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Abstract 

Replication has long been a cornerstone for establishing trustworthy scientific results, but 

there remains considerable disagreement about what constitutes as a replication, how results 

from these studies should be interpreted, and whether direct replication of results is even 

possible. This article addresses these concerns by presenting the methodological foundations for 

a replication science. It provides an introduction to the Causal Replication Framework, which 

defines “replication” as a research design that tests whether two (or more) studies produce the 

same causal effect within the limits of sampling error. The framework formalizes the conditions 

under which replication success can be expected, and allows for the causal interpretation of 

replication failures. Through two applied examples, the article demonstrates how the Causal 

Replication Framework may be utilized to plan prospective replication designs, as well as to 

interpret results from existing replication efforts.  

 

Keywords: causal replication framework, replication crisis, replication assumptions, causal 

inference, potential outcomes 
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Introduction 

 Efforts to promote evidence-based practices in psychology and in other disciplines 

assume that scientific findings are valid and reliable but also generalizable enough to warrant 

their use in decision-making. Replication has long been a cornerstone for establishing 

trustworthy scientific results. At its core is the belief that scientific knowledge should not be 

based on chance occurrences. Rather, reliable scientific knowledge should be cumulatively 

established through multiple systematic and transparent studies with findings that are 

generalizable to at least some current or future target population of interest (Bollen, Cacioppo, 

Kaplan, Krosnick, & Olds, 2015).  

 Given the central role of replication in the accumulation of scientific knowledge, 

researchers have reevaluated the replicability of seemingly well-established findings. Results 

from these efforts have not been promising. The Open Science Collaboration (OSC) replicated 

100 experimental and correlational studies published in high impact psychology journals and 

found that only 36% of these efforts produced results with the same statistical significance 

pattern as the original study (2015). The findings prompted the OSC authors to conclude that 

replication rates in psychology were low but not inconsistent with what has been found in other 

domains of science. For example, Ioannidis (2005) suggests that most findings published in the 

biomedical sciences were likely false. His review of more than 1,000 medical publications found 

that only 44% of replication efforts produced results that corresponded with the original findings 

(Ioannidis, 2008). Combined, these results and others contribute to a growing sense of a 

"replication crisis" occurring in multiple domains of science, including marketing (Madden, 

Easley, & Dunn, 1995), economics (Dewald, Thursby, & Anderson, 1986; Duvendack, Palmer-
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Jones, & Reed, 2017), education (Makel & Plucker, 2014), and prevention science (Valentine et 

al., 2011).   

 Despite consensus on the need to promote the replicability of results, there remains 

considerable disagreement about what constitutes as replication, how replication studies should 

be implemented, and how replication results should be interpreted. For example, Gilbert, King, 

Pettigrew, and Wilson (2016) argued that OSC's conclusions about replicability rates in 

psychology were overly pessimistic. They showed that besides sampling error and weak 

statistical power in the original studies, the replication efforts themselves may have been biased. 

Only 69% of their study protocols were endorsed by the original authors – suggesting substantial 

deviations in study factors across the original and replication efforts.  

 This article addresses these concerns by presenting the methodological foundations for 

a “replication science.” We introduce the Causal Replication Framework, which defines 

“replication” as a research design that tests whether two (or more) studies produce the same 

causal effect within the limits of sampling error (Wong & Steiner, 2018b). The Causal 

Replication Framework uses potential outcomes notation (Rubin, 1974) to specify a causal 

estimand of interest, as well as five assumptions under which replication success can be 

expected. Here, a causal estimand is defined as the unknown causal effect of a well-defined 

treatment-control contrast on a clearly specified outcome for a specific target population and 

setting. The replication assumptions include: treatment and outcome stability, equivalence of 

causal estimands, identification of estimands, unbiased estimation of effects, and correct 

reporting of effects. Under the Causal Replication Framework, the purpose of direct replication 

is to replicate an identical causal estimand, which has been derived from subject-matter theory. 

While prior conceptualizations of replication emphasize repetition of methods and procedures, 
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we show that repeating all methods and procedures may not be required – or even desired – to 

achieve replication success. What matters is the extent to which replication assumptions are met 

in field settings.  

 An important implication of the Causal Replication Framework is that an effect will not 

replicate if any of the five replication assumptions are violated. Replication failure occurs when 

studies fail to produce the same effect estimate (within the limits of sampling error), or when 

studies fail to draw the same conclusions about the direction of an effect. A finding might not 

replicate if there are even small differences in the causal estimands across studies. This may be 

because of differences in treatment and control conditions, in outcomes, and in population and 

setting characteristics; it may also be because one or both studies fail to correctly identify, 

estimate, and report the same effect of interest. However, as we will show, replication failure is 

not inherently a problem as long as the researcher is able to understand why the result was not 

reproduced. In fact, identifying the source(s) of replication failure is crucial for understanding 

effect heterogeneity, and for generalizing an effect. Currently, there are no standards for how 

researchers should characterize the causal estimand of interest for replication. Rather, it must 

usually be inferred based on methods and procedures of the study. The Causal Replication 

Framework provides a theoretical basis for more systematic reporting of the causal estimand of 

interest, which is essential for understanding why replication failure occurs. 

 In this paper, we will also emphasize the importance of prospective replication designs 

for uncovering systematic sources of effect heterogeneity. In prospective replication designs, the 

researcher plans a series of replication studies that may occur simultaneously or at different 

times. This type of design allows the researcher to evaluate replication assumptions by 

systematically relaxing a single replication assumption while ensuring that all others are met. If 
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replication failure is observed, then the researcher has high confidence that she has identified the 

source of the effect heterogeneity. In this way, the Causal Replication Framework may be 

understood as “causal” in two ways – first, it identifies and estimates the causal effect for a well-

defined treatment-control contrast in each study; second, it can be used to uncover the causal 

reasons for why a result does not replicate. Currently, post-hoc replication designs are more 

common. Here, a researcher attempts to replicate a finding from an earlier study, addressing 

replication assumptions based only on what can be inferred through methods and procedures 

from the original study. The challenge here is that there may not be sufficient information from 

the original study to assess the extent to which replication assumptions are violated. In cases 

where multiple replication assumptions have been violated simultaneously, it is often difficult to 

understand why replication failure was observed.  

