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Abstract. Developing models and using mathematics are two key practices in 

internationally recognized science education standards, such as the Next Gener-

ation Science Standards (NGSS) [1]. However, students often struggle with these 

two intersecting practices, particularly when developing mathematical models 

about scientific phenomena. Formative performance-based assessments designed 

to elicit fine-grained data about students’ competencies on these practices can be 

leveraged to develop embedded AI scaffolds to support students’ learning. In this 

paper, we present the design and initial classroom test of virtual labs that auto-

matically assess fine-grained sub-components of students’ mathematical model-

ing competencies based on their actions within the learning environment. We de-

scribe how we leveraged underlying machine-learned and knowledge-engineered 

algorithms to trigger scaffolds, delivered proactively by a pedagogical agent, that 

address students’ individual difficulties as they work. Results show that the stu-

dents who received automated scaffolds for a given practice on their first virtual 

lab improved on that practice for the next virtual lab on the same science topic in 

a different scenario (a near-transfer task). These findings suggest that real-time 

automated scaffolds based on fine-grained assessment can foster students’ math-

ematical modeling competencies related to the NGSS. 

Keywords: Scaffolding, Intelligent Tutoring System, Science Inquiry, Mathe-

matical Modeling, Virtual Lab. 

1 Introduction 

To deepen students’ understanding of scientific phenomena and ensure that students 

are fully prepared for future careers related to science and mathematics [2], students 

must become proficient at key science inquiry practices, such as those outlined in the 

Next Generation Science Standards [1]. However, the difficulties that students experi-

ence with practices, particularly NGSS Practice 2 (Developing and Using Models) and 

Practice 5 (Using Mathematics and Computational Thinking), can be barriers for stu-

dents’ access and success in high school science coursework and future STEM careers 

[3, 4, 5]. Specifically, students often struggle to develop mathematical models (i.e., 

graphs) with quantitative data in science inquiry contexts [6] because they cannot 
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properly label the axes of their graphs [7], interpret the variables on the graph [8], make 

connections between equations and graphs [4], or choose the functional relationship to 

create a best-fit line or curve [9, 10]. To help students develop and hone these critical 

competencies so that they can transfer them across science contexts [11], students need 

resources and tools capable of formatively assessing their competencies in a rigorous, 

fine-grained way, and in turn, enabling automated, targeted scaffolding that supports 

their learning while they work [12, 13]. 

In this paper, we evaluate the design of a virtual labs instrumented to automatically 

assess and scaffold students’ competencies as they conduct investigations and develop 

mathematical models to explain science phenomena [14, 15]. To do so, we address the 

following research question: Did the real-time, individualized scaffolding triggered by 

automated assessment algorithms help students improve on their mathematical model-

ing competencies from the first virtual lab activity to a second virtual lab activity on 

the same topic in a different scenario (i.e., a near-transfer task)? 

1.1 Related Work 

Some online environments seek to assess and support students’ competencies related 

to mathematical modeling for science, such as constructing and exploring computa-

tional models (e.g., Dragoon, [16]), drawing qualitative graphs of science phenomenon 

(e.g., WISE, [17]), and physics problem solving (e.g., Andes, [18]). However, these 

environments do not assess students’ mathematical modeling competencies within the 

context of a full science inquiry investigation, nor do they provide AI-driven real-time 

scaffolding on the full suite of other NGSS practices (e.g., Planning and Conducting 

Investigations), all of which are needed for conducting a full authentic inquiry investi-

gation that uses mathematical models to make inferences about science phenomena.  

 Nonetheless, scaffolding in online learning environments for both math and science 

has yielded student improvement on competencies by breaking down challenging tasks 

into smaller ones [19], providing hints on what to do next for students who are stuck on 

a task [20], and reminding students about the progress and steps taken thus far [19]. 

