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Abstract 
 
We describe here lessons learned in designing an early algebra curriculum to measure early 
algebra’s impact on children’s algebra readiness for middle grades. The curriculum was 
developed to supplement regular mathematics instruction in Grades K–5. Lessons learned 
centered around the importance of several key factors, including using conceptual frameworks to 
design the components of our curriculum, treating early algebra content as a set of core 
algebraic thinking practices across several core content domains, and following particular 
stages in curriculum design research. We also learned the importance of recognizing and 
addressing “gaps” in the assessment tools available for measuring growth in students’ learning, 
in the empirical research base for early algebra, and in support for teachers around professional 
learning in early algebra. We found curriculum design to be a complex and expensive process 
that required careful pacing and deliberation to address these gaps. 
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The Need for an Early Algebra Curriculum 

In recent decades, views on teaching and learning algebra in school mathematics have 

changed deeply. Prompted by algebra’s historical status as a gateway to academic and economic 

success (Schoenfeld, 1995), scholars argued that developing children’s informal notions about 

algebraic ideas from the start of formal schooling, beginning in kindergarten, would better 

prepare them for success in formal algebra in later grades. Such a substantial change in school 

mathematics has significant costs that include “deep curriculum restructuring, changes in 

classroom practice and assessment, and changes in teacher education—each a major task” 

(Kaput, 2008, p. 6). This raises fair questions about the impact that algebraic thinking in the 

elementary grades (or, early algebra) might have on children’s algebra readiness for middle 

grades. In essence, as we have asked elsewhere (Blanton et al., 2019), does early algebra matter? 

In considering the tension around the costs and benefits of early algebra, we began a 

program of research over a decade ago to better understand early algebra’s impact. We wanted to 

know what difference a comprehensive, research-based approach to instruction around early 

algebraic concepts across elementary grades might make in children’s algebraic thinking as they 

entered middle grades. Our immediate challenge was clear: Elementary schools were not yet 

equipped to develop children’s algebraic thinking in the deep, systemic way that we felt was 

needed to fairly measure early algebra’s impact.  

First, elementary teachers are critical to algebra reform, yet they have not historically 

been provided with sufficient professional learning opportunities to develop classroom 

instruction that fosters the rich and connected kinds of algebraic thinking that constitute early 

algebra (e.g., Greenberg & Walsh, 2008; Kaput & Blanton, 2005). Second, existing curricula 

have not adequately addressed early algebraic concepts and practices in a manner that focuses on 
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important ways of thinking algebraically. Even now, widely used mathematics curricula for 

elementary grades too often treat algebra as a collection of “things to do” (e.g., solve an 

equation) rather than as a set of practices or habits of mind, such as generalizing mathematical 

relationships, to develop in children’s thinking across elementary grades.  

Further, mathematics curricula have not always addressed core algebraic concepts with 

sufficient depth. Consider the concept of mathematical equivalence. The equal sign symbolizes 

an equivalence relation that indicates two mathematical objects are equivalent (Jones et al., 

2012) and should be understood relationally in elementary grades as meaning the two 

expressions in an equation have the same value. Yet many students view this symbol 

operationally as a prompt to perform the computation indicated in the expression to the left of 

the equal sign (Jacobs et al., 2007). Research shows that students’ operational misconceptions 

about the equal sign are present as early as kindergarten (Blanton, Otalora et al., 2018) and 

persist in later elementary grades (e.g., Stephens et al., 2013). In a recent randomized study, we 

found that 80% of Grade 3 students exhibited operational misconceptions about the equal sign, 

even when their mathematics instruction used Common Core-aligned curricula. These 

operational misconceptions have been found to persist into middle grades and negatively impact 

students’ success solving algebraic equations (e.g., Knuth et al., 2006). Taken together, these 

studies suggest that understanding the meaning of the equal sign requires sustained attention over 

many years. Yet, well-designed curricula largely address this concept relationally—if at all—in 

Grade 1, likely in alignment with its treatment in Grade 1 by the Common Core State Standards 

for Mathematics (National Governors Association Center for Best Practices and Council of Chief 

State School Officers [NGA Center & CCSSO], 2010).  