 The article proceeds as follows. We begin by introducing the Causal Replication 

Framework, its required design assumptions, and implications of the theory. Although replication 

assumptions may seem stringent, our goal here is not to argue that replication designs are 

infeasible in field settings. Rather, it is to demonstrate that researchers must carefully attend to 

replication assumptions for studies to produce interpretable results. In the second section of this 

paper, we show through an example how researchers may address replication assumptions using 

a prospective research design. We also discuss an example of a post-hoc replication design, using 

the Causal Replication Framework to highlight the challenges of interpreting results from this 

type of approach. We conclude by discussing how the Causal Replication Framework may be 

applied more generally for planning replication studies to uncover effect heterogeneities.  

What is Replication? 
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Over the years, researchers have sought to clarify what is meant by “replication.” Most 

definitions have focused on repeating methods and procedures from an original study (Schmidt, 

2009). For instance, Brandt et al. (2014) define direct replications as studies “that are based on 

methods and procedures as close as possible to the original study” (p. 218, emphasis in original). 

Zwaan et al. (2017) describe replication as “studies intended to evaluate the ability of a particular 

method to produce the same results upon repetition” (p. 5). Nosek and Errington (2017) define 

replication as “independently repeating the methodology of a previous study and obtaining the 

same results” (p. 1). Others have also emphasized the need for replication procedures to be 

carried out by independent researchers (Simons, 2014) on independent samples of participants 

(Lykken, 1968).  

"Procedure-based” approaches to replication focus on ensuring that the same methods 

and tools are used in both the original and replication studies. Thus, the quality of the replication 

is judged by how closely the replication study is able to repeat methods and procedures from the 

original study (Brandt et al., 2014; Kahneman, 2014). Despite this seemingly straight-forward 

approach to replication, procedure-based approaches to replication pose multiple challenges for 

implementation in field settings. First, the original study may fail to report all relevant and 

necessary methods and procedures, rendering direct replications difficult if not impossible to 

achieve (Hansen, 2011). Second, this approach to replication privileges methods and procedures 

in the original study, but the original study itself may not have been well implemented. Thus, 

replicating flawed methods and procedures from the original study may not be feasible or even 

desired. Third, procedure-based approaches are inherently challenging because the repetition of 

methods itself is rarely the primary goal of any replication effort. More important is whether the 

intervention under consideration has a reliable and replicable causal effect on the outcome of 
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interest. In procedure-based approaches, the causal effect of interest is usually not well-defined 

by the researcher, it can only be guessed from an accurate description of procedures and methods 

used. As a result, it may be challenging to assess whether the replicated procedures and methods 

are similar enough to the original study, and whether they are appropriate for replicating the 

same causal effect.  

We argue that instead of focusing on repeating methods and procedures, the goal of a 

replication study is to systematically address replication assumptions via study design features 

such that the causal estimand of interest is the same across both studies. In the following section, 

we discuss the Causal Replication Framework and required assumptions for a direct replication 

of results. The assumptions are set up from an idealistic point of view, where two studies are 

expected to focus on the exact same causal estimand, and differences in effect estimates arise 

only due to sampling or randomization uncertainty. In later sections, we show that the Causal 

Replication Framework may be extended beyond the case of “direct replication” to “conceptual 

replications,” where the goal may be to evaluate different causal estimands of interest in order to 

uncover sources of effect heterogeneity.  

Replication under the Causal Replication Framework 

Schmidt (2009) describes direct replication as a “methodological tool based on a 

repetition procedure,” but adds that its purpose is for “establishing a fact, truth or piece of 

knowledge” (p. 91, emphasis in original). In the Causal Replication Framework, we begin with 

the premise that replication is for establishing a “fact, truth or piece of knowledge.” Here, the 

piece of knowledge can be described as a causal estimand, which is the target of inference across 

study 1 and study 2. The causal estimand of interest is derived from subject-matter theory. That 

is, it is guided by theory that defines and operationalizes (a) a treatment-control contrast of 
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interest, (b) an outcome measure that is meaningful, (c) the target population of relevance, and 

(d) a setting in which support and inhibitory factors may or may not be controlled. Thus, the 

causal estimand represents the “true” but unknown causal effect on an outcome Y for a well-

specified replication population R, which might be a subpopulation of one or both studies’ target 

population, and a specific setting S. Because the Causal Replication Framework does not 

prioritize the repetition of an original study’s methods and procedures, we now refer to the 

original and replication study as study 1 and study 2.  

Using potential outcomes notation (Imbens & Rubin, 2015), we define Y(0) to be the 

potential control outcome (under the control condition T = 0) and Y(1) to be the potential 

treatment outcome (under the treatment condition T = 1). These are the outcomes we would 

observe if a subject were assigned to the control or treatment condition, respectively. Though in 

practice, we observe only one of the two potential outcomes, the potential outcomes notation 

allows us to clearly define the causal estimand of interest. For example, the average treatment 

effect (ATE) for the inference population R is defined as ATER,S = ER[Y(1) – Y(0) | S], the 

average difference in treatment and control potential outcomes. This is the average of individual 

treatment effects for all subjects in the replication population R (for instance, the ATE for all 8-

year-old female students) under setting S. Other examples of causal estimands are the average 

treatment effect for the treated (ATTR,S), the intent-to-treat effect (ITTR,S), the complier average 

treatment effect (CATER,S), or the corresponding effects for any other replication (sub)population 

R (e.g., Morgan & Winship, 2015). These estimands are also relevant for randomized controlled 

trials (RCTs) whenever attrition or one- or two-sided noncompliance with treatment assignment 

is present (Steiner et al., 2017; Imbens & Rubin, 2015). Attrition and noncompliance issues need 
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to be explicitly addressed in analyzing RCTs, otherwise the causal estimands will neither be 

identified nor identical across studies. 

