ]
T and the child-specific

random effects ϵ∗1ij of A∗
1ij. Other components γ00, γ10, u

∗
0j = γT

01νj + u0j, u
∗
1j = γT

11νj +

u1j and e∗ij are defined in model (19) except the linear effects γ20 of ϵ∗1ij. Again e∗ij and

ϵ∗ij ∼ N(0,Σϵ) are independent of each other and u∗
j ∼ N(0, τ) for Σϵ =

 σcc Σc1

Σ1c Σ11

 and

u∗
j = [u∗

0j u
∗
1j ν

T
j ]

T ; let cov(u∗
0j,νj) = τ0ν , cov(u

∗
1j,νj) = τ1ν and νj ∼ N(0, τνν). Auxiliary

predictors (ν1j, ν2j) and ϵ∗1ij are linearly associated with the outcome and income at levels 2

14



and 1, respectively. The parameters are θ∗(21) = (γ00, γ10, γ20, τ, σ
2, δ,Σϵ).

We select u∗
1j provisionally known again. Let Y ∗

ij = [R∗
ij C

∗
ij A

∗T
1ij]

T and A∗
2j be of respective

lengths p1 and p2. Using model (13) now for f(u∗
0j,νj|u∗

1j) and αν|1 = [αν|1 α
T
ν1|1 α

T
ν2|1]

T , we

find the provisional joint model (14) this time for Y ∗
j = [Y ∗T

1j · · ·Y ∗T
njj

A∗T
2j ]

T where

X∗
j = diag{[X∗T

11j · · ·X∗T
1njj

]T , X∗
2j}, α = [αT

1 αT
2 ]

T , Z∗
j = diag{1nj

⊗ Ip1 , Ip2},

bj = [u∗
0j − α0|1u

∗
1j ν

T
j − αT

ν|1u
∗
1j]

T , r∗j = [r∗T1j · · · r∗Tnjj
0T ]T , Ψ∗

j = diag{Inj
⊗ Σ∗

j , 0}

for X∗
1ij = [Ip1 Ip1u

∗
1j], X

∗
2j = [Ip2 Ip2u

∗
1j], α

T
1 = [γ00 δ δ

T
1 α0|1 αν|1 α

T
ν1|1], α

T
2 = [δT2 αT

ν2|1]
T ,

r∗ij =

 1 BT
1j

0 Ip1−1


 e∗ij

ϵ∗ij

 , Σ∗
j =

 BT
1jΣϵB1j + σ2 BT

1jΣϵ

ΣϵB1j Σϵ

 (22)

denoting BT
1j = [γ10 + u∗

1j γ
T
20].

We estimate θ∗(21) using its one-to-one transformation θ = (α,Ω, γ10, γ20,Σϵ, σ
2, τ11) of

h(Y ∗
j |u∗

1j)ϕ(u
∗
1j; 0, τ11) by the EM algorithm, computing h(Yj) and E(SCDj|Yj) by AGHQ as

before. See Appendix B for the E step. The scalar PKRE u∗
1j yields efficient computation.

To translate θ∗(21) to θ∗(19), we use model (13) to let βkj = γk0 + u∗
kj and find

E(βkj|νj) = γk0 + γ∗
k1νj and cov(βkj, βk′j|νj) = τ ∗kk′ = τkk′ − γ∗

k1γ
∗
k′1τνν

for γ∗
k1 = τkν/τνν and k, k′ = 0, 1. We then marginalize auxiliary ϵ∗1ij out to obtain

E(R∗
ij|ϵ∗ij, νj) = γ00 + γ∗

01νj + (γ10 + γ∗
11νj)ϵ

∗
ij + γT

20E(ϵ∗1ij|ϵ∗ij),

var(R∗
ij|ϵ∗ij, νj) = τ ∗00 + 2τ ∗01ϵ

∗
ij + τ ∗11ϵ

∗2
ij + γT

20var(ϵ
∗
1ij|ϵ∗ij)γ20 + σ2

that should be of form (γ00 + γ01νj) + (γ10 + γ11νj)ϵ
∗
ij and τ00|ν + 2τ01|νϵ

∗
ij + τ11|νϵ

∗2
ij + σ2,

respectively. See Appendix D for detail. We illustrate this approach in sections 6 and 7.
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4.2 Non-linearly Associated Auxiliary Covariates

The linearity assumption between A∗
1ij and (R∗

ij, C
∗
ij) in model (21) may be violated to

produce biased estimation of θ∗(19). In that case, we augment A∗
1ij to multivariate R∗

ij =

[R∗
ij A

∗T
1ij]

T of length r, allowing them to be non-linearly associated in

R∗
ij = (γ00 + u∗

0j) + (γ10 + u∗
1j)ϵ

∗
ij + e∗ij, e∗ij ∼ N(0,Σe) (23)

and C∗
ij = [C∗

ij A
∗T
2j ]

T in Equations (21) for conformable vectors γ00 and γ10 of fixed effects

and random vectors u∗
0j and u∗

1j independent of e∗ij as before. It is straightforward to find

the provisional joint model (14) for Y ∗
ij = (R∗

ij, C
∗
ij) and A∗

2j, selecting r-by-1 u∗
1j to be

provisionally known. We estimate the joint model efficiently and, then, translate the bivariate

distribution of R∗
ij and C∗

ij to θ∗(19); see Appendix D again for the translation. Numerical

approximation is now intensive with respect to vector u∗
1j. Finally, some of A∗

1ij may be

linearly associated with the outcome and income while others may not. We illustrate this

case in Data Analysis.

With additional known auxiliary covariates, we marginalize them out first given their

expectation and covariance matrix estimated from sample before the translation above.

5 Within-Level Interactions and Polynomial Terms

We write a CD model including the level-2 interaction effects γ04 of νjν1j

R∗
ij = (γ00 + γ01νj + γT

02ν1j + γT
03ν2j + γT

04νjν1j + u0j) + γT
10ϵ

∗
ij + e∗ij (24)
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and C∗
ij as in model (21) where u0j ∼ N(0, τ00|ν) and ϵ∗ij has fixed effects γ10 for simplicity.