While scaffolding strategies have been applied to the online learning environments for 

modeling in science [21, 18], there are no studies, to our knowledge, that investigate 

the efficacy of AI-driven scaffolds for mathematical modeling (i.e., graphing) in the 

context of science inquiry, as envisioned by the practices outlined in the NGSS. Thus, 

the goal of the current study is to evaluate the use of real-time automated scaffolding 

in an intelligent tutoring system environment, [ITS], to improve students’ competencies 

on science inquiry and mathematical modeling practices outlined in science and 21st 

century standards such as the NGSS.  
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2 Methods 

2.1 Participants and Materials 

Participants included 70 students across four eighth grade science classes taught by the 

same teacher from the same school in the northeastern region of the United States dur-

ing the Fall 2022 semester. In terms of demographics of the participating school popu-

lation, 31% of students qualify for free or reduced-price lunch; 71% identify as White, 

16% as Hispanic, and 6% as two or more races.  

For this study, all students completed two [ITS] mathematical modeling virtual labs 

on the disciplinary core idea of Forces and Motion (NGSS DCI PS2.A) that were aug-

mented with automated scaffolding. In these labs, students used simulations to collect 

data and develop mathematical models to demonstrate the relationship between the 

roughness/friction of a surface and the acceleration of a moving object on that surface. 

The scenario of the first lab was a truck driving along a road, and the scenario of the 

second lab, which students completed about a week later, involved a sled sliding down 

a ramp (Fig. 2). [ITS] automatically assessed students’ competencies using previously 

validated educational data-mined and knowledge-engineered algorithms [14, 15], 

which triggered the individualized scaffolds to support students on their science inquiry 

and mathematical modeling competencies. 

2.2 Scaffolded [ITS] Virtual Labs with Mathematical Modeling 

The virtual labs consisted of six stages that structured the investigation and captured 

different aspects of students’ competencies associated with NGSS practices (Table 1, 

Fig. 1). The goal of each activity was to develop a mathematical model (a graph and 

corresponding equation) that can explain how changing one factor (e.g., roughness of 

a ramp/road) impacts an outcome (e.g., acceleration of a sled sliding down that ramp, 

or acceleration of the truck on the road). Descriptions of each stage and how each stage 

aligned to NGSS practices are shown in Table 1. 

 We consider the tasks presented in both labs as isomorphic, near-transfer tasks [22, 

23], since they consisted of the same stages and focused on the same physical science 

concept (i.e., the relationship between friction/roughness of a surface and acceleration 

of a moving object on that surface). However, the scenarios depicted in the simulations 

differed. In the first lab (“Truck”), students investigated the mathematical relationship 

between the roughness/friction of a flat road and the acceleration of the truck on that 

road (Fig. 2, left). In the second lab (“Ramp”), students investigated the mathematical 

relationship between the roughness/friction of a ramp and the ending acceleration of a 

sled sliding down the ramp (Fig. 2, right). In both cases, the students learn that, when 

they only change the roughness/friction of the surface (i.e., road/ramp) and keep all 

other variables constant, there is a negative linear relationship between the friction of 

the surface and the acceleration of the object moving along that surface. 
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Fig. 1. Screenshots of [ITS] mathematical modeling virtual lab; Stages include (1) Hypothesizing 

(top left), (2) Collecting Data (top right), (3) Plotting Data (middle left), (4) Building Models 

(middle right), (5) Analyzing Data (bottom left), (6) Communicating Findings (bottom right). 

Fig. 2. The simulation in the Collecting Data stage of the Truck lab (left) and Ramp lab (right). 
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Table 1. Stages of the [ITS] Mathematical Modeling Virtual Lab Activity 

Stage Related NGSS 

Practice(s) 

Description of Stage 

Stage 1:  

Hypothesizing 

Practice 1: 

Asking Ques-

tions & Defin-

ing Problems 

Students form a question about the mathematical relation-

ship between an independent and dependent variable based 

on a given goal (e.g., If I change the roughness of the ramp, 

then I will be able to observe that the roughness of the ramp 

and the acceleration of the sled at the end of the ramp have 

a linear relationship). 

Stage 2:  

Collecting Data 

Practice 3: 

Planning & 

Carrying Out 

Investigations 

Students collect data using a simulation that can be used to 

investigate the relationship between the variables outlined 

in their hypothesis (e.g., roughness of the ramp and acceler-

ation of the sled at the end of the ramp). The data that they 

collect are automatically stored in a data table. 