The Causal Replication Framework suggests two important insights about replication 

approaches (Wong & Steiner, 2018b). First, successful replication of the causal effect (within the 

limits of sampling error) can be expected only if the causal estimands of study 1 and 2 are 

identical – both studies must focus on the same causal estimand, that is, the same treatment-

control contrast on the same outcome Y for the same inference population R and setting S. 

Second, multiple assumptions about the identification, estimation, and reporting of the causal 

effect are required for a successful replication of the same causal effect. Overall, this means that 

the causal estimand of interest in both studies must be both identifiable and estimable without 

bias.   

The causal estimand is identifiable if it can be nonparametrically estimated without bias 

from the hypothetically infinite replication population (Hernán & Robins, 2018). Here, 

“identification” refers to conditions needed for yielding replicable causal effects without 

systematical biases due to confounding, attrition, or measurement, for instance. Identification is 

not concerned with random fluctuations in estimates due to sampling or randomization error. 

Nonparametric identification allows us ignore issues related to parametric model specification, 

which is about estimation. Estimation addresses the question of whether an identified causal 

effect can be uniquely estimated from a finite sample without bias. Identification and estimation 

assumptions depend on the study design. For instance, the ATER,S for participants in an RCT is 

identified if randomization is perfectly implemented and the stable-unit-treatment-value 

assumption (SUTVA) is met (Imbens & Rubin, 2015). The identified ATER,S can be estimated 
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without bias if an unbiased estimator (e.g., regression estimator) is used and all technical 

assumptions are met (e.g., sufficient degrees of freedom or absence of perfect collinearity). 

Direct replication of a causal effect (within the limits of sampling or randomization 

uncertainty) can be expected when all five identification and estimation assumptions are met, 

which we summarize below (for a more rigorous formalization and proof using potential 

outcomes notation, see Wong and Steiner, 2018b):   

A1 Treatment and Outcome Stability across Studies 

A1.1 No hidden variation in treatment and control conditions. This assumption requires that the 

treatment and control conditions are clearly defined and identical in both studies, that is, 

there is no (unobserved) variation in the implementation of the treatment-control contrast 

across studies.  

A1.2 No variation in outcome measures. Both studies measure exactly the same outcome 

construct. This can be achieved by holding measures, instruments, test setting and timing 

constant across studies. In particular, the outcome needs to be measured in both studies 

exactly the same time after the implementation of the treatment. 

A1.3 No mode-of-study-selection effects. Selection into the two studies has no effect on the 

potential outcomes. For instance, it does not matter whether participants are randomly 

sampled or assigned to one of the two studies or whether they volunteer or self-select into 

one of the studies. Recruitment strategies like incentives for study participation do not 

affect the potential outcomes either. 

A1.4 No peer, spillover, or carryover effects. The potential outcomes of participants in study 1 

are unaffected by researchers, participants, and characteristics of study 2, and vice versa. 
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A2 Equivalence of Causal Estimands 

A2.1 Same causal quantity of interest. Both studies need to aim at the same causal quantity. For 

instance, the average treatment effect (ATE) or the intent-to-treat effect (ITT, in the 

presence of treatment non-compliance in an RCT). 

A2.2 Identical effect-generating processes. If study 1 and 2 are implemented at different sites or 

times, the real-world process that generates the causal effects must be identical for both 

studies, i.e., the effect-generating process does not vary across sites and time. This implies 

that all effect moderators have the same impact in both studies. This assumption presumes 

that nature (including humans) behaves lawfully and uniformly; otherwise, replication 

hardly establishes stable knowledge (for a discussion, see Schmidt, 2009). 

A2.3 Identical distribution of population characteristics. The target populations of the two 

studies must be identical with respect to the joint distribution of individual characteristics. 

This does not imply that both studies have to focus on the same overall target populations, 

but it does suggest that the replication population R, for which we want to replicate the 

causal effect, must be covered by both studies. Matching or reweighting may be needed in 

one or both studies to achieve equivalence in population characteristics. Although the 

assumption does not need distributional equivalence in all population characteristics, it 

does require equivalence on all characteristics that moderate the causal effect. Since 

determination of moderating variables requires reliable subject-matter knowledge, the 

assumption is more likely met if researchers aim at the very same target populations (i.e., 

equivalence on all observed and unobserved characteristics) for both studies. This 

assumption would be violated, for instance, if the portion of male and female participants 

differ across studies and if gender is an effect moderator. Without the use of weighting or 
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matching adjustments to equate the gender distribution across studies the causal estimands 

would differ.  

A2.4 Identical distribution of setting variables. Both studies must have the same joint 

distribution of setting variables that moderate the causal effect. If the setting variables do 

not vary within studies, the two studies must be implemented in the same setting S, 

guaranteeing that all the factors that bring about or inhibit the causal effect must be absent 

or present to the same extent in both studies (Cartwright & Hardie, 2012). 

A3 Identification of Causal Estimands 

In both studies, the causal estimand (e.g., ATER,S) must be identified. For instance, if study 

1 uses an RCT, then it must be perfectly implemented (with no attrition, noncompliance, 

spill-over or peer effects) and cover the replication population R. If study 2 is based on 

observational data, then in addition to the absence of spill-over and peer-effects, strong 

ignorability must be met with respect to ATER,S. That is, the set of observed covariates is 

able to remove any confounding bias. In short, this assumption requires the valid 

implementation of an experimental or quasi-experimental design. Discussions of the 

identification assumptions for different research designs can be found in Imbens and Rubin 

(2015), Morgan and Winship (2014), Steiner et al. (2017), Kim & Steiner (2019), or Wong 

et al. (2012).  