We select one interactive term νj, ≤ the other in dimension, provisionally known to find


u0j

ν1j

ν2j


∣∣∣∣νj ∼ N




0

αν1|ννj

αν2|ννj

 ,Ω =


τ00|ν 0 0

0 τν1ν1|c τν1ν2|c

0 τν2ν1|c τν2ν2|c


 . (25)

Let bj = [u0j νT
1j − αT

ν1|ννj νT
2j − αT

ν2|ννj]
T = [u0j b

T
1j b

T
2j]

T to find the model given νj

R∗
ij = XT

RjαR + ZT
Rjbj + γT

10ϵ
∗
1ij + e∗ij ∼ N(XT

RjαR, Z
T
RjΩZRj + γT

10Σϵγ10 + σ2)

C∗
ij = δ + νj + ϵ∗ij, A∗

1ij = δ1 + αν1|ννj + b1j + ϵ∗1ij, A∗
2j = δ2 + αν2|ννj + b2j (26)

forXT
Rj = [1 νj ν

2
j ], αR =

[
γ00 γ01 + γT

02αν1|ν + γT
03αν2|ν γT

04αν1|ν
]T

and ZT
Rj =

[
1 γT

02 + γT
04νj γ

T
03

]
where C∗

ij varies within but not between clusters. As in Section 4.1, we stack these equations

to find the implied provisional model (14) for Y ∗
j = [Y ∗T

1j · · ·Y ∗T
nj

A∗T
2j ]

T , and compute h(Yj),

setting SCDj = 1 below, and E(SCDj|Yj) by

h(Yj)E(SCDj|Yj) =

∫
E(SCDj|νj, Yj)h(Yj|νj)ϕ(νj; 0, τcc)dνj (27)

numerically for h(Yj|νj) from the provisional model.

We now consider another CD model including level-1 interaction effects

R∗
ij = (γ00 + γT

01νj + u0j) + γ10ϵ
∗
ij + (γT

20 + γT
30ϵ

∗
ij)ϵ

∗
1ij + e∗ij (28)

and C∗
ij in model (21) where ϵ∗ij and ϵ∗1ij have main (γ10 and γ20) and interaction effects (γ30).

We select an interactive term ϵ∗ij, ≤ ϵ∗1ij in dimension, provisionally known again, and find

ϵ∗1ij|ϵ∗ij ∼ N(αϵ1|cϵ
∗
ij,Σ1|c) for αϵ1|c = Σ1cσ

−1
cc and Σ1|c = Σ11 − αϵ1|cσccα

T
ϵ1|c.
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Given ϵ∗ij provisionally constant, let u∗
0j = γT

01νj + u0j and a∗1ij = ϵ∗1ij − αϵ1|cϵ
∗
ij to express

R∗
ij = XT

RijαR + u∗
0j +BT

1ija
∗
1ij + e∗ij ∼ N(XT

RijαR, τ00 +BT
1ijΣ1|cB1ij + σ2),

C∗
ij|ϵ∗ij ∼ N(δ + ϵ∗ij, τcc), A∗

1ij = δ1 + αϵ1|cϵ
∗
ij + ν1j + a∗1ij, A∗

2j = δ2 + b2j (29)

whereXT
Rij = [1 ϵ∗ij ϵ

∗2
ij ], αR = [γ00 γ10+γT

20αϵ1|c γ
T
30αϵ1|c], B

T
1ij = γT

20+γT
30ϵ

∗
ij, cov(R

∗
ij, A

∗
1ij|bj, ϵ∗ij) =

BT
1ijΣ1|c and C∗

ij now varies between but not within clusters to imply the provisional model

(14) given ϵ∗j = (ϵ∗1j, · · · , ϵ∗njj
) for bj = [u∗

0j ν
T
j ]

T . We compute h(Yj) and E(SCDj|Yj) by

h(Yj)E(SCDj|Yj) =

∫
E(SCDj|ϵ∗j , Yj)h(Yj|ϵ∗j)ϕ(ϵ∗j ; 0, Inj

σcc)dϵ
∗
j (30)

numerically for h(Yj|ϵ∗j) from the provisional model as before. The numerical integral can

be computationally intensive, in particular, given large cluster sizes; multivariate Laplace

approximation (Pinheiro and Bates 1995; Raudenbush et al. 2000) and parallel computation

of each cluster may result in efficient computation.

5.1 Rules for Choosing Provisionally Known Random Effects

We now provide general rules for selecting PKREs:

(i) For an interaction ϵ∗ijϵ
∗
1ij as in Equations (28), we hold ϵ∗ij, ≤ ϵ∗1ij in dimension, constant.

The resulting model quadratic in ϵ∗ij will minimize the dimension of AGHQ;

(ii) For a level-2 interaction νjν1j, we hold one with a smaller dimension constant again;

(iii) For a three-way interaction ϵ∗ijϵ
∗
1ijϵ

∗
2ij at level 1, hold two terms ≤ the third one in

dimension constant and this applies to a three-way interaction at level 2, too;

(iv) For cross-level interactions νjϵ
∗
ij as in model (21), hold u∗

1j = γT
11νj + u1j constant;

(v) For the cluster-specific effects u∗
1j of ϵ

∗
ij, we hold u∗

1j constant;
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(vi) Finally, for a subset of these effects, hold constant the union of the PKREs of the

subset.

Our CD model in each case includes a scientific model of interest and induces a provisional

joint model (14). Because the models are one-to-one transformations of each other, the

scientific model is guaranteed to be compatible with the joint model we estimate.

6 Data Analysis

Rising income inequality in the US and other nations has recently attracted substantial

attention (Piketty, 2014). A key question involves the consequence of such inequality for

equality of opportunity among children. Following past research, we decompose the associ-

ation between family income and educational achievement into a contextual component and

a child-specific component (Firebaugh, 1978; Willms, 1986; Lee and Bryk, 1989). The con-

textual component reflects the fact that elementary schools in the US are quite segregated

based on family income. Such segregation reflects and may reinforce residential segregation

as a function of family income. Two children having the same family income might differ

in educational achievement as a result of their experience in low-income versus high-income

schools. The individual component reflects socioeconomic inequality within schools. Chil-

dren attending the same school who differ with respect to family income may tend to differ

with respect to their achievement. However, the magnitude of this within-school disparity

may vary from school to school (Raudenbush and Bryk, 1986; Lee and Bryk, 1989). The con-

textual effects model (Willms, 1986) supports the composition of inequality in achievement

that we seek.

First, we decompose family income for child i in school j into between-school and within-

school components as in model (19)

ln(incomeij) = C∗
ij = δ+νj+ϵ∗ij, mathSij = R∗

ij = (γ00+γ01νj+u0j)+(γ10+γ11νj+u1j)ϵ
∗
ij+e∗ij
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for the mean of log-income δ, the school-specific deviation from the mean νj ∼ N(0, σcc), and

the child-specific component ϵ∗ij ∼ N(0, σcc). A child’s mathematics achievement in spring

1999 (mathS) depends on these components via the model (19) for mathSij = R∗
ij. The

parameters are θ∗(19) = (γ00, γ01, γ10, γ11, τ00|ν , τ01|ν , τ11|ν , σ
2, δ, τνν , σcc).