Stage 3:  

Plotting Data 

Practice 2:  

Developing & 

Using Models 

Practice 5:  

Using Mathe-

matics & Com-

putational 

Thinking 

Students select trials from their data table to plot on a graph. 

Students select the variable to place on the x-axis of their 

graph and the y-axis of their graph. Ideally, students should 

place their independent variable (e.g., roughness of the 

ramp) on the x-axis and their dependent variable (e.g., ac-

celeration of the sled at the end of the ramp) on the y-axis, 

and students should only plot controlled data. 

Stage 4: Build-

ing Models 

Practice 2:  

Developing & 

Using Models 

Practice 5:  

Using Mathe-

matics & Com-

putational 

Thinking 

Students select the type of mathematical relationship that 

best fits the shape of the plotted data (e.g., linear, inverse, 

square, inverse square, or horizontal). Students also deter-

mine the coefficient and constant for the equation of the 

best-fit curve/line as well as check the fit (i.e., coefficient of 

determination, R2), which is automatically calculated and 

stored in their table along with a snapshot of their graph and 

the equation that they built. Ideally, students should create a 

model that fits the data points and demonstrates the mathe-

matical relationship between the two variables. Students are 

not expected to calculate the coefficient and constants for 

the equation of their model, but rather they are expected to 

use the slider to create an “informal” line/curve of best fit. 

Stage 5:  

Analyzing Data 

Practice 4:  

Analyzing & 

Interpreting 

Data 

Students interpret the results of their graphs by making a 

claim about the relationship between the variables, identify-

ing if it was the relationship that they had initially hypothe-

sized, and selecting the graphs and corresponding equations 

that best demonstrated this relationship. 

Stage 6:  

Communicating 

Findings 

Practice 6: 

Constructing 

Explanations  

Students write an explanation of their findings in the claim, 

evidence, and reasoning (CER) format. 

 



6 

The design of the lab foregrounds students’ competencies with collecting controlled 

data [24], plotting/graphing the data [25], and determining the informal line/curve of 

best fit [9] without deriving the algebraic equations, as is typical in physics contexts 

[26]. This design not only helps students more readily identify the similarities in the 

mathematical and scientific relationship between the variables in the two scenarios (i.e., 

the friction of the road/ramp vs. the acceleration of the truck/sled), but also helps stu-

dents develop more sophisticated understandings of the scientific meaning in the 

graphs, a task with which students often struggle [27]. 

2.3 Automated Assessment and Scaffolding of Science Practices 

 [ITS] automatically assesses and scaffolds their competencies on fine-grained compo-

nents, or “sub-practices,” of the related NGSS practices elicited in each stage of the lab 

activity (Table 2). For this study, the automated scoring algorithms were active for the 

first four stages of the lab (Hypothesizing, Collecting Data, Plotting Data, and Building 

Models); automated scoring algorithms for the other stages are in development and thus 

out of scope of this study. 

 Assessment and scaffolding are executed as follows. Each sub-practice is automati-

cally scored as either 0 (incorrect) or 1 (correct) using previously validated educational 

data-mined and knowledge-engineered algorithms [14]. The algorithms take as input 

the work products created by the student (e.g., their graphs or mathematical models), 

and/or distilled features that summarize the steps they followed (e.g., the processes they 

used to collect data) [14, 15]. If the student completes the task correctly (i.e., receives 

1 for all sub-practices), they can proceed to the next stage. If not, individualized scaf-

folding is automatically triggered based on the sub-practices on which the student was 

correct or incorrect, and they are prevented from moving forward to the next stage. This 

proactive approach was chosen because students often cannot recognize when to ask 

for help [28] and because making errors on earlier stages make subsequent stages fruit-

less to complete (e.g., it does not make sense to graph data that are completely con-

founded) [15]. This approach has shown to be effective in helping students learn and 

transfer other science inquiry competencies [14] even after many months [29]; how-

ever, to date, we had not tested this approach with the mathematical modeling compe-

tencies described in this study. 