A4 Unbiased Estimation of Causal Estimands 

In both studies, the causal estimand is estimable without bias. This requires the use of an 

unbiased or at least consistent estimator (provided sample sizes are sufficiently large). For 

example, when parametric models are used, the models need to be correctly specified and 
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the technical assumptions must be met (e.g., no perfect collinearity and sufficient degrees 

of freedom). 

A5 Correct Reporting of Estimands, Estimators, and Estimates 

For both studies, the estimands, estimators, and estimates (including standard errors) are 

correctly reported. Mistakes in reporting may result in incorrect conclusions about whether 

the two studies actually aim at the same causal estimand or whether the results successfully 

replicate. In addition to the correct reporting, all the identification and estimation 

assumptions required to meet A3 and A4 need to be credibly defended, ideally based on 

strong subject-matter knowledge about the data-generating process and with empirical 

evidence to rule out most plausible validity threats. 

When assumptions A1 and A2 hold, both study 1 and study 2 focus on the same causal 

estimand (e.g., ATER,S), that is, the same treatment-control contrast for target population R in 

setting S. Assumptions A3, A4, and A5 then ensure that the causal estimand of interest is 

identified, estimated without bias, and correctly reported in each of the two studies.   

The replication assumptions highlight the difference between traditional, procedure-based 

approaches to replication and the Causal Replication Framework. In procedure-based 

approaches, the goal and purpose of replication is repetition of methods. In the Causal 

Replication Framework, the goal is that both studies identify and estimate the same causal 

estimand of interest. Importantly, repeating methods and procedures does not guarantee that all 

or even most replication assumptions are automatically met (see also Stroebe & Strack, 2014). 

The two studies may still identify and estimate quite different causal estimands. For example, 

using the same methods and procedures may yield different causal estimands if participants 

failed to comply with their treatment assignment status, or if setting characteristics changed in 
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ways that amplified or dampened the effect, or if the measures do not represent the same 

underlying construct (because of cultural differences or changes over time).  

On the other hand, while replicating the same methods and procedures will often help meet 

assumptions A1 through A4, it is not always required that they are implemented in identical 

ways across studies. For example, two studies may have different research designs as long as 

they identify and estimate the same well-defined causal estimand of interest. Study 1 may use an 

RCT while study 2 uses an observational design with self-selection. Or, two studies may have 

different but valid measurement instruments of the same underlying outcome construct. Thus, 

under the Causal Replication Framework, the quality of the replication effort is judged by the 

extent to which the five causal replication assumptions are met in field settings rather than the 

successful replication of methods and procedures. Strong subject-matter theory about the causal 

effects under investigation and the data-generating processes underlying the two studies is 

indispensable for deriving testable implications and probing assumptions. Violations of any of 

the five assumptions likely result in a direct replication failure. 

Research Designs for Causal Replication 

The Causal Replication Framework yields two important insights for practice. First, 

although assumptions for the direct replication of results are stringent, it is possible for 

researchers to address or probe these assumptions through the thoughtful use of research designs 

and empirical diagnostic tests. Second, researchers may identify sources of effect heterogeneity 

by systematically inducing potential violations of one or multiple replication assumptions. In this 

case, a prospective replication approach may be used to ensure that all design assumptions are 

met with the exception of the one that is under investigation. If results fail to replicate, the 

researcher will know why there was a difference in effects. Post-hoc approaches have the 
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advantage of reflecting more natural sources of variation across studies, but may be more 

difficult to interpret in cases where replication failure is observed due to violations of multiple 

replication assumptions. Below, we discuss two example replication studies, and the extent to 

which design assumptions were met under the Causal Replication Framework.  

Example 1: A Prospective “Design-Replication” Study 

In prospective replication designs, researchers may systematically test effect 

heterogeneities by examining whether crucial design assumptions have been met across studies. 

Although prospective designs for replication are relatively novel in the general replication 

literature, they have been established in a related but mostly independent literature called design-

replication studies (also called within-study comparison designs). In a design-replication study, 

the researcher evaluates the performance of an observational study (i.e., a non- or quasi-

experiment) by testing whether the observational study is able to replicate the treatment effect 

from a benchmark RCT with the same target population and setting. Difference in treatment 

effect estimates between the RCT benchmark and observational studies is interpreted as failure 

in the observational study to correctly identify the causal estimand of interest (A3). Although this 

approach has been used to evaluate the identification assumptions in replication designs, it may 

also be applied to systematically test differences in effects due to variations in treatment-control 

conditions and in population and setting characteristics across study arms.  

Wong and Steiner (2018a) discuss research designs for “design-replication” studies, and 

highlight an example of a prospective design-replication study introduced by Shadish, Clark, and 

Steiner (2008). In this approach, researchers randomly assigned students to one of two study 

arms: study 1 or study 2. This ensured that students in both study arms were equivalent on the 

distribution of all covariates. Students who were assigned to study 1 were randomly assigned 
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again into one of two treatment conditions – either a short vocabulary or a short math training. 

Students who were randomly assigned to study 2, however, were allowed to self-select into their 

preferred training session (vocabulary or math) which introduced confounding bias. Participants 

in both study arms underwent treatment and control conditions simultaneously in the same 

setting (e.g a college university classroom), and their outcomes were assessed on the same 

measures (post-intervention math and vocabulary tests) in the same time frame. To address 

selection into training conditions in study 2, the researchers applied propensity score techniques 

to establish equivalence between groups. Once groups were matched, treatment effects were 

estimated using the same ANCOVA models as for the RCT (study 1) to ensure there were no 

differences due to estimation techniques (A4). Observational treatment effects from study 2 were 

then compared to the RCT benchmark results from study 1. Any difference in estimated 

treatment effects (within the limits of sampling error) was interpreted as failure to replicate due 

to “non-experimental bias” in study 2 (i.e., a violation of assumption A3).   