We choose math achievement as our outcome because of its importance in predicting

educational attainment and adult earnings (Nomi and Raudenbush, 2016; Rivera-Batiz,

1982). In model (19), γ01 is the between-school gradient, reflecting the expected difference

in R∗
ij associated with a unit difference in school mean income; γ10 reflects the average within-

school gradient. However, the within-school gradient may depend on school mean income, an

interaction effect represented by γ11, and this gradient may also vary randomly over schools

as represented by u1j ∼ N(0, τ11|ν). School-mean achievement is γ00 and, conditional on

income, varies randomly over schools, u0j ∼ N(0, τ00|ν). If the within-school gradients were

constant (γ11 = τ11 = 0), the overall linear coefficient for income will be

E(R∗
ij|C∗

ij = c+ 1)− E(R∗
ij|C∗

ij = c) = ργ01 + (1− ρ)γ10

where ρ = τcc/(τcc + σcc) can be regarded as an index of school segregation as a function

of income. Define γc = γ01 − γ10 as the “contextual effect” (Willms, 1986), the expected

difference in math achievement between two students with the same family income who

attend two schools that differ by one unit in school mean income. A nation’s income gradient

would be ργc + γ10, which increases with the within school segregation based on income, ρ,

the contextual coefficient, γc and within-school gradient γ10. This simple relationship will

not hold if the within-school gradients vary over schools, and one purpose of our analysis is

to test that proposition.

Table 1: Each variable for analysis with mean (standard deviation (sd), missing %).
symbol name mean (sd, missing %) symbol name mean (sd, missing %)
R∗

ij mathS 0.00 (1.00, 8) A∗
1ij occupation 0.00 (1.00, 5)

C∗
ij income 10.73 ( 0.71, 32) A∗

1ij age 0.00 (1.00, 6)
A∗

1ij mathF 0.00 (1.00, 12) A∗
2j enrollment 0.00 (1.00, 17)
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To do so, we use data from 21,211 children attending kindergarten in 1,018 schools as

of fall 1998, a nationally representative sample known as the Early Childhood Longitudinal

Study of 1998 (“ECLS”) that is publicly available at https://nces.ed.gov/ecls; see Table 1.

Only 8 percent of the math achievement data are missing. However, family income data

are missing for 32% of the sample, a finding that is quite typical in surveys of educational

achievement. Fortunately, ECLS (Tourangeau et al., 2009) provides data on auxiliary vari-

ables, including the maximum occupational status score of parents (occupation), missing for

only 5% of the cases, as well as math achievement in fall 1998 (mathF), which is strongly

predictive of math achievement in spring 1999 (mathS). In all, we have 4 auxiliary variables,

correlated with income, outcome or missing patterns.

In this paper, we take convergence to ML to be less than 10−4 in the square root of the

summed squared differences between θ̂ of two consecutive iterations. We estimate the model

for covariates C∗
ij using all observed values by ML via the EM algorithm (SR 2007) and a

scientific model for R∗
ij given the covariates and their sample cluster and overall means by

complete case analysis, and transform the estimates to the initial values θ̂ of the joint model.

We carry out complete case analysis by R (R Core Team, 2017), estimate θ on a Dell XPS

laptop with the 11th generation Intel(R) Core(TM) i9-11900H processor at 2.50GHz and 64

GB RAM, and test a hypothesis at a level α = 0.05.

6.1 Linearly Associated Auxiliary Covariates

Recall from section 4 that we have two strategies. Following Section 4.1, we model the

auxiliary covariates linearly associated with the outcome and income in model (21) where

A∗
1ij is a vector of mathF, occupation, and age in months at assessment of spring 1999

(age) and A∗
2j is the square root of kindergarten enrollment (enrollment) by the Box-Cox

transformation. Consequently, θ∗(21) = (γ00, γ10, γ20, τ, σ
2, δ,Σϵ) consists of 10 fixed effects

(3-by-1 γ20 and 5-by-1 δ) and 39 variances and covariances (7-by-7 τ and 4-by-4 Σϵ).

We standardized each variable to have mean 0 and variance 1, except income for inter-
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pretation. Estimation of θ∗(21) with a provisionally known u∗
1j and 20 abscissas converged fast

to ML in 9 iterations and 13 seconds. The transformed estimates θ̂∗(19) and standard errors

(SEs), multiplied by 100, are listed under “EM-AGHQ I” in Table 2. The school-mean and

within-school components of family income are positively associated with math achievement

while their interaction effect is insignificant. The within-school income effects appear to

vary at most modestly across schools with the variance estimate τ̂11|ν = 0.19 less than the

associated SE 0.25. Based on ln(τ̂11|ν) ∼ N [ln(τ11|ν), var(τ̂11|ν)/τ
2
11|ν ], we find a large-sample

95% confidence interval (CI) for τ11|ν : (0.01, 2.62) near zero.

Table 2: Estimates×100 (standard errors×100) of model (19) by EM-AGHQ I and II.
predictor parameter EM-AGHQ I EM-AGHQ II
1 γ00 0.36 (2.38) 0.20 (2.46)
νj γ01 78.69 (2.93)** 77.22 (3.01)**

ϵ∗ij γ10 28.06 (1.36)** 37.38 (1.74)**

ϵ∗ijνj γ11 0.77 (2.03) 14.33 (3.58)**

τ00|ν 9.30 9.64
τ01|ν 0.64 2.35
τ11|ν 0.19 (0.25) 3.08 (0.69)**

95% CI for τ11|ν (0.01, 2.62) (1.98, 4.78)
σ2 75.21 73.74

log joint ML -107361.00 -107177.03

*: p-value<.05; **: p-value<.01

To test this model against the null hypothesis that γ11 = 0 and τ11|ν = 0, we estimated the

null model, the multivariate normal distribution of linearly associated (R∗
ij, C

∗
ij, A

∗
1ij, A

∗
2j),

efficiently by the EM algorithm (SR 2007, 2010). The model consisted of 42 parameters com-

prising 6 fixed intercepts and 6-by-6 level-2 and 5-by-5 level-1 variance covariance matrices,

and converged to log ML -107370.60. Compared to the log ML of θ∗(21) displayed at the last

row of Table 2, the likelihood ratio test statistic to test the two joint models is 19.20 with 7

degrees of freedom to give a conservative p-value < 0.01 (Stram and Lee 1994). Therefore,

we infer that the outcome is non-linearly associated with income. Lastly, estimation using

10 abscissas also produced the same estimates under EM-AGHQ I.
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6.2 Non-linearly Associated Auxiliary Covariates

Preliminary analysis indicates that mathF and occupation may be nonlinearly associated

with the outcome and income. To test the hypothesis, following Section 4.2, we model

multivariate responses R∗
ij =(mathS, mathF, occupation) and A∗

1ij =age in model (21):

R∗
ij = (γ00 + u∗

0j) + (γ10 + u∗
1j)ϵ

∗
ij + γ20ϵ

∗
1ij + e∗ij (31)

and C∗
ij = [Cij A∗

1ij A∗
2j]

T as before for 3-by-1 vectors γ00, γ10 and γ20 of fixed effects and

random vectors u∗
0j, u

∗
1j and e∗ij ∼ N(0,Σe). Therefore, τ is 9-by-9, Σe 3-by-3 and Σϵ 2-by-2;

the CD model comprises 12 fixed effects and 54 variances and covariances. With 3-by-1 u∗
1j

provisionally known, we estimated the joint model using 10 abscissae per dimension which

converged to ML in 734th iterations and 928 minutes. The log ML of θ∗(31) is shown at

the bottom row under EM-AGHQ II. The LRT statistic to test H0 : model (21) vs H1 :

model (31) is 367.93. The conservative LRT with 17 degrees of freedom (Stram and Lee

1994) produces a p-value 0 to reject the null in favor of mathF or occupation nonlinearly

associated with the outcome and income.