The automated scaffolding appears as an on-screen pop-up message delivered from 

a pedagogical agent, [AGENT NAME]. [AGENT NAME] scaffolding messages are 

specifically designed to orient and support students on the sub-practice for which they 

are struggling, explain how the sub-practice should be completed, and elaborate on why 

the sub-practice is completed in that way [28, 30]. Students also have the option to ask 

further predefined questions to the agent to receive definitions for key terms and further 

elaborations on how to complete the sub-practice. If students continue to struggle, the 

student will eventually receive a bottom-out hint [28, 30] stating the exact actions they 

should take within the system to move forward in the activity. If the student needs sup-

port on multiple sub-practices, the scaffolds are provided in the priority order that was 

determined through discussions with domain experts and teachers familiar with the task 

and the [ITS] system. For example, if a student is struggling with both the “Good Form” 
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and “Good Fit” sub-practices for the “Building Models” stage (Table 2), the student 

will receive scaffolding on the “Good Form” sub-practice first since the student must 

be able to identify the shape of the data before fitting the model to the data.  

Fig. 3. Example screenshot of a model built by a student who is struggling with “Math Model 

has Good Form” sub-practice, but not with “Math Model has Good Fit” sub-practice (left; note: 

the student selected an inverse relationship when they should have chosen a linear relationship, 

given the variables on their graph), and the first scaffold the student would receive to remediate 

this difficulty (right). 

To illustrate, consider a student who is struggling with choosing the mathematical 

function that best demonstrates the relationship between the variables while building 

mathematical models, a common difficulty for students [9, 10, 15]. In this case, the 

student creates a mathematical model that appears to fit the data points plotted on the 

graph, but the function chosen for the model does not best represent the shape of the 

data in the graph (Fig. 3, left). When the student chooses to move on to next stage, the 

[ITS] assessment algorithms use features of the student’s mathematical model, includ-

ing the shape of the mathematical model (e.g. linear, square), the numerical values cho-

sen for their coefficients and constants, and their fit scores, to determine that the student 

built a mathematical model with a “good fit” but not a “good form” (see Table 2 for 

sub-practice criteria). [AGENT NAME] then provides feedback to help the student en-

sure their model has the correct functional form expected between the variables selected 

for their graph. In this example, the first scaffold the student receives from [AGENT 

NAME] states, “Your mathematical models won't help you determine if your hypothe-

sis is supported or not. Even though one of your models, model number 1, fits the data 

points closely, its shape does not represent the trend in your data points.” (Fig. 3, right). 

If the student continues to struggle on this sub-practice, the student will receive the next 

level of scaffold (a procedural hint), stating “Let me help you some more. Look at what 

kind of shape your data points make. Then, when you select the shape of the graph, 

choose the option that looks most like the shape your data points make.” If the student 

continues to struggle after receiving the first two scaffolds, the student will receive a 

bottom-out hint stating, “Let me help you some more. The shape of your data looks 

most like linear.” As illustrated, scaffolds are designed to support students in building 

their mathematical modeling competencies by focusing on the fine-grained sub-prac-

tice with which the student is struggling in that moment.   
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Table 2. Operationalization of Automatically Scored Sub-Practices in the [ITS] Virtual Lab 

Stage  Sub-Practice Criteria  

Stage 1:  
Hypothe-

sizing 

 Hypothesis IV A potential independent variable (IV; a variable that can be 

changed by the experimenter) was chosen as the IV in the 

hypothesis drop-down menu. 
Hypothesis IV 

Goal-Aligned 

The goal-aligned IV (the IV from the investigation goal) was 

chosen as the IV in the hypothesis drop-down menu. 
Hypothesis DV A potential dependent variable (DV; a variable that will be 

measured by the experimenter) was chosen as the DV in 

their hypothesis drop-down menu. 
Hypothesis DV 

Goal-Aligned 

The goal-aligned DV (the DV from the investigation goal) 

was chosen as the DV in the hypothesis drop-down menu. 

Stage 2:  
Collecting 

Data 

 Data Collection 

Tests Hypothesis 

The student collected controlled data that can be used to de-

velop a mathematical model demonstrating the relationship 

between the IVs and DVs stated in the investigation goal. 