As this illustrates, it is difficult to adequately prepare elementary students for algebra  



 4 

with curricula that do not deeply address core algebraic concepts through a sustained, 

coordinated approach across elementary grades. Thus, if we were to fairly understand early 

algebra’s impact, we needed to develop an early algebra curriculum for Grades K–5 that could 

supplement regular mathematics curricula with a rigorous, research-based approach to 

developing children’s algebraic thinking. In response to this need, we developed LEAP: 

Learning through an Early Algebra Progression (Blanton et al., 2021a–c; 2022a–c) as a 

supplemental curriculum for Grades K–51.  

The Early Algebra “LEAP” Curriculum 

Overview of the LEAP Curriculum 

Our development of the LEAP curriculum has progressed in phases over the last 15 

years, beginning with the development of the Grades 3–5 curriculum and followed by the 

development of the Grades K–2 curriculum. The LEAP curriculum consists of 18–20 lessons per 

grade level—60-minute lessons in Grades 3–5 and 35-minute lessons in Grades K–2—that are 

taught throughout the school year. Lessons begin with a Jumpstart to review concepts in 

previous lessons and, in Grades K–2, include a Launch to introduce the lesson focus. These are 

followed by small-group investigations (Explore and Discuss) in which students explore 

algebraic ideas and share their mathematical thinking. Lessons conclude with a Review and 

Discuss to summarize key ideas and formatively assesses students’ thinking. To illustrate, the 

Appendix provides samples of these lesson components using Grade 1 lessons on the equal sign. 

We designed the curriculum using a spiraled approach so that students could continually 

revisit algebraic concepts and practices year-to-year, refining their understanding using 

 
1The LEAP Curriculum is available at https://www.didax.com/leap. 
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increasingly sophisticated concepts, representations, and ways of thinking. Lessons are 

scaffolded with teacher questioning strategies to foster rich mathematical conversations around 

students’ algebraic thinking. They also focus on the use of meaningful problem contexts and—

particularly in the early grades—concrete and visual tools linked to abstract representations to 

help students develop mathematical meaning for algebraic ideas. 

Does the LEAP Curriculum Work? 

Curriculum development should extend beyond simply designing instructional materials 

to examining whether the materials are effective. Given the lack of research using rigorous, 

experimental designs to evaluate the effect of curricular approaches on students’ mathematical 

achievement (Clements, 2002; U.S. Dept of Education, 2008), particularly with underserved 

populations of students (Clements, 2007), we wanted to know whether the LEAP curriculum was 

effective for students across all demographics and academic abilities. Evidence that LEAP made 

a significant difference in students’ understanding of core algebraic concepts and practices when 

taught as part of students’ regular instruction would also provide a measure of early algebra’s 

impact. In what follows, we share evidence to date of LEAP’s effectiveness. 

We recently conducted a large-scale, randomized study of the intervention’s effectiveness 

in Grades 3–5, where the intervention was taught by classroom teachers as part of their regular 

mathematics instruction. (See also Stylianou et al., this volume.) The study was conducted in 46 

elementary schools using a demographically diverse sample of students from urban, rural, and 

suburban populations. To improve fidelity of implementation (FOI), teachers were provided with 

professional development throughout the intervention focusing on their early algebra knowledge, 

their understanding of students’ early algebraic thinking, and how tasks and instruction could 

support the development of this thinking. An analysis of teachers’ FOI showed a significant 
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positive relationship between components of teachers’ implementation and students’ 

performance (Stylianou et al., 2019).  

We found that students who were taught the intervention as part of regular instruction 

significantly outperformed their peers who received only regular instruction (Blanton et al., 

2019). At each of Grades 3–5, significant differences were found in students’ knowledge of 

algebraic concepts and practices (i.e., item correctness) as well as their use of algebraic strategies 

to solve tasks. These significant differences persisted at the end of Grade 6, one year after the 

intervention ended (Stephens, Stroud et al., 2021). Further, in a comparison of a subset of 

treatment and control schools where the majority of students were from underserved 

communities (e.g., 100% low SES, over 90% students of color), treatment students also 

significantly outperformed control students at each of Grades 3–5 in both item correctness and 

use of algebraic strategies (Blanton et al., 2019). Thus, our findings suggest that students, 

regardless of demographic, are better prepared for algebra upon entering middle grades if they 

are taught the LEAP curriculum as part of regular instruction. With this evidence, we seemed to 

have a promising curricular approach from which we might understand early algebra’s impact. 