The translated estimates θ̂∗(19) and SEs are listed under EM-AGHQ II in Table 2. Com-

pared to those under EM-AGHQ I, the main effect of within-school income is larger; fur-

thermore, the interaction effect is significant, and so is the random effects of income by the

Wald test to produce a 95% CI for τ11 now distant from zero. We conclude that the linearity

assumption associated with Equations (21) is violated to attenuate the main, interaction

and random effects of within-school income ϵ∗ij, confounded with the auxiliary covariates.

As a result, EM-AGHQ II produces a smaller σ̂2 = 73.74 and, thus, explains more outcome

variability within schools than does EM-AGHQ I.
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6.3 Known Auxiliary Covariates

Either model (21) or (31) may be extended to control for known auxiliary covariates such

as race ethnicity and gender at level 1 and school location and sector at level 2. The joint

model may be estimated given the provisionally known u∗
1j again, and translated to θ̂∗(19) and

SEs. See Appendices B and D for detail.

7 Simulation Study

We focus on ML estimation of the scientific HLM (19) after simulating outcome R∗
ij and

income C∗
ij from a joint model conditional on auxiliary covariates within which the HLM is

nested. The goal is to compare our estimators (EM-AGHQ) with those by four methods: 1)

the benchmark method (BM) given νj and ϵ∗ij; 2) complete-case analysis (CC) given C̄∗
j − C̄∗

and C∗
ij − C̄∗

j instead; 3) MLE on MI (SR 2007, 2010); and 4) the Gibbs sampler (GS)

of Enders et al. (2020) implemented in software Blimp (Keller and Enders 2021). BM is

based on complete data while others are based on data MAR. Therefore, a good method

will produce estimates near the BM counterparts. BM and CC estimate the scientific model

by the lme4 package (Bates et al. 2015) in R. MLE on MI uses C programs to estimate

incompatible MHLM (8) by ML and impute missing values including latent school mean

incomes 20 times, more than did past multilevel missing data analyses (Schafer and Yucel

2002; SR 2007, 2013; Enders et al. 2020), from their predictive distribution given observed

data implied by the MHLM at ML (SR 2007, 2010); and estimates the HLM given the MI

by lme4. GS estimates the joint model, simultaneously generating 20 imputations of missing

values excluding latent school mean incomes, by Blimp and, then, the HLM (19) given the

MI by Blimp again. EM-AGHQ estimates the joint model by our C program and translates

the estimates to the desired MLE in R.

We simulate the ECLS R∗
ij and C∗

ij closely in terms of sample sizes, correlations and

missing rates. Specifically, for n = 20 children in each of J = 1000 schools, we simulate:
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i) known auxiliary covariates X21j ∼ Bernoulli(0.3) and X1ij ∼ Bernoulli(0.45) equal to

1 (0) for a private (public) school and a minority (white) child, respectively, where X1ij

varies within, but not between, schools for simplicity; ii) random intercepts and slope β0j =

γT
00X2j + u∗

0j, β1j = γT
10X2j + u∗

1j and βCj = δT00X2j + νj from N(1+X21j, 1) with covariances

0.8 for X2j = [1 X21j]
T ; iii) independent e∗ij, ϵ

∗
ij ∼ N(0, 10) to simulate the CD joint model

R∗
ij = β0j + β1j(C

∗
ij − βCj) + γ20X1ij + e∗ij, C∗

ij = βCj + δ10X1ij + ϵ∗ij. (32)

The simulated parameters in θ consist of γT
00 = γT

10 = δT00 = [1 1], γ20 = δ10 = 1, variances

τ00 = τ11 = τνν = 1 and σcc = σ2 = 10, and covariances τ01 = τ0ν = τ1ν = 0.8. We marginalize

X1ij and X21j out given their simulated expectations and variances, and translate θ to the

scientific model in column two of Table 3 as explained in Appendix D.

Table 3: Scientific model (19) estimated by BM, CC, MLE on MI, GS and EM-AGHQ. Each
estimate or cell occupies two rows: % bias (average estimated SE) in the first row and the
empirical estimate of true SE over simulated samples and a 95% coverage probability of the
estimator in the next.

covariate simulated BM CC MLE on MI GS EM-AGHQ
1 γ00=2.34 .06% (.03) -8.32% (.05) -8.16% (.05) -.37% (.07) .04% (.06)

.03, .96 .08, .11 .06, .09 .07, .94 .07, .92
νj γ01=1.21 .12% (.03) .29% (.03) -5.81% (.06) -.59% (.05) .07% (.05)

.03, .95 .05, .85 .06, .76 .05, .94 .05, .94
ϵ∗ij γ10=1.32 .10% (.02) .16% (.03) -5.14% (.03) -.26% (.04) .06% (.03)

.02, .95 .04, .85 .03, .33 .04, .95 .04, .93
ϵ∗ijνj γ11=0.83 -.07% (.02) -42.05% (.02) -54.00% (.03) -.52% (.03) -.04% (.03)

.02, .96 .02, .00 .02, .00 .03, .95 .03, .95√
τ00|ν=0.77 .00% ( - ) 60.31% ( - ) 22.83% ( - ) .36% ( - ) .09% (.05)

.03, - .06, - .05, - .05, - .05, .96
τ01|ν=0.33 -.05% ( - ) -28.75% ( - ) -34.68% ( - ) -.64% ( - ) -.29% (.04)

.02, - .06, - .03, - .04, - .04, .95√
τ11|ν=0.61 -.13% ( - ) 39.00% ( - ) 7.31% ( - ) 2.69% ( - ) -.27% (.03)

.01, - .02, - .02, - .03, - .03, .95√
σ2=3.20 -.02% ( - ) .07% ( - ) 25.39% ( - ) .02% ( - ) -.05% (.02)

.02, - .02, - .05, - .02, - .02, .96
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Next, we simulate the ECLS missing rates closely by

logit(pij) = ϕ1X1ij + ϕ2(1−X1ij) + zj, zj ∼ N(0, 1) (33)

given the known level-1 covariate X1ij: missing values drawn from Bernoulli(pij) are MAR.

Because the mechanism does not provide information about the simulated model (32), the

parameter spaces of the missing data mechanism and joint model are also distinct. We

simulate higher missing rates for minority than white students by ϕ1 > ϕ2: ϕ1 = −0.2 >

ϕ2 = −1.2 for income C∗
ij with a 35% missing rate (46% for X1ij = 1, 27% for X1ij = 0);

and ϕ1 = −2 > ϕ2 = −3 for response R∗
ij with an 11% missing rate (16% for X1ij = 1, 7%

for X1ij = 0) on average.