Detected by EDM algorithm [14]. 
Data Collection 

is Controlled Ex-

periment 

The student collected controlled data that can be used to de-

velop a mathematical model demonstrating the relationship 

between any of the changeable variables and the DV stated 

in the investigation goal. Detected by EDM algorithm [14]. 
Data Collection 

has Pairwise-IV 

CVS 

The student collected at least two trials, where only the goal-

aligned IV changes and all other variables are held constant 

(i.e., controlled variable strategy; CVS). 

Stage 3:  
Plotting 

Data 

 Graph’s X-Axis 

is an IV & Y-

Axis is a DV 

Using the drop-down menus, the student selected one of the 

potential IVs for the x-axis of their graph and one of the po-

tential DVs for the y-axis of their graph. 
Axes of Graph 

are Goal Aligned 

Using the drop-down menus, the student selected the goal-

aligned IV for x-axis and the goal-aligned DV for y-axis. 
Axes of Graph 

are Hypothesis 

Aligned 

The student selected the hypothesis-aligned IV (i.e., the IV 

that the student chose in hypothesis) as the x-axis of their 

graph and the hypothesis-aligned DV (i.e., the DV that the 

student chose in hypothesis) as the y-axis of their graph.  
Graph Plotted 

Controlled Data  

The student only plotted controlled data with respect to the 

variable chosen for the x-axis. 
Graph Plotted 

Minimum for 

Trend 

The student plotted at least 5 controlled data points with re-

spect to the variable chosen for the x-axis. 

Stage 4: 

Building 

Models 

 Math Model has 

Good Form 

The student built a model with the correct mathematical rela-

tionship, based on the variables selected for the graph’s axes. 
Math Model has 

Good Fit 

The student built a model that fits the plotted data with at 

least 70% fit. 
Math Model has 

Good Fit and 

Form  

The student built a model that both has the correct mathemat-

ical relationship based on the variables selected for the axes 

of the graph and fits the plotted data with at least 70% fit. If 

the student has one model with good fit but not good form 

and another model with good form but not good fit, the stu-

dent does not get credit. 
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2.4 Measures & Analyses 

To measure students’ competencies with the practices associated with each stage, stu-

dents’ scores for each stage are calculated as the average of the sub-practice scores for 

that stage (Table 2) before scaffolding was received (if any), as has been done in pre-

vious studies [29]. Because students may receive multiple scaffolds addressing differ-

ent sub-practices on a single stage and the effect of those scaffolds may be entangled, 

we use the measures of students’ overall competencies at the stage level, rather than the 

sub-practice level, for the analyses of this study. 

To determine the impact of the real-time AI-driven scaffolding, we analyzed how 

the scaffolded students’ competencies from the first virtual lab activity (“Truck”) to the 

second virtual lab activity (“Ramp”). We note that students who received scaffolding 

on one stage (e.g., Collecting Data) did not necessarily receive scaffolding on another 

stage (e.g., Plotting Data). As such, we examine students’ competencies on each stage 

separately to determine students’ improvement on the competency for which they were 

helped. Thus, because we are interested in isolating if each type of scaffolding im-

proved students’ performance on the respective competency, we ran four one-tailed, 

paired samples t-tests with a Bonferroni correction [31] (i.e., one for each competency 

to account for the chance of false-positive results when running the multiple t-tests). 

We recognize that our analytical approach does not account for the effects of scaf-

folding on one competency possibly leading to improvements on other competencies 

(despite the student only having received scaffolding on one of the competencies). For 

example, a student may receive scaffolding on plotting controlled data on the Plotting 

Data stage, which in turn potentially impacts their performance with fitting the mathe-

matical model to the plotted data on the subsequent Building Models stage [15]. How-

ever, unpacking the correlation between competencies and how the scaffolding can af-

fect performance on multiple competencies is outside the scope of this study. 

3 Results 

We found that, for all four stages, the scaffolded students’ competencies increased from 

the first lab (“Truck”) to the second (“Ramp”; Fig. 2). With a Bonferroni corrected 

alpha (0.05/4 = .0125), the differences were significant for all four of the competencies 

(i.e., Hypothesizing, Collecting Data, Plotting Data, and Building Models; Table 3). 