Curriculum design—even for curricula focused on a particular strand such as early 

algebra—is a complex process. We are not curriculum designers by training, so the last 15 years 

have taught us much about designing effective curricula, even as we recognize that there is yet 

much to learn. Among the lessons learned, some have been serendipitous in nature in that we 

came to value a particular approach or lens used that we did not fully appreciate “in the 

moment.” We consider some of these lessons here. 

Lesson Learned: Frameworks, Frameworks, Frameworks 

One aspect of our curriculum development that has come to be the most valuable to us is 
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that it has been “frameworks” driven. Frameworks provided critical scaffolding around how we 

designed our curriculum, how we addressed early algebra content in the curriculum, and the 

different stages in our curriculum design research. The use of frameworks was not always as 

explicit or intentional at the start of our work as it came to be as our work matured. We learned 

to appreciate how frameworks helped focus and stabilize our process as well as define more 

clearly the steps we needed to take. In what follows, we look at the critical ways in which 

frameworks informed our work.  

A Learning Progressions Approach as a Framework for Designing LEAP 

Learning progressions have become increasingly important as a research tool because of 

their ability to inform the design of standards, curricula, assessments, and instruction (Daro et al., 

2011). From the start of our work, we adopted a learning progressions approach (e.g., Shin et 

al., 2009, Stevens et al., 2009) in which our curricular design involved the development of 

several core components (e.g., Clements & Sarama, 2004; see also Fonger et al., 2018): (1) 

empirically-derived learning goals around early algebra content; (2) grade-level instructional 

sequences (referred to here as the LEAP curriculum) designed to address these learning goals; 

(3) validated assessments to measure students’ understanding of core algebraic concepts and 

practices as they advance through the instructional sequences; and (4) progressions that specify 

increasingly sophisticated levels of thinking students exhibit about algebraic concepts and 

practices in response to an instructional sequence.  

This approach, which appealed to us in part because it already had significant traction in 

educational research, provided a critical over-arching framework that helped us think more 

systematically about the design process. It pushed us past simply pulling together interesting 

algebra tasks we might assimilate into some type of sequence and, instead, slowed down the 
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design process to focus our attention on first building the scaffolding (i.e., learning goals) from 

which tasks and lessons could emerge in a coordinated way. That is, a learning progressions 

approach helped define our first objective—the development of grade-level learning goals—

which, in turn, helped us build a more coherent and connected foundation for our curricular 

content than we might otherwise have done.  

The learning progressions approach also helped us think about what we should consider 

in developing learning goals. Because learning progressions prioritize empirical research on 

children’s thinking around specific content domains (Baroody et al., 2004), this approach 

directed us first to analyzing empirical research on children’s understanding of core algebraic 

concepts and what we might expect regarding their algebraic thinking at particular grades. We 

then reviewed available national and state curricular frameworks and standards, including 

NCTM’s Principles and Standards for School Mathematics (NCTM, 2000), the Curriculum 

Focal Points (NCTM, 2006) and, later, the Common Core State Standards for Mathematics 

[NGA Center & CCSSO, 2010], for their treatment of algebra at Grades K–8. We analyzed 

curricular materials for Grades K–8 (e.g., Growing with Math, Everyday Mathematics, Singapore 

Math, Investigations) according to their treatment of algebra content, and we considered 

mathematical perspectives on the sequencing of algebra content by examining formal algebra 

textbooks at both secondary and postsecondary levels. From this analysis, we looked for 

coherency between empirical research on algebra learning in Grades K–8 and benchmarks of 

algebra learning advocated in curricula and state and national frameworks, keeping in mind that 

research would likely be “ahead” of learning standards. We then synthesized our findings to 

develop grade-level learning goals that would form the backbone of our curriculum. A learning 

progressions approach helped us be more systematic and intentional in our analysis than we 
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might otherwise have been. Moreover, it kept empirical research on children’s algebraic thinking 

at the forefront of our design. With our learning goals in place, we could then develop grade-

level instructional sequences (the heart of the LEAP curriculum) along with assessments to 

measure students’ learning as they advanced through these sequences.  