We repeated simulating data and estimating the scientific model by the approaches 500

times to compute the % bias, average estimated SE (ASE), empirical estimate of the true

SE (ESE) over samples and coverage probability (coverage) of each estimator in the next

five columns. Each cell or estimate occupies two rows: % bias (ASE) in the first, and ESE

and coverage in the next row. The lme4 package is unable to produce ESE and coverage of a

variance or covariance estimate. The BM estimates are of course very accurate and precise

with ≤ 0.13% bias, small ASE close to ESE, and good coverages near the nominal 0.95 in

column three.

The CC estimates in column four, however, are biased despite the large sample sizes.

The standard deviations (SDs)
√
τ00|ν and

√
τ11|ν are 60% and 39% biased upward while

the intercept γ00, interaction effect γ11 and covariance τ01|ν are 8%, 42% and 29% biased

downward, respectively. Only the estimates of γ01, γ10 and σ2 are comparable in accuracy

to those by BM as Equations (34) reveal in Appendix A. The coverages are low with a zero

coverage for γ11. Finally, the uncertainty associated with the estimator of a cluster-level

effect γ01 seems underestimated by ASE smaller than ESE.

MLE on MI generates incompatible MI based on MHLM (8) without consideration of the
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interaction effect and PKRE, thereby producing all estimates biased in column five that do

not seem better than the CC estimates. Fixed effects and covariance are biased downward,

and SDs upward. SEs are close to but coverages lower than CC counterparts.

On the contrary, GS without consideration of a PKRE produces estimates in column six

nearly as accurate as BM counterparts except the SD of the random slope that is biased

upward by 2.69% while EM-AGHQ yields all estimates in the last column as accurate or

almost as accurate as BM estimates. Overall, both approaches produce estimates slightly

less precise than BM estimates; ASE and ESE appear slightly larger than those by BM to

reflect extra uncertainty due to latent covariates and missing values.

Computation. We used 20 abscissas to estimate the joint model by EM-AGHQ. Given

data MAR, the estimation converged 450 times taking 101.6 iterations on average and 189

iterations at maximum, but did not converge until and was stopped to produce the estimates

at the 300th iteration 50 times (10%). This does not appear to be the weakness of our

approach as the convergence issue also occurred to each of BM and CC estimations producing

50 or more warnings of a model failing to converge. The convergence issue seems partly due

to high missing rates but few covariates to explain missing values and patterns. In our

experience thus far, the convergence rates seem positively associated with more covariates

or abscissas. For example, this simulation using 10 abscissas resulted in practically identical

estimates, but lowered the convergence rate given data MAR.

Blimp estimates 21 models per simulated data set: joint model (32) and the HLM given

each of 20 imputations. We set 20000 burn-in and 10000 post burn-in iterations to estimate

the joint model and impute MI, and 5000 burn-in and 5000 post burn-in iterations to estimate

the HLM given the MI. These settings are based on preliminary analysis of five simulated

data sets that produced the potential scale reduction statistics of all estimates of each model

lower than or near 1.1 to imply a reasonable convergence to posterior distributions (Gelman

and Rubin 1992).
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8 Discussion

In this paper, we have considered how to estimate a two-level hierarchical linear model

(HLM) efficiently where a continuous response R∗ and continuous covariates C∗ may be

MAR and C∗ may have interactive, polynomial or randomly varying effects. Non-linearities

of C∗ imply a nonstandard joint model h(R∗, C∗) = h(Y ∗) where Y ∗ = (Y, Ymis) for ob-

served Y and missing Ymis. The key idea is to introduce a unique factorization of the joint

model involving “provisionally known” random effects (PKREs) u such that the observed

joint model h(Y |u) =
∫
h(Y |ν, u)g(ν|u)dν is an analytically tractable multivariate normal

(MN) theory HLM with respect to a high-dimensional random vector ν. We computed the

likelihood h(Y ) =
∫
h(Y |u)g(u)du numerically with respect to a low dimensional u by means

of adaptive Gauss-Hermite quadrature (AGHQ). The HLM involved random effects as pre-

dictors, reducing bias due to measurement error. The joint model h(Y ∗|u)g(u) induced by

the HLM is guaranteed to be compatible with the HLM. We suggested general rules for

selecting the PKREs in a way that minimized the dimension of AGHQ. Although useful for

the HLMs considered in this paper, they are yet to be extended to other models, for example,

for discrete outcomes. We hope that our work will spur research on estimation via PKREs.

The non-linearities of multiple covariates, multiple outcomes and/or the presence of par-

tially observed discrete variables will increase the dimension of PKREs and, thus, the expense

of numerical integration by AGHQ. In that case, integration via multivariate Laplace ap-

proximation may contribute to efficient computation (Pinherio and Bates 1995; Raudenbush

et al. 2000).

Further research may address the problem of highly correlated random effects at the

cluster level. One strategy would introduce shared random effects to cope with the “curse

of dimensionality” by AGHQ as well as the multicollinearity (Miyazaki and Frank 2006;

Sun et al. 2023). In addition, parallel computation of numerical integrals for groups of or

single clusters will reduce per-iteration computation time while application of the parameter-

extended EM algorithm (Liu et al. 1998) may reduce the number of iterations to converge.
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In related research, Rockwood (2020) estimated a multilevel structural equations model

by ML, integrating linear random effects conditional on nonlinear random effects analytically

and, then, nonlinear effects numerically by Gaussian quadrature. Our analysis encountered

both outcome and predictors quite severely missing. To simulate the analysis closely, we

simulated a MAR mechanism due to a known auxiliary predictor. We leave the important

extension to a MAR (Grund et al. 2021) or other mechanism due to the fully observed or

missing values of the outcome to near future.

It is possible to extend and automate our program that enables a user to specify an

analytic HLM and determines PKREs based on a set of rules given the HLM. To that end,

we need to develop a more general set of rules, for example, involving discrete covariates

MAR.

Often, MI of a binary predictor MAR under multivariate normality is efficiently analyzed

(Schafer 1997; Grund et al, 2018). The MI will be, however, incompatible with a HLM

having the nonlinear effect of the predictor and, thus, unable to always guarantee unbiased

estimation of the HLM. We are currently extending our ML approach via the PKRE idea

that will ensure compatibility with and, thus, produce unbiased estimation of a HLM having

the nonlinear effects of categorical predictors.