The Shadish et al. (2008) study demonstrates how research design features were used to 

control for all other replication assumptions (A1, A2, A4, and A5), except for the one being 

tested (A3, causal identification of ATE in study 2). The assumptions are summarized in Table 1.  

● The treatment and control conditions were well defined and implemented simultaneously 

under lab conditions in both studies (assumption A1.1).  

● Outcomes were measured in the same way across treatment conditions and study arms, 

and administered at the same time (A1.2).  

● Because the intervention was short and students were tested immediately after the 

intervention, there was no opportunity for spillover or peer effects within and across 

study arms (A1.4).  



A CAUSAL REPLICATION FRAMEWORK 

18 
 

● In both study arms, the researchers aimed at the same causal quantity, the ATE (A2.1). 

● Randomization into study 1 and 2 ensured that the target populations in both study arms 

were statistically equivalent (A2.3).  

● Since the intervention and outcome measures were implemented at the same location and 

time in both study arms, variations due to changes in the effect-generating mechanism 

(A2.2) and due to study setting differences (A2.4) were also ruled out.  

● The interventions were implemented in tightly-controlled, laboratory-like conditions, 

which resulted in a high-quality RCT with no differential attrition, noncompliance, or 

other issues. Thus, the RCT provided a valid benchmark for identifying the ATE (A3 for 

study 1).  

● Treatment effects were consistently estimated the same way in both studies (with the 

exception of using propensity score adjustments in study 2), ensuring that there were no 

differences in estimation procedures across study arms (A4).  

● Subsequent reanalysis of the original data by independent investigators found no 

reporting errors of results (A5). 

Assuming the absence of any mode-of-study selection effects (A1.3) and preference 

effects in the study 2 (part of A3), any difference in effect estimates may be credibly interpreted 

as failure in the observational method to identify valid causal effects in study 2 (i.e., a violation 

of A3).  

 The prospective research design in Shadish et al. (2008) allowed researchers to address 

replication assumptions, and to identify potential sources of replication failure. Here, the 

researchers concluded that despite using different research designs for identifying and estimating 

effects in study 1 and study 2, the studies were able to replicate the same causal effect. This 
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finding implied that in this specific context at least, replication assumption A3 was met. 

Interestingly, the results of this design-replication study have been successfully reproduced in a 

conceptual replication (Pohl et al., 2009).  

 At first glance, the design-replication study may seem like a narrow application of 

replication. However, this example highlights several important features for considering and 

planning replication studies more generally. First, it demonstrates that it is possible to attend to 

replication assumptions in field settings, and that it is most convincing when research design 

features (such as randomization) are used to address assumptions. Second, Shadish et al. (2008) 

show that by systematically relaxing one or two replication assumptions, it is possible to learn 

about sources of effect heterogeneity through replication studies. The strength of the replication 

design rests on whether other design assumptions (that are not being evaluated) are met. Finally, 

although randomizing units into study arms may not be feasible in many field settings, there are 

other research design approaches that may be applied for addressing assumptions, such as 

ensuring equivalence in population characteristics across studies (A2.3). For example, the 

researcher may match or reweight participants from study 1 and study 2 so that participant 

characteristics are the same across studies. Or, a researcher may apply a “switching replication” 

design (Shadish, Cook, & Campbell, 2002), where participants are randomized into groups and 

receive treatment and control conditions in an alternating, replicating sequence. This ensures that 

participant characteristics remain equivalent across replication cycles while other assumptions 

are tested. For example, the researcher may systematically introduce differences in contexts, 

settings, and timing for each replication cycle. The point here is that, by shifting the focus from 

replicating methods and procedures to addressing replication assumptions, it is possible to 
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conceptualize replication through a wider array of research designs that can be used to 

systematically uncover sources of effect heterogeneity across multiple studies.    

Example 2: A Post-Hoc Direct Replication Study 

Most replication studies are post-hoc designs where the replication study is planned and 

designed only after the (statistically significant) results of the original study have been published. 

As a result, if there are flaws or implementation challenges in the original study (e.g. the sample 

size is too small, the causal estimand it not explicitly defined and not well-identified due attrition 

or noncompliance issues), they cannot be changed or addressed by the replicator. Thus, there 

may be multiple differences across study arms in how treatment and control conditions are 

implemented and in how treatment effects are identified, estimated, and reported. While in 

prospective designs, the researcher may introduce systematic sources of variation across the two 

studies, in post-hoc approaches, multiple study differences occur naturally and may not be 

researcher controlled.  

To address replication assumptions, the researcher may attempt post-hoc matching of 

characteristics of the original and replication study. The characteristics are related to the 

similarity of treatment and control conditions (A1), units and settings (A2), and methodology 

(A3 and A4) across both studies. A successful replication of results can be expected only if all 

assumptions (A1 through A5) are met. However, the researcher will often lack sufficient 

knowledge about whether even close repetition of methods and procedures succeeds in 

addressing all five replication assumptions. For example, it may not be clear which population 

and study factors moderate treatment effects (A2), or whether differences in the timing of 

treatment and measurement implementations produce differences in results (A1). 
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Klein et al.’s (2014) “Many Labs” study is an example of a post-hoc replication study. 

This was a collaborative effort of 36 independent research teams from 12 countries that sought to 

examine the replicability of 13 well-known effects in psychology, and the robustness of these 

effects across samples, settings, and cultures. The research team selected the 13 effects to be 

replicated from 12 original studies based on several criteria. First, treatments had to be delivered 

in a standardized format online or in person. This helped maintain the integrity of the original 

treatment conditions under investigation. Second, the study designs had to be short and straight-

forward for independent investigators to implement. This was to allow for multiple treatments to 

be evaluated in a single testing session. Third, with the exception of a single correlational study, 

treatments were evaluated using simple, two group experimental designs. Fourth, the 13 effects 

were selected to represent variations in topics, time frames since the original study was 

conducted, and certainty of their replicability. Each of the 36 research teams replicated all 13 

effects in a single sample of participants. Labs delivered near identical scripts, translating and 

adapting the language as necessary. They documented key information about the sampling 

frame, recruitment process, achieved sample, and other factors related to the local context. 