A Conceptual Framework for Early Algebra  

As our work progressed, we came to appreciate how the design of our curriculum and 

assessments flowed from our learning goals, underscoring for us the importance of the learning 

progressions approach we used to develop these goals. Moreover, as we developed learning 

goals, a central question for us was “How should we characterize the algebra that we want young 

children to learn?” There is a lot of algebra content available in learning standards, curricula, and 

research, and we needed a way to organize this content. 

Members of our research team had experience in early algebra research prior to our 

curriculum design work and, from this experience, brought views on the nature of early algebra 

that aligned with Kaput’s (2008) widely acknowledged conceptual analysis of algebra content. 

Kaput’s content analysis of algebraic thinking involves two core aspects: (1) making and 

expressing generalizations in increasingly formal and conventional symbol systems; and (2) 

acting on symbols within an organized symbolic system through an established syntax, where 

conventional symbol systems available for use in elementary grades are interpreted broadly to 

include “[variable] notation, graphs and number lines, tables, and natural language forms” (p. 

12). From these two core aspects, we identified four essential algebraic thinking practices that 

defined part of our conceptual framework for early algebra content (Blanton et al., 2011; Blanton 

et al., 2018): generalizing, representing, justifying, and reasoning with mathematical structure 

and relationships.  
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Kaput further argued that these core aspects occur across three key strands: 

“1. Algebra as the study of structures and systems abstracted from computations and 

relations, including those arising in arithmetic (algebra as generalized arithmetic) and 

quantitative reasoning. 

2. Algebra as the study of functions, relations, and joint variation. 

3. Algebra as the application of a cluster of modeling languages both inside and outside 

of mathematics.” (Kaput, 2008, p. 11) 

Early algebra research has matured around several core content areas relative to these key 

strands. In developing our conceptual framework, we parsed these key strands around three 

predominant domains of early algebra research: (1) generalized arithmetic; (2) equivalence, 

expressions, equations, and inequalities; and (3) functional thinking. We see domains (1) and (2) 

as aligned with Kaput’s key strand (1), while domain (3) aligns with strands (2) and (3).   

The four algebraic thinking practices (e.g., generalizing mathematical structure and 

relationships) and the three content areas where these practices can occur (e.g., generalized 

arithmetic) defined our conceptual framework for early algebra content. This framework was 

critical because it helped organize all our curricular content around algebraic ways of thinking. 

That is, rather than viewing curricular content as a set of things to do (e.g., solve equations), we 

viewed it through the lens of developing thinking practices or habits of mind.  

Tasks and lessons were created with an eye towards how well they attended to these 

practices within the different content domains. What (and where) were opportunities for 

generalizing? What kinds of representations could be used and how could tasks build 

representational fluency across different forms, such as words, drawings, tables, and variable 

notation? How could tasks build students’ capacity for developing strong arguments to justify 
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general mathematical claims? What kinds of tasks promoted reasoning with generalizations? 

Questions such as these helped us design content systematically and comprehensively around 

algebraic thinking practices. Regardless of grade level, we thought about how each lesson might 

support students in developing the capacity to generalize, to represent their generalizations in 

different ways, to justify their claims with strong mathematical arguments, and to reason with the 

generalizations they built. To illustrate how we thought about lesson content within this 

conceptual framework, Table 1 highlights selected curricular content themes within the four 

algebraic thinking practices and their occurrence across the Grades K–5 LEAP curriculum.  

Table 1. Occurrence of selected curricular content within algebraic thinking practices (ATP).    
 