Extension of our approach to MI via Bayesian methods may increase the robustness

of findings and is straightforward. In particular, our MN joint model h(Y ∗, ν|u; θ) =

h(Ymis, Y, ν|u; θ) given the PKRE u implies estimation of θ by the Gibbs sampler. The

sampler will impute (Ymis, ν, u, θ) from their posteriors compatible with the joint model

h(Y ∗, ν|u, θ)g(u|θ)p(θ) for a reasonably assumed prior p(θ) by drawing: i) Ymis and ν from

MN h(Ymis, ν|Y, u, θ); ii) u from nonstandard g(u|Y ∗, ν, θ) = h(Y ∗, ν|u, θ)g(u|θ)/h(Y ∗, ν|θ),

for example, by importance sampling via Markov Chain Monte Carlo integration of h(Y ∗, ν|θ) =

E[h(Y ∗, ν|u, θ)] that samples u from a normal prior g(u|θ); and iii) θ from a standard poste-

rior p(θ|Y ∗, u, ν) (Schafer and Yucel 2002). A potential virtue of a PKRE is to minimize the

dimension of sampling the PKRE from a nonstandard posterior by importance sampling.
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We find it important to solve the measurement error problem by including level-2 random

effects as latent covariates. To that end, we also explain how the Gibbs sampler without

consideration of a PKRE (Goldstein et al. 2014; Enders et al. 2020) may be modified to

be compatible with our scientific model conditional on a latent covariate ν in Appendix E.

A valuable future study is to compare the proposed Gibbs sampler estimators with existing

estimators of a more sophisticated HLM, for example, involving multiple nonlinear effects or

outcomes.
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Appendix A: Problem of Bias in Estimating Model (19)

Let R∗
ij = Rij and C∗

ij = Cij fully observed, δ = 0 to simplify notation, βkj = γk0 +

u∗
kj ∼ N(γk0, τkk) and cov(u∗

0j, u
∗
1j) = τ01 for k = 0, 1 in model (19). Because C̄·j and

βj = (β0j, β1j, νj) are independent of Cij − C̄·j, and ϵ∗ij|Cij − C̄·j ∼ N(Cij − C̄·j, σcc/nj), Rij

C̄·j

 ∣∣∣∣βj, Cij − C̄·j ∼ N


 β0j + β1j(Cij − C̄·j)

νj

 ,

 β2
1jσcc/nj + σ2 β1jσcc/nj

β1jσcc/nj σcc/nj




implying a mixed model Rij|Cij − C̄·j ∼ N
[
γ00 + γ10(Cij − C̄·j), var(Rij|Cij − C̄·j)

]
for

var(Rij|Cij − C̄·j) = τ00 + 2τ01(Cij − C̄·j) + τ11(Cij − C̄·j)
2 + (τ11 + γ2

10)σcc/nj + σ2,

cov(Rij, C̄·j|Cij − C̄·j) = γ01τνν + γ11τνν(Cij − C̄·j) + γ10σcc/nj.
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Let λj = τνν/(τνν + σcc/nj) be the reliability of C̄·j as an error-prone measure of νj (Rau-

denbush and Bryk 2002). The implied Rij|Cij − C̄·j, C̄·j ∼ N(µij, Vij) has

µij = γ00 + [γ01 − (1− λj)(γ01 − γ10)] C̄·j + γ10(Cij − C̄·j) + λjγ11C̄·j(Cij − C̄·j)

Vij = σ2 +
[
τ00|ν + (1− λj)(γ01 − γ10)

2τνν + (τ11|ν + γ2
11τνν)σcc/nj

]
(34)

+ 2
[
τ01|ν + (1− λj)(γ01 − γ10)γ11τνν

]
(Cij − C̄·j) +

[
τ11|ν + (1− λj)γ

2
11τνν

]
(Cij − C̄·j)

2.

The bias terms are complicated functions of cluster sizes nj and parameters, but revealing

in the balanced case of nj = n where λj = λ. The interaction effect λγ11 of C̄·j(Cij−C̄·j) has a

downward bias term −(1−λ)γ11 that introduces bias (1−λ)(γ01−γ10)γ11τνν and (1−λ)γ2
11τνν

in estimation of τ01|ν and τ11|ν , respectively. Likewise, the main effect of C̄·j has a bias term

−(1−λ)(γ01−γ10) which propagates bias (1−λj)(γ01−γ10)
2τνν and (1−λ)(γ01−γ10)γ11τνν in

estimation of τ00|ν and τ01|ν , respectively. Estimation of τ00|ν results in an additional upward

bias term (τ11|ν + γ2
11τνν)σcc/n from the error-prone measure C̄·j of νj. Consequently, this

approach results in biased estimation of (γ01, γ11, τ00|ν , τ01|ν , τ11|ν). In particular, the estimate

of γ11 is biased downward, but those of τ00|ν and τ11|ν upward.

Two special cases are of interest. When γ11 = 0, cov(β0j, β1j|C̄·j) = τ01|ν and var(β1j|C̄·j) =

τ11|ν become unbiased, and the estimator of τ00|ν becomes less biased. As cluster sizes

nj → ∞, λj → 1, C̄·j → νj by the laws of large numbers, and all bias terms tend to zero.

Appendix B: The E Step for estimation of model (14)

Let A∗
1ij = [C∗

ij A∗T
1ij]

T , Y ∗
ij = [R∗

ij A∗T
1ij]

T p1-by-1, A
∗
2j p2-by-1, and ν1j = [νj νT

1j]
T . A

reasonably general CD model given known covariates X1ij at level 1 and X2j at level 2 is

R∗
ij = γT

00X2j + u∗
0j +BT

1j(A
∗
1ij −∆00X2j − ν1j) + γT

30X1ij + e∗ij

A∗
1ij = ∆00X2j +∆10X1ij + ν1j + ϵ∗ij, A∗

2j = ∆2X2j + ν2j (35)
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for BT
1j = [γT

10X2j + u∗
1j γT

20], ∆00 = [δ001 ∆T
002]

T and ∆10 = [δ101 ∆T
102]

T . Denote ν0j =

[u∗
0j ν

T
1j]

T to separate all other random effects ν∗
j = [νT

0j ν
T
2j]

T from u∗
1j at level 2, and let

var(ν∗
j ) =

 T00 T02

T20 T22

, cov(ν∗
j , u

∗
1j) =

 T01

T21

 and var(ν∗
j |u∗

1j) =

 T00|1 T02|1

T20|1 T22|1

.
Define matrix O2j that selects observed values A2j = O2jA

∗
2j in A∗

2j such that var(A2j|u∗
1j) =

O2jT22|1O
T
2j = T22|1j, and cov(νaj, νbj|u∗

1j, A2j) = Ωabj = Tab|1 − Ta2|1O
T
2jT

−1
22|1jO2jT2b|1 for

a, b = 0, 2. The likelihood L(θ) =
∏

j

∫
h(Yj|u∗

1j)ϕ(u
∗
1j|0, τ11)du∗

1j has a key component

h(Yj|u∗
1j) ∝

(
|Ω00j|−1|∆j|−1|T22|1j|−1

∏
i

|Σij|−1

)1/2

exp

{
−1

2[∑
i

eTo1ijΣ
−1
ij eo1ij −

∑
i

eTo1ijΣ
−1
ij Oij∆

−1
j

(∑
i

OT
ijΣ

−1
ij eo1ij + 2Ω−1

00jT02|1O
T
2jT

−1
22|1jeo2j

)
+ eTo2j

(
T−1
22|1jO2jT20|1(Ω

−1
00j − Ω−1

00j∆
−1
j Ω−1

00j)T02|1O
T
2jT

−1
22|1j + T−1

22|1j

)
eo2j

]}
(36)

for eo1ij = Oij(d
∗
ij−T01τ

−1
11 u

∗
1j), eo2j = O2j(A

∗
2j−∆2X2j−T21τ

−1
11 u

∗
1j) and ∆j =

∑nj

i=1 AOOij+

Ω−1
00j whereAOOij = OT

ijΣ
−1
ij Oij and d∗ij =

 R∗
ij

A1ij

−
 γT

00

∆00

X2j−

 1 BT
1j

0 Ip1−1


 γT
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∆10

X1ij.