Deviations from the original study protocol were also recorded.  

The Klein et al. (2014) Many Labs study demonstrates that thoughtfully designed post-

hoc studies can limit, but rarely eliminate confounders between study arms. The Many Labs 

study was designed to examine the variation in replicability across 36 samples and settings 

through deliberate variations in populations and settings (i.e., potential violations of A2.3 and 

A2.4). With the exception of populations and settings, the authors intended to replicate the 

procedures of the original study, especially the treatment conditions, as closely as possible. Table 

2 summarizes potential violations of the replication assumptions. 
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● The treatment and control conditions were well-defined and documented across the study 

arms. However, some small changes in the treatment conditions were necessary to 

account for differences in populations and time (e.g. treatment materials were translated 

into the relevant language) or for intervention timing. Despite these efforts, the culture- 

and language-specific constructs of the treatment conditions might nonetheless vary 

across studies (A1.1). 

● Whenever possible, outcome measures in the original and replication studies used the 

exact same wording, translated if needed. However, the translations of questions and 

verbalized response scales could have resulted in slight differences in the underlying 

outcome construct. Moreover, the original studies measured the outcomes using pencil 

and paper assessments, while all replication studies used an online medium. Thus, it is 

questionable whether the exact same outcome was measured across both studies (A1.2). 

● Both the original and replication studies relied on university participant pools and 

incentives to recruit participants. Recruitment strategies were well-documented in the 

replication studies, but not always documented in the original studies. Further, it was 

unclear at the outset whether variations in incentives and recruitment strategies would 

impact potential outcomes (A1.3).  

● Peer, spillover, or carryover effects between the original and replication studies are 

unlikely because most of the original studies were implemented decades ago (A1.4). 

● Most of the causal quantities were average treatment effects (ATE) generated through 

experimental variation (A2.1). 

● The Many Labs study was designed under the assumption that the original and replication 

studies had stable effect-generating processes. Given that the replication studies were 
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implemented decades later and at different sites, a violation of assumption A2.2 is 

possible.  

● By design, the replication studies deliberately varied target populations and study 

settings, such that assumptions A2.3 and A2.4 likely did not hold. For instance, variations 

in lab or online settings might affect the potential outcomes and change the causal 

estimand. Or, all replication studies tested each participant with respect to all 13 effects, 

while the original studies independently assessed only a single effect. Thus, context and 

order effects may have influenced the assessment of each single effect.   

● Since most studies relied on experimental settings, the average treatment effect (ATE) 

was likely identified for all studies (A3), provide the absence of nonresponse, attrition, or 

noncompliance. However, the ATEs very likely referred to different target populations 

and treatment contrasts (due to potential violations of A1 and A2) such that different 

causal estimands were identified. 

● Since treatment effects were estimated in the same way in both the original and 

replication studies, biases due to estimation procedures were less likely, unless there was 

differential missingness or systematic measurement error (A4).  

● There was no evidence of incorrect reporting (A5), though three of the twelve original 

studies failed to report their sample size. 

Overall, although the Many Labs replication study had the goal of assessing the 

replicability of effects across different populations and settings (A2.3 and A2.4), it is likely that 

other assumptions (A1 and A2) were also violated (variations in treatments, outcomes, 

populations, settings, effect-generating process). As such, the causal estimands were likely 

different across the original and replication studies. Nonetheless, the researchers concluded that 
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10 of the 13 results replicated when looking at the direction and significance patterns of effects 

(but they did not test the direct replication of the magnitude of effects). The potential violation of 

assumptions (intended or unintended) highlight the challenge of post-hoc designs for even 

“close” replication studies. Replication bias may occur if any one of the design assumptions is 

violated and, as noted above there were many opportunities for violations in the Klein et al. 

study. The challenge here is that without research design elements to control these factors 

systematically, it is hard to interpret the source of effect variations in replication designs. 

However, post-hoc designs are often needed when the replication of an important finding has yet 

to be established, and there is interest in assessing the robustness of results across different 

treatments, populations, settings, and outcomes. In these cases, investigators should conduct 

empirical diagnostics to probe and discuss each design assumption systematically.   

Prospective versus Post-hoc Replication Designs 

The above case studies provide just two examples of research design variants that may be 

used to evaluate the replicability of results. Prospective replication designs are akin to the design 

of RCTs – they have the advantage of offering strong causal interpretations of results, especially 

in cases when results do not replicate and there is a strong need to know the source of treatment 

effect variation. However, prospective designs are limited because of the extensive resources 

needed to plan for these studies in advance, and may fail to reveal key sources of variation in 

effects. Post-hoc designs have the potential to allow researchers to assess the replicability and 

robustness of results over more natural and realistic sources of variation, but results from these 

studies may be challenging to interpret when multiple violations of replication assumptions occur 

simultaneously or when the results of the original study are a false-positive finding due to 

publication bias. Our approach is to recommend that multiple research designs for replication are 
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needed for establishing robust scientific results, with the acknowledgment that each method has 

its relative strengths and weaknesses. Regardless of the research design, the Causal Replication 

Framework will help researchers in planning replication studies and in systematically assessing 

and learning from replication failure. 