 
Curricular Content Themes within Algebraic Thinking Practices (ATP) 

GRADE 

K 1 2 3 4 5 
 Develop generalizations about  

   Properties of operations X X X X X X 
   Sums of evens/odds X X X X X X 
   Rules for growing patterns X      
   Functional relationships between two quantities  X X X X X X 

 Represent generalizations about structure/relationships with words  

    Expressions & Equations X X X X X X 
    Prop. of operations/arithmetic relationships X X X X X X 
    Functions X X X X X X 
Represent generalizations about structure/relationships with variables   

    Expressions & Equations  X X X X X 
    Prop. of operations/arithmetic relationships   X X X X 
    Functions   X X X X 
Represent generalizations about functional relationships with tables X X X X X X 
Represent generalizations about functional relationships with graphs    X X X 
Represent relationships between quantities as equations in non-standard 
forms (i.e., a = a, a = b + c, and/or a + b = c + d) X X X X X X 

 Develop representation-based arguments for   

   Mathematical claims about specific but uncounted cases  X X X    
   General mathematical claims (generalizations)   X X X X X 
Identify best (general) arguments for general claims   X X  X X 

 Develop a relational view of ‘=’   

   Find if equations in non-standard form (e.g., a = a, a = b + c, a + b = c + d)  
   are true or false 

X X X X X X 

   Find a missing value in equations in non-standard forms  X X X X X X 
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  (e.g., a = a, a = b + c, a + b = c + d) 
Explicitly identify properties of operations to justify computational work  X X X X X 

 

We had not explicitly defined this conceptual framework a priori, although it was already 

an underlying lens in our thinking given our prior research. Making the explicit connection 

between the need for a way to organize algebra content and our existing way of thinking about 

early algebra content was a clarifying moment in our design work. We were fortunate that this 

framework already informed our thinking about algebraic content, and the design process helped 

solidify our understanding. The lesson learned here concerns the value of having a specific 

framework in mind prior to the design process for identifying curricular content.  

We also found it helpful that the framework was organized around ways of thinking 

rather than specific content. This helped us connect content across Grades K–5. For example, the 

practice of generalizing arithmetic relationships about operations on evens and odds, how to 

develop arguments for these relationships, and how to use these relationships as building blocks 

to reason in novel situations, was a learning thread developed with increasing complexity in each 

grade across Grades K–5. We distinguish this from an approach that treats concepts related to 

even and odd numbers in isolated ways at a particular grade or grades. 

A Framework for Curriculum Research 

As described above, we began our curriculum development by adopting a learning 

progressions approach as a framework to guide our thinking about the components needed (e.g., 

learning goals, instructional sequences, assessments) and how to best design these components in 

a way that prioritized empirical research on children’s algebraic thinking. Along the way, we 

clarified our conceptual framework for early algebra content based on our already existing views 

on what it meant to think algebraically. But what informed the steps in our research process? The 
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benefit of a framework that outlines the components of a research process for developing a 

curriculum and testing its effectiveness had not occurred to us before our work began. We simply 

kept moving forward in what felt like obvious “next steps.” Looking back, we are better able to 

articulate our process.  

As we prepared to report on the effectiveness of our Grades 3–5 curriculum, we found 

Clements’s (2007) Curriculum Research Framework (CRF) to be particularly relevant for 

retrospectively characterizing the stages of our work. The CRF consists of three phases: (1) a 

priori foundations, (2) learning model, and (3) evaluation. The a priori foundations phase 

involves identifying subject matter and relevant research in teaching and learning to inform the 

innovation’s design. Learning model involves the design and sequencing of lesson content to 

align with empirical models of children’s thinking. The evaluation component involves the use 

of multiple methodologies to evaluate the appeal, usability, and effectiveness of an innovation.  

We see the stages of our work as aligned with the CRF’s phases for developing research-

based curricular innovations (Blanton et al., 2019). Our conceptual framework for early algebra 

derives from Kaput’s (2008) subject matter analysis of the content and practices of algebra. This, 

in conjunction with our analysis of empirical research on children’s algebraic thinking, state and 

national learning standards and frameworks, existing K–8 regular mathematics curricula, as well 

as the canonical development of algebra as a mathematical discipline (Battista, 2004), provided 

the a priori foundation (Clements & Sarama, 2008) for the design of our intervention.  