Define E(A) = E(A|u∗
1j, Yj), V(A) = var(A|u∗

1j, Yj) and C(A,B) = cov(A,B|u∗
1j, Yj). We

have multivariate normal f(ν0j, ν2j, r
∗
ij|u∗

1j, Yj) for

E(ν0j) = T01τ
−1
11 u

∗
1j +∆−1

j

(∑
i

OT
ijΣ

−1
ij eo1ij + Ω−1

00jT02|1O
T
2jT

−1
22|1jeo2j

)
,

E(ν2j) = T21τ
−1
11 u

∗
1j + T22|1O

T
2jT

−1
22|1jeo2j + Ω20jΩ

−1
00j

[
E(ν0j)− T01τ

−1
11 u

∗
1j − T02|1O

T
2jT

−1
22|1jeo2j

]
,

E(r∗ij) = Σ∗
jAOOij[d

∗
ij − E(ν0j)], V(r∗ij) = Σ∗

j − Σ∗
j(AOOij − AOOij∆

−1
j AOOij)Σ

∗
j ,

V(ν0j) = ∆−1
j , C(ν0j, ν2j) = ∆−1

j Ω−1
00jΩ02j, C(ν0j, r∗ij) = −∆−1

j AOOijΣ
∗
j ,

V(ν2j) = Ω22j − Ω20j(Ω
−1
00j − Ω−1

00j∆
−1
j Ω−1

00j)Ω02j, C(ν2j, r∗ij) = Ω20jΩ
−1
00jC(ν0j, r∗ij).

Let Ã∗
1ij = A∗

1ij − ∆002X2j − ν1j, δ10 = vec(∆T
10) and βj = (Ip1+1+p2 ⊗ XT

2j)γβ + u∗
j for
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γβ = vec[γ00 γ10 ∆
T
00 ∆

T
2 ] and u∗

j = [u∗
0j u

∗
1j ν

T
j ]

T . The expected CD MLEs are

γ̂20 = γ20 +

(∑
j

E

[∑
i

E(Ã∗
1ijÃ

∗T
1ij)|Yj

])−1∑
j

E

[∑
i

E(e∗ijÃ∗
1ij)|Yj

]
,

γ̂30 = γ30 +

(∑
j

∑
i

X1ijX
T
1ij

)−1∑
j

∑
i

X1ijE
[
E(e∗ij)|Yj

]
,

δ̂10 = δ10 + vec

(∑
j

∑
i

E
[
E(ϵ∗ij)|Yj

]
XT

1ij

)(∑
j

∑
i

X1ijX
T
1ij

)−1


γ̂β = γβ + vec

(∑
j

E[E(u∗
j)|Yj]X

T
2j

)(∑
j

X2jX
T
2j

)−1


σ̂2 =
∑
j

E

[∑
i

E(e∗2ij )|Yj

]
/N, Σ̂ϵ =

∑
j

E

[∑
i

E(ϵ∗ijϵ∗Tij )|Yj

]
/N,

τ̂ =
∑
j

E[E(u∗
ju

∗T
j )|Yj]/J

given θ where E(e∗ij) = B∗T
1j E(r∗ij) and E(e∗2ij ) = B∗T

1j E(r∗ijr∗Tij )B∗
1j for B

∗T
1j = [1 −BT

1j].

Appendix C: Numerical Integration by AGHQ

Let f(u∗
1j) = h(Yj|u∗

1j)ϕ(u
∗
1j; 0, τ11) be a function of u∗

1j. Given ũ∗
1j = E(u∗

1j|Yj), Vu1j =

var(u∗
1j|Yj) = L2

u1j/2, Q-point weights (w1, · · · , wQ) and abscissas (a1, · · · , aQ),

h(Yj) =

∫
ϕ(u∗

1j; ũ
∗
1j, Vu1j)

ϕ(u∗
1j; ũ

∗
1j, Vu1j)

f(u∗
1j)du

∗
1j ≈ Lu1j

Q∑
k=1

wke
a2kf(zkj), (37)

for zkj = Lu1jak + ũ∗
1j. The g(u∗

1j|Yj) = f(u∗
1j)/h(Yj) is approximately ϕ(u∗

1j; ũ
∗
1j, Vu1j) for

large cluster sizes nj by the Bayesian central limit theorem such that f(u∗
1j) ∝ ϕ(u∗

1j; ũ
∗
1j, Vu1j)

produces well approximated h(Yj) by a low degree polynomial. The approximation is exact

if f(u∗
1j) is a 2Q− 1 degree polynomial in u∗

1j (Pinheiro and Bates 1995; Rabe-Hesketh et al.
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2002; Carlin and Louis 2009). Likewise, for E(SCDj|u∗
1j, Yj) closed-form,

E (SCDj|Yj) =

∫
E(SCDj|u∗

1j, Yj)g(u
∗
1j|Yj)du

∗
1j ≈

Lu1j

h(Yj)

Q∑
k=1

E(SCDj|zkj, Yj)wke
a2kf(zkj) (38)

Let Y ∗
j = (Yj, Ymisj), and ϕτ and ϕΣ be vectors of distinct elements of τ and Σϵ, respec-

tively. The loglikelihood l =
∑

j lj and score S =
∑

j Sj have summands

lj = lnh(Yj) = ln

∫
gjdYmisjdν0jdu

∗
1j, Sj =

∂lj
∂θ

= E

[
E
(
∂ ln gj
∂θ

)
|Yj

]
.