Discussion 

To promote high quality replication efforts in psychology and elsewhere, a clear 

understanding of replication as its own scientific method is needed. The Causal Replication 

Framework shows that replication may be understood as a causal research design, with stringent 

assumptions for producing interpretable results. Just as a randomized experiment attempts to test 

a hypothesis by minimizing differences between treatment and control groups except for the 

clearly defined treatment-control contrast, the Causal Replication Framework asks researchers to 

minimize differences between studies except for the assumptions of interest. The Causal 

Replication Framework requires researchers to explicitly define the causal estimand of interest 

based on subject-matter theory and the research design chosen. This is in contrast to procedural 

replication approaches where the causal estimands are often only implicitly derivable from the 

description of methods and procedures used. Importantly, the framework suggests that 

replication approaches may be improved through the thoughtful use of research design features 

and diagnostic tests for systematically addressing and testing replication assumptions. A high 

quality replication effort is characterized by a replication design that is able to convincingly rule 

out most plausible validity threats (assumptions A1 to A5, with the exception of those that are 

violated due to intended variations in the replication) in order to systematically identify sources 

of treatment effect heterogeneity.  
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 As our review of Shadish et al. indicates, prospectively planned replication designs allow 

researchers to implement replication studies with design elements for probing the crucial 

replication assumptions. In post-hoc replication efforts, however, the researchers implementing 

the replication study need to demonstrate that the same causal estimand is identified and 

estimated as in the original study, a task which is only possible if the original study provides 

sufficient information about the causal estimand and about potential identification and estimation 

issues (assumptions A3 to A5). Our review of the Many Labs replications demonstrates how 

researchers may address replication assumptions in field settings and the common challenges that 

may arise. 

The Causal Replication Framework and Alternative Conceptualizations of Replication 

Given recent interest in promoting replication efforts, researchers have suggested various 

topographies for categorizing and understanding different types of replication. For example, 

Schmidt (2009) introduced direct and conceptual replications. Direct replication requires the 

repetition of an experimental procedure, while conceptual replication involves the repetition of a 

hypothesis test or result using different methods or procedures. Somewhat similarly, Clemens 

(2017) proposed verification and robustness tests. Verification tests evaluate whether results are 

replicable using the same study protocol on the same data – or on new data that are resampled 

from the same underlying sampling distribution. Robustness tests examine the replicability of 

results when samples are drawn from a different sampling distribution, or when there is some 

variation in method or procedure from the original study (for example, in the analysis code). 

Although the Causal Replication Framework focuses on design assumptions for the direct 

replication of a causal estimand, it is fully compatible with prior conceptualizations of replication 

types. The verification test in the Clemens approach (2017) is akin to replication efforts that are 
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meant to address all five replication assumptions under the Causal Replication Framework. 

Schmidt’s (2009) definition of “direct” or “statistical” replication (Valentine et al., 2011) are also 

examples in which all five replication assumptions are expected to be met. Other types of 

replication designs, however, test whether potential violations to replication assumptions 

occurred by assessing the replicability of effects. Robustness tests (Clemens, 2017) and 

conceptual replications (Schmidt, 2009) are examples where the goal is to assess whether the 

causal effect varies when at least one or more replication features are changed such that that the 

replication assumption might be systematically or naturally violated (e.g., by varying the target 

population, A2.3, the setting A2.4, or research design, A3). However, an advantage of the Causal 

Replication Framework is that it provides a unified perspective for understanding all different 

types of replication using a common set of assumptions.  

The assumptions of the Causal Replication Framework also relate directly to Simons et 

al.’s discussion of Constraints on Generality (COG; Simons, Shoda, & Lindsay, 2017). That is, 

given the specifics of a single study, they suggest that researchers should be clear about to which 

populations, treatment-control contrasts, settings and procedures the findings can or cannot be 

generalized. Studies with clearly stated COGs facilitate the design and implementation of 

meaningful direct and conceptual replication efforts. More generally, replication efforts can be 

framed from a causal generalization or transportability point of view (Bareinboim & Pearl, 

2012; Stuart, Bradshaw & Leaf, 2015; Tipton, 2013). Given that two studies are rarely identical 

in all population and setting characteristics, the question is whether the effect of one study can be 

transported to the population and setting of the other study. If this is possible, direct replication 

will be successful. Not surprisingly, many assumptions underlying the Causal Replication 

Framework and causal transportability are identical. As for the Causal Replication Framework, 
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knowing the effect moderating population and setting characteristics is key for a valid 

generalization of causal effects. 

Can replication efforts be successful in practice?  

Given the stringent assumptions required for direct replication of results, is it possible to 

conduct successful replication studies in actual research practice? This is a crucial question 

because direct replication is challenging. Our general sense is that causal inference with a single 

study, even with a randomized experiment, is challenging, so replicating the same causal 

estimand should be even more demanding.  

The Shadish et al. (2008) study showed that it is possible to address assumptions through 

the thoughtful and creative use of research design elements in controlled settings. The question 

then becomes: Are such direct replication efforts, where the researcher successfully controls all 

possible confounds, informative for science? For example, imagine if the authors of the Shadish 

et al. (2008) were not interested in evaluating the performance of an observational method in 

their design-replication. Instead, their goal was to conduct a direct replication and implemented a 

second RCT instead of an observational study with self-selection. If replication failure was 

observed, then it would be explained by sampling error or randomization uncertainty, a factor 

that is rarely of interest. Would replication success or failure even be interesting in this context 

given how tightly controlled the replication study is?  

Our view is that prospective replication designs are useful to the extent they are able to 

uncover systematic sources of effect heterogeneity (see also Stroebe & Strack, 2014). Shadish et 

al. held everything constant except for the two studies’ (quasi)-experimental design. To 

investigate effect homogeneity or heterogeneity across settings and time, a replication study 

could hold everything constant except for variations in setting or time, respectively. This could 
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be implemented through a switching replication design that we described earlier, or by randomly 

assigning participants into studies that are implemented in different settings. Carefully planned, 

prospective replication studies allow the researcher to learn from replication failure. This is 

because controlled variation of a single factor allows the researcher to infer the reason for the 

effect heterogeneity. Such replication efforts are considered conceptual rather than direct 

(Companion Guidelines on Replication and Reproducibility in Education Research, 2018).  