As with the learning model phase (Clements, 2007), the grade level instructional 

sequences in our curriculum were designed as conjectured routes whose sequencing was based 

on known or hypothesized progressions in children’s thinking about our targeted subject matter 

domain (algebraic concepts and practices), with tasks sequenced to advance students’ knowledge 



 14 

along a progression (Blanton et al., 2019). For example, research on the development of 

children’s understanding of the equal sign as a relational symbol suggests that the use of 

true/false and open equation tasks, as well as the sequencing of such tasks by layering in the use 

of operations in an equation (from a simple equation with no operations, to an equation with 

operations only to the left or right of the equal sign, to a complex equation with operations on 

both sides of the equal sign), can challenge children’s operational thinking (Rittle-Johnson et al., 

2011). Instructional sequences across Grades K–5 were designed to account for this type of 

empirical research in grade appropriate ways.  

Finally, as with the CRF’s evaluation phase, our evaluation involved the use of design 

studies to test our instructional sequences, quasi-experimental cross-sectional and longitudinal 

studies to examine the curriculum's potential, and, to date, a large-scale randomized study in 

Grades 3–5 with a follow-up retention study in Grade 6 to examine its effectiveness.  

Table 2 shows the stages of our work for the Grades 3–5 design and how this aligns with 

the CRF. In retrospect, we see value in a framework such as the CRF that identifies steps in 

conducting research on curriculum development. Designing curricula is a lengthy, complex, and 

expensive process. A framework such as the CRF can help organize and sequence the design 

process and the acquisition of funding to support it. 

Table 2. Alignment of our work with the CRF (Clements, 2007). 

Stage of Work (Grades 3–5) 
Alignment with 
Phases of CRF 

Identification of subject matter (early algebra concepts and practices) through analysis 
of empirical research, national and state learning frameworks, regular K–8 mathematics 
curricula, and disciplinary knowledge; Analysis of the alignment of these products with 
our conceptual framework for algebra 

A priori 
foundation 

 
Initial design of Grades 3–5 components: learning goals, grade level instructional 
sequences (curriculum), assessments 

Learning model 

Design studies for preliminary testing of the curricular design  
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Small-scale quasi-experimental cross sectional and longitudinal studies of the 
curriculum’s potential and feasibility 

Evaluation 

Large-scale, randomized (CRT) study of the curriculum’s effectiveness in Grades 3–5 

Retention study of the curriculum’s effectiveness in middle grades (Grade 6) 

 

Lesson Learned: Addressing the Gaps 

Addressing the Gaps in Assessments  

As we noted earlier, more rigorous experimental studies that show whether curricular 

approaches are effective in increasing students’ mathematical achievement are needed (e.g., U.S. 

Dept of Education, 2008). Robust measures of learning are essential for such studies. When 

developing a curriculum, it is important to consider whether there are adequate, validated 

measures that might be used to assess its effectiveness. Existing standardized assessments might 

be used, but one should consider if they are sensitive enough to measure the concepts the 

curriculum addresses. In our case, there was a significant gap in available measures around early 

algebra. Even existing state standardized assessments aren’t calibrated closely enough to the 

algebraic concepts and practices LEAP addresses at a given grade level. LEAP accelerates 

algebraic development, so its content is sometimes beyond what students typically encounter in a 

given grade. This made typical standardized assessments for elementary grades an inadequate 

measure of LEAP’s effectiveness. Moreover, standardized assessments are sometimes only 

available in upper elementary grades, leaving assessment gaps in the earlier grades. To measure 

LEAP’s effectiveness (and to help us understand early algebra’s impact), we needed assessments 

that could closely measure growth in understanding of the particular algebraic concepts and 

practices we hoped the LEAP curriculum would foster in students’ thinking. 

Here again, our use of a learning progressions approach was fortuitous, as this approach 

prioritizes assessments that measure growth along an instructional sequence. This primed our 
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thinking to be intentional about assessment development from the start of the design process. 