for gj =
∏

i f(R
∗
ij|A∗

1ij, u
∗
j ; γ20, γ30, σ

2)f(A∗
1ij|u∗

j ; δ10, ϕΣ)ϕ(u
∗
j ; γβ, τ) from Equations (35). Let

E = ∂vecτ
∂ϕT

τ
and F = ∂vecΣϵ

∂ϕT
Σ

. The E
(

∂ ln gj
∂θ

)
stacks

E
(
∂ ln gj
∂γ20

)
= σ−2

∑
i

E(e∗ijÃ∗
1ij), E

(
∂ ln gj
∂γ30

)
= σ−2

∑
i

E(e∗ij)X1ij,

E
(
∂ ln gj
∂δ10

)
= vec

(
X1ij

∑
i

E(ϵ∗Tij )Σ−1
ϵ

)
, E

(
∂ ln gj
∂σ2

)
=

1

2
Aσj, E

(
∂ ln gj
∂ϕΣ

)
=

1

2
F TAΣj,

E
(
∂ ln gj
∂γβ

)
= vec

(
X2jE(u∗T

j )τ−1
)
, E

(
∂ ln gj
∂ϕτ

)
=

1

2
ETvec[τ−1E(u∗

ju
∗T
j )τ−1 − τ−1]

for Aσj = σ−4
∑

i E(e∗2ij ) − njσ
−2 and AΣj = vec

(
Σ−1

ϵ

∑
i E(ϵ∗ijϵ∗Tij )Σ−1

ϵ − njΣ
−1
ϵ

)
. We com-

pute Sj also by AGHQ for var(θ̂) ≈
(∑

j SjS
T
j

)−1

(Hedeker and Gibbons 1994; Raudenbush

et al. 2000; Olsen and Schafer 2001). Section 7 shows good approximation for the sample

sizes analyzed in this paper.

Appendix D: Translating model (35) to θ̂∗(19)

Define βkj = γT
k0X2j+u∗

kj, βCj = δT001X2j+νj, cov(u
∗
kj, u

∗
k′j|X2j) = τkk′ , cov(u

∗
kj, νj|X2j) =

τkν and var(νj|X2j) = τνν for k, k′ = 0, 1. With X2j marginalized out, βj = [β0j β1j βCj]
T ∼

N




γT
00

γT
10

δT121

EX2,


t00 t01 t0ν

t11 t1ν

tνν

 =


τ00 τ01 τ0ν

τ11 τ1ν

τνν

+


γT
00

γT
10

δT001

V X2[γ00 γ10 δ001]


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for E(X2j) = EX2 and var(X2j) = V X2. Let β̃Cj = βCj − δT001EX2 ∼ N(0, tνν) to find

βkj|β̃Cj ∼
(
γ∗
k0 + γ∗

k1β̃Cj, τ
∗
kk

)
(39)

for γ∗
k0 = γT

k0EX2, γ
∗
k1 = tkν/tνν and cov(βkj, βk′j|β̃Cj) = τ ∗kk′ = tkk′ − γ∗

k1tννγ
∗
k′11.

Within cluster j given u∗
j , denote Ã

∗
1ij = A∗

1ij −∆00X2j −ν1j = ∆10X1ij + ϵij. Marginal-

izing X1ij out using EX1 = E(X1ij) and V X1 = var(X1ij), we find f(Y ∗
ij |u∗

j) in

Ã∗
1ij = ∆10EX1 + ϵ̃∗ij, Rij = β0j + (BT

1j∆10 + γT
30)EX1 +BT

1j ϵ̃
∗
ij + ẽ∗ij

for

 ẽ∗ij

ϵ̃∗ij

 ∼ N

0,

 σ∗
ee Σ∗

eϵ

Σ∗
ϵe Σ∗

ϵϵ


 where σ∗

ee = γT
30V X1γ30 + σ2, Σ∗

ϵe =

 σce

Σ1e

 =

 δT101

∆102

V X1γ30 and Σ∗
ϵϵ =

 σ∗
cc Σ∗

c1

Σ∗
1c Σ∗

11

 =

 δT101V X1δ101 + σcc δT101V X1∆
T
102 + Σc1

∆102V X1δ101 + Σ1c ∆102V Xi∆
T
102 + Σ11

.
Consequently, Rij|βj, ϵij ∼ N [E(R∗

ij|βj, ϵij), σ
′2] for

E(R∗
ij|βj, ϵij) = β0j + (BT

1j∆10 + γT
30)EX1 + (β1j + γT

20Σ
∗
1c/σ

∗
cc + σ∗

ec/σ
∗
cc)ϵij, (40)

σ
′2 = γT

20(Σ
∗
11 − Σ∗

1cΣ
∗
c1/σ

∗
cc)γ20 + 2γT

20(Σ
∗
1e − Σ∗

1cσ
∗
ce/σ

∗
cc) + (σ∗

ee − σ∗2
ce /σ

∗
cc).

As explained by Section 4.1, Equations (39)-(40) result in a mixed model (19) for

γ00 = γ∗
00 + (γ∗

10δ
T
101 + γT

20∆102 + γT
30)EX1, γ01 = γ∗

01 + γ∗
11δ

T
101EX1,

γ10 = γ∗
10 + γT

20Σ
∗
1c/σ

∗
cc + σ∗

ec/σ
∗
cc, γ11 = γ∗

11, σ2 = σ
′2

τ00|ν = τ ∗00 + 2τ ∗01δ
T
101EX1 + τ ∗11(δ

T
101EX1)

2, τ01|ν = τ ∗01 + τ ∗11δ
T
101EX1, τ11|ν = τ ∗11. (41)

Estimating (EX1, V X1, EX2, V X2) from sample, we find θ̂∗(19) above and compute var(θ̂∗(19))

by the delta method. Translations (41) simplify if EX1 = 0 (e.g., EX1 = E(X1ij − X̄1j)).

In Section 6, we used the translations for X2j = 1 and X1ij = 0.
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Appendix E: Compatible Gibbs Sampler without a PKRE

Without the merit of a PKRE, a Bayesian joint distribution based on Equations (19) is

f(R∗
ij|C∗

ij, νj, u0j, u1j, θ)f(u0j, u1j|θ)f(C∗
ij|νj, θ)ϕ(νj; 0, τνν)p(θ)

for a prior p(θ) and θ = θ∗(19). Our scientific model is an analytic integral

f1(R
∗
ij|C∗

ij, νj, θ) =
∫ ∫

f(R∗
ij|C∗

ij, νj, u0j, u1j, θ)f(u0j, u1j|θ)du0jdu1j.

The Gibbs sampler of Enders et al. (2020) may be modified to be compatible with our

scientific model conditional on a latent covariate νj by sampling i) νj from a compatible

posterior

p(νj|·) =

∏
i f(R

∗
ij|C∗

ij, νj, u0j, u1j, θ)f(C
∗
ij|νj, θ)ϕ(νj; 0, τνν)∫ ∏

i f(R
∗
ij|C∗

ij, νj, u0j, u1j, θ)f(C∗
ij|νj, θ)ϕ(νj; 0, τνν)dνj

for the denominator approximated by the MCMC integration, and ii) a missing C∗
ij from a

compatible normal posterior p(C∗
ij|·) ∝ f(R∗

ij|C∗
ij, νj, u0j, u1j, θ)f(C

∗
ij|νj, θ) with

E(C∗
ij|·) = δ + νj +

β1jσcc

β2
1jσcc + σ2

(R∗
ij − β0j), var(C∗

ij|·) =
σccσ

2

β2
1jσcc + σ2

by Equations (15) for β0j = γ00 + γ01νj + u0j and β1j = γ10 + γ11νj + u1j.
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