More generally, we believe the Causal Replication Framework is most useful for 

encouraging researchers to think systematically through assumptions when designing and 

implementing conceptual replications for identifying effect heterogeneity. In post-hoc replication 

studies, the Framework highlights the challenges for interpreting results that may come from 

unplanned or simultaneous violations of assumptions. Viewed from this perspective, post-hoc 

replications have an exploratory rather than confirmatory causal character. Results from post-hoc 

replications can and should be used to prospectively design stronger replications that allow for a 

systematic investigation of potential effect heterogeneities. 

For both prospective and post-hoc designs, subject-matter theory about the presumed 

data-generating process – in particular knowledge about effect-moderating population and setting 

characteristics – play important roles in replication efforts. If two studies have different effect-

moderating factors, direct replication success will be unlikely. Simons et al.’s (2017) COGs 

represent an important step towards building substantively-based theories about the scope of an 

effect’s generality. It may also be used to design better replication studies by providing 

researchers with substantive and theory-based guidance on the types of measures needed for 

assessing violations to replication assumptions.   

Conclusion and Future Directions 
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In this paper, we show that the Causal Replication Framework may be used to identify 

and examine potential sources of effect heterogeneity or replication bias. In general, we 

recommend that researchers 1) identify specific and plausible threats to validity based on their 

substantive knowledge about the data and effect-generating processes, 2) hypothesize data 

patterns that should emerge if these threats are realized, and 3) construct empirical tests and 

diagnostic probes for ruling out such threats. In most cases, replication assumptions will be 

achieved by implementing high quality research designs (e.g. randomization of participants into 

the original and replication study arms) or by using statistical adjustment procedures with rich 

covariate information (i.e. reweighting of units in the replication study such that they reflect the 

same distribution of characteristics in the original study).  

 Beyond the applications discussed here, we believe the Causal Replication Framework 

provides important insights about other types of replication designs that are currently 

underutilized. For example, in reproducibility studies (Chang & Li, 2015), independent 

investigators examine whether results are correctly reported (A5) by examining whether results 

replicate from the same data and analysis code. In stepped-wedge designs, participants are 

randomized to receive treatments in successive waves over time (Hussey & Hughes, 2007), 

allowing the researcher to examine whether results replicate over time (A2). Finally, the Causal 

Replication Framework may help avoid questionable research practices (e.g. p-hacking or 

HARKing) and publication bias by shifting the focus away from the repetition of methods and 

procedures to addressing replication design assumptions. Studies that fail to clearly explicate the 

causal estimand, to carefully defend the causal identification assumptions, and to discuss the 

estimation procedures may be less credible and thus less suited for replication. Further work is 

needed on establishing the methodological foundations for a replication science, including 
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developing new measures for testing replication success across studies (Steiner & Wong, 2018), 

but we believe the Causal Replication Framework provides a coherent perspective for continuing 

this work. 
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Table 1. Shadish, W. R., Clark, M. H., & Steiner, P. M. (2008) Viewed Through the Causal Replication Framework 
 
 

Assumption Study 1: RCT Study 2: Observational Study 

A1 Treatment & A1.1               
      outcome stability A1.2 
  
 A1.3 
 A1.4 

 treatment and control conditions: identical 
 outcome measure, instruments & timing: 

identical 
 no mode-of-study-selection effects 
 no peer-, spillover-, or carry-over effects 

 treatment and control conditions: identical 
 outcome measure, instruments & timing: 

identical  
?  no mode-of-study-selection effects 
 no peer-, spillover-, or carry-over effects 

A2 Equivalence of  A2.1 
      causal estimands A2.2 
 A2.3 
 A2.4 

 ATE 
 effect-generating process: identical 
 target population: identical  
 setting: identical 

 ATE 
 effect-generating process: identical 
 target population: identical  
 setting: identical 

A3 Identification ATE is identified (under RCT assumptions) ?  ATE is identified if  
+ all confounders are reliably measured 
+ no preference effects are present 

A4 Estimation  unbiased (mean difference)  unbiased/consistent (matching estimator) 

A5 Reporting  correct reporting  correct reporting 

 
Notes.  indicates assumptions that are likely met. ? indicates potential violations of assumptions (intended or unintended).  
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Table 2. Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Bahník, Š., Bernstein, M. J., … Nosek, B. A. (2014) Viewed 
Through the Causal Replication Framework 
 
 

Assumption Original Studies Replication Studies 

A1 Treatment & A1.1               
      outcome stability 
 A1.2 
  
 A1.3 
 A1.4 

 treatment and control conditions clearly 
defined 

 outcome measures, instruments & timing 
 

 mode-of-study-selection 
 no peer-, spillover-, or carry-over effects 

?  slight variations in treatment conditions 
(e.g., due to translations) 

?  slight variations in outcome measures, 
instruments & timing (translations, online) 

?  mode-of-study-selection effects (incentives) 
 no peer-, spillover-, or carry-over effects 

A2 Equivalence of  A2.1 
      causal estimands A2.2 
 A2.3 
 A2.4 

 ATE 
 effect-generating process  
 target population  
 setting  

 ATE 
?  variations in effect-generating process 
?  different target populations 
?  different setting  

A3 Identification ATE is identified (under RCT assumptions)  ATE is identified (under RCT assumptions) 
but different populations/settings/treatments 

A4 Estimation  unbiased (mean difference)  unbiased (mean difference) 

A5 Reporting  correct reporting  correct reporting 

 
Notes:  indicates assumptions that are likely met. ? indicates potential violations of assumptions (intended or unintended). 
All but one of the Many Labs replications featured a simple two-condition experiment. This table excludes the correlational study.  
 
 
 