Moreover, our early algebra framework helped us think conceptually about the content of the 

assessment items, as we had with the curriculum itself. That is, rather than just selecting different 

types of ubiquitous algebra tasks (e.g., solving an equation) for our assessments, we thought 

about assessment design in terms of our conceptual framework around algebraic thinking 

practices. For example, did LEAP assessments measure students’ capacity to generalize or to 

represent generalizations in different ways? Did they measure students’ capacity to justify 

mathematical claims with strong (non-empirical) arguments? In essence, we learned that it is as   

important to think about assessment design in terms of the conceptual framework as it is the 

curriculum itself. Moreover, designing and validating assessments is a complex process. We 

came to appreciate the importance of devoting sufficient energy and resources to developing 

good, validated assessments from the start of the design process.  

Addressing Gaps in Research on Students’ Thinking 

Another area for which it is important to consider whether gaps might exist is the 

(empirical) research base on students’ thinking about curricular content. We started our research 

on early algebra’s impact and the development of the LEAP curriculum in Grades 3–5 because 

there was a much more robust and stable early algebra research base in this grade domain than in 

Grades K–2. Thus, while our work in Grades 3–5 progressed, we simultaneously began to think 

about learning progressions around early algebraic concepts and practices for young (Grades K–

2) learners in anticipation of extending our work to these earlier grades. 

Gaps in the empirical research base for Grades K–2 led to several research projects in 

which we built on the early algebra research base concerning students’ relational understanding 
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of the equal sign (Blanton, Otalora Sevilla et al., 2018; Stephens et al., 2022; Stephens, Veltri 

Torres et al., 2021), generalizing functional and arithmetic relationships (Blanton et al., 2015; 

Ucles et al, 2020), using and interpreting variable and variable notation (Blanton et al., 2017; 

Brizuela et al., 2015; Veltri Torres et al., 2019; Ventura et al., 2021), and developing arguments 

for general mathematical claims (Blanton et al., 2022). This foundational research was critical in 

later developing our Grades K–2 learning goals, instructional sequences (curriculum), and 

assessments. It also points to the complexity of curriculum development. More than simply 

pulling tasks together (even if done in a cohesive and meaningful way), curriculum design needs 

to incorporate a relevant and robust research base. In our case, this required us to slow down and 

help build the research base needed to support the curriculum. 

Addressing the Gaps in Teachers’ Professional Learning Opportunities 

Designing a curriculum in a way that supports teachers’ learning is not a new idea. In 

recent years, researchers have advocated for the development of educative curricula (e.g., Davis 

& Krajcik, 2005) that “incorporate elements that are meant specifically for teacher learning” 

(Stein et al., 2007, p. 334). Early algebra is in a particularly challenging position regarding 

teachers’ access to professional learning opportunities. Elementary teachers are critical to algebra 

reform, yet a disproportionately large number of pre-service and in-service elementary teachers 

have deeply rooted anxieties about mathematics (Battista, 1986; Haycock, 2001)—particularly 

algebra—that can impact the confidence with which they teach children (Bursal & Paznokas, 

2006). Thus, while early algebra is now part of the discourse of reform, elementary teachers still 

need significant support in understanding how to integrate early algebra into their daily 

instruction in routine ways. At the same time, district priorities for teacher professional 

development often elevate literacy over mathematics (e.g., Bassok & Rorem, 2014; Wrabel et al., 



 18 

2015), making it challenging for teachers to get the support they need, particularly in algebra—

mathematical content they likely did not imagine teaching in elementary grades. The scarcity of 

resources for professional learning around teaching mathematics, along with any anxieties 

elementary teachers might hold about algebra, can imperil teachers’ ability to build early 

algebra-rich classrooms and impede reforms that introduce algebra in the elementary grades.  