Further, the effect sizes (Cohen’s d) were moderately large, especially considering that 

most students completed the second activity at least one week after completing the first 

[32]. These findings suggest that scaffolding was effective for all four scientific inquiry 

and mathematical modeling practices assessed in the [ITS] virtual lab. 
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Table 3. Average inquiry practice scores across activities and results of paired samples t-tests 

Stage # of scaffolded 

students 

Lab 1: Truck 

M (SD) 

Lab 2: Ramp 

M (SD) 

Within-Subjects Effects 

Hypothesizing 27 .41 (.30) .74 (.27) t(26) = -5.45, p < .001, 

d = 1.05 

Collecting Data 37 .57 (.22) .82 (.28) t(36) = -4.72, p < .001, 

d = .78 

Plotting Data 24 .63 (.21) .82 (.27) t(23) = -2.68, p = .007, 

d = .55 

Building Models 31 .24 (.20) .52 (.44) t(30) = -3.22, p = .002, 

d = .58 

4 Discussion 

Students’ competencies with mathematical modeling practices during science inquiry 

are critical for deep science learning [1,2], and middle and high school science courses 

are a key opportunity for remediation so that students are better prepared for future 

STEM courses and careers [3, 4, 5]. However, as previously discussed in the introduc-

tion, students have difficulties with many mathematical modeling competencies crucial 

to science [6] including those of focus in this study (e.g., identifying the functional form 

in plotted data [9, 10]), and when students struggle with constructing and interpreting 

graphs in mathematics, it hampers their ability to transfer those competencies to science 

contexts [4, 33]. Further, even though these mathematical modeling competencies are 

necessary for developing deep understanding of science phenomena [6, 21, 27], they 

are not often addressed in science classrooms [7]. Thus, there is a need for formative 

assessment resources that provide targeted support on the specific components for 

which they are experiencing difficulties in real time, when it is optimal for learning [28] 

so that they can in turn, transfer these competencies to future tasks [11, 23, 29]. 

 In this study, we found that students who received AI-driven real-time scaffolds for 

the mathematical modeling competencies during a virtual lab investigation improved 

on those competencies when completing a near-transfer (i.e., isomorphic; [22]) task on 

the same physical science topic in a different scenario. These results suggest that the 

scaffolds that address the sub-practices associated with each of the four stages in the 

virtual lab (i.e., Hypothesizing, Collecting Data, Plotting Data, and Building Models) 

are beneficial for students’ transfer of their competencies with the mathematical mod-

eling practices important to science inquiry. We speculate that this improvement in 

competencies occurred because the [ITS] assessment approach involved operationaliz-

ing the mathematical modeling practices (e.g., NGSS Practices 2 & 5) into fine-grained 

sub-practices upon which the targeted scaffolds are based. This approach to unpacking 

the NGSS practices, which are often considered underspecified for assessment purposes 

[11], is necessary when developing NGSS-aligned formative assessments [13]. More 

specifically, by operationalizing the NGSS practices into fine-grained sub-practices 

(see Table 2), [ITS] can identify, in real time, precisely how the students are struggling 

on the mathematical modeling sub-practices (e.g., labeling the axes of the graph, 
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identifying the functional form in a graph, etc.) in the virtual environment. In turn, this 

fine-grained assessment allows [ITS] to provide targeted support to students on the spe-

cific sub-practice(s) on which they are struggling and subsequently help them in trans-

ferring these integrated mathematical modeling and science inquiry competencies.   

 The data presented in this study shows promising evidence that our assessment and 

scaffolding approach can improve students’ mathematical modeling competencies in 

science inquiry contexts. However, to better understand the generalizability of students’ 

improvement as well as whether the improvement occurred because of the scaffolding 

or because of the practice opportunities, a randomized controlled experiment with a 

larger sample size comparing students’ improvement with scaffolding versus without 

scaffolding in the virtual labs will be conducted. Other future work will also disentangle 

how the scaffolding on one practice can impact students’ competencies on other prac-

tices as well as examine students’ ability to transfer their mathematical modeling com-

petencies across physical science topics and assessment contexts outside of [ITS], all 

of which are critical to achieve the vision of NGSS [1]. 
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