We designed early algebra lessons with these challenges in mind, considering how we 

might frame content in the curriculum as if this was all teachers saw. What if the curriculum was 

their sole professional learning opportunity? How could we design it in an educative way, to 

support their understanding of early algebra content, students’ thinking about that content, and 

instructional practices that support children’s algebraic thinking? There were several ways we 

did this. First, each lesson contains a section “Addressing Common Difficulties” that describes 

insights from empirical research about challenges students might face in thinking about lesson 

concepts and how teachers might address these. Each lesson also contains a “Teaching Support” 

section that provides insights around general practices to support students’ thinking about a 

particular concept or practice. Figure 1 illustrates this material for the concept of mathematical 

equivalence.  

Each lesson also includes a rationale for task designs so that teachers can better 

understand the purpose of a task in developing students’ understanding of particular content. 

Figure 2 illustrates this with a “Rationale for the Tasks” taken from a Grade 1 lesson on 

equivalence. Additionally, each lesson includes specific questions in boldface for teachers to ask  

students that can help scaffold or pace mathematical conversations. Teacher questions are 

followed by descriptions of what teachers might expect to learn about students’ thinking. (See 

the selected Launch in the Appendix for an illustration of teacher questions.)  
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 Figure 1. Students’ difficulties and how teachers can support learning: Example from a Grade 1 
lesson about the equal sign (Blanton et al., 2022b). 
Reprinted with permission from Didax, Inc. 
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Figure 2. “Rationale for tasks” from a Grade 1 lesson about the equal sign (Blanton et al., 
2022b). 
Reprinted with permission from Didax, Inc. 

 

 

 

 

 

To be clear, we do not claim that these aspects of LEAP lessons are unique to the LEAP 

curriculum. We highlight these aspects to illustrate a lesson we learned, namely, that curriculum 

design is strengthened when thought about in the educational context in which the curriculum 

will be used and with the goal of supporting teacher—not just student—learning. The challenges 

of early algebra in implementation heightened our concern about teachers’ professional learning 

opportunities and how we might use the curriculum’s design features to offset these challenges.  

There are other contextual issues that we did not consider but that, in retrospect, are 

important to bear in mind. We designed our curriculum for a print format rather than an 

interactive digital one. The latter requires a different way of developing content, and LEAP 

would have benefited had we considered both formats simultaneously. For example, a digital 

format would have given us remote learning options that have been particularly needed in recent 

years. Planning in advance for different ways teachers might access the curriculum and how the 

design or format used can support teachers’ learning can improve the curriculum’s feasibility.  

Conclusion 
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When we first began this journey, our plan was to do “all” of the work around 

understanding early algebra’s impact in one 4-year funded research project. In retrospect, this 

was far too ambitious. Among other things, we did not appreciate how long it would take to 

simply develop the tools (e.g., curriculum, assessments) from which we could begin to 

understand early algebra’s impact. While we have made significant progress, we still have work 

to do. We learned that with curriculum design (as with research), it pays to pace the work so that 

it can be thoughtfully carried out in clear, methodical steps. We learned that developing a 

curriculum can involve taking detours to first do the research needed to understand what the 

curricular content should be. In closing, we frame what we have learned as a series of questions 

to be considered when engaging in curriculum development. In particular, what framework will 

guide how the content of the curriculum is conceptualized? What framework will guide how the 

curricular components are designed and the research process for its development? What are gaps 

that need to be addressed in areas such as curricular tools, cognition, and implementation 

support? For example, are there available assessments for measuring growth in children’s 

thinking? Are there gaps in the empirical research base on children’s thinking about curricular 

content? Are there gaps in the learning opportunities teachers will have around implementing the 

curriculum and, if so, how can the curriculum be designed in ways that support teacher learning?  

We continue to be amazed at how young children learn and grow algebraically, including 

through their experiences with LEAP. We are optimistic that the LEAP curriculum will be 

implemented in schools in ways that impact students’ opportunities for success in algebra. Most 

importantly, it is promising that schools now have effective curricular options such as LEAP for 

improving students’ algebraic thinking. As Jim Kaput might say, that is a happy story. 
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Appendix 
 
Sample excerpts of lesson components (Jumpstart, Launch, Explore and Discuss, and Review 
and Discuss) taken from Grade 1 lessons about the equal sign (Blanton et al., 2022b). 
Reprinted with permission from Didax, Inc. 
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