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Empirical studies often demonstrate multiple causal mechanisms potentially involving simultaneous or
causally related mediators. However, researchers often use simple mediation models to understand the pro-
cesses because they do not or cannot measure other theoretically relevant mediators. In such cases, another
potentially relevant but unobserved mediator potentially confounds the observed mediator, thereby biasing
the estimated direct and indirect effects associated with the observed mediator and threatening corresponding
inferences. Additionally, researchers may not know the extent 1o which their measures are reliable, and
accordingly, measurement error may bias estimated effects and mislead statistical inferences. Given these
threats, we explore how the omission of an unobserved mediator and/or using variables with measurement
error biases estimates and affects inferences associaled with the observed mediator. Then, building off
Frank’s impact threshold for a confounding variable (ITCV), we propose a correlation-based sensitivity anal-
ysis. Lastly, we provide an R package ConMed 1o assess the robusiness of mediation inferences given the
omission of an unobserved, confounding mediator and/or measurement error.

Translational Abstract

Researchers across fields rely on mediation analyses to understand processes between the intervention
and the outcome variable. Empirical studies regularly demonstrate the existence of multiple mediation
pathways, such as through simultaneous or related mediators. However, many mediation analyses only
include one mediator for various reasons and there are likely additional relevant mediators that could
significantly bias estimates and inferences associated with the observed mediator. At the same time,
valid statistical inferences also rely on the assumption that all the variables are measured without
error, while researchers may not know the extent to which their measures are reliable. In practice, it
is very likely that the omission of another confounding mediator and measurement error co-occurs.
However, the extant literature on the combined effect of omitted confounders and measurement error
does not evaluate cases where the confounder is a mediator; they focus on pretreatment confounders
where the treatment has no impact on the omitted confounder. Therefore, we fill in the research gap
by examining iffhow omitting an alternative mediator and/or using variables with measurement emror
biases estimates and affects inferences associated with the observed mediator. We present analytical
results as well as an illustrative example to demonstrate the potential consequences of omitting con-
founding mediator(s) given different reliability levels of observed variables. Additionally, we propose
a correlation-based sensitivity analysis and provide an R package to help researchers assess the robust-
ness of their mediation inferences given the omission of an unobserved, confounding mediator and/or
measurement ermor.

Keywords: mediation model, postireatment confounder, unobserved mediator, measurement error,
sensitivity analysis, R package
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Researchers across fields rely on simple and complex mediation
models to study processes (e.g., Cicchetti & Toth, 2006; O’Rourke
& MacKinnon, 2019). If these analyses are misinformed or misspe-
cified, researchers will have misguided interpretations, which can
have severe consequences. This study informs researchers about
such concerns by quantifying the implications of both omitted medi-
ators and measurement error on estimated effects and their corre-
sponding inferences.

In terms of a simple mediation model, a single mediator variable
(Mg) represents one mechanism or process affected by the interven-
tion (X) that, in turn, affects the outcome (¥') (Baron & Kenny, 1986;
MacKinnon, 2008). In such a model, the product of the effects from
X to Mg and from Mg to Y constitutes the indirect effect via Mg, also
known as the product method. Figure 1A presents such a model.

Researchers, however, often consider more complex simultaneous
mediator models (e.g., Bekman et al., 2010; Imai & Yamamoto,
2013; Singh et al., 2014). Figure 1B presents a parallel two-mediator
model with two simultaneous mediation processes, one through each
mediator connecting X to ¥. Preacher and Hayes (2008) discussed
ways Lo test hypotheses for individual mediators and contrast the
magnitude of indirect effects in multiple mediation models, such
as a parallel two-mediator model. Indeed, many researchers have
noted the need to test multiple mediators in a single model to limit
omitted variable bias (e.g., Hayes, 2018; Judd & Kenny, 2010;

‘figure 1

Simple Mediation and Dual Mediator Designs

A. Simple mediation model

C. Unobserved mediator as a posttreatment confounder

E. Omitting My; in a parallel two-mediator model

Preacher & Hayes, 2008). Nevertheless, researchers still frequently
employ simple mediation models because they do not or cannot
measure other theoretically relevant mediators. In such instances,
My; denotes the other potentially relevant, but unobserved, mediator.
For example, if researchers expect two associated mediators
stigma and teacher mindset—to mediate the impact of educational
tracking (X') on students’ learning outcomes (Y'), but only measure
stigma, then stigma represents the observed mediator (Mg), and
teacher mindset represents the unobserved mediator (My;). In such
a case, the researcher may obtain a biased estimate of the mediation
effect via stigma, given the omission of teacher mindset.

In addition to unobserved mediators, measurement error likely
affects mediation analyses. Based on Lord and Novick’s (1968) clas-
sical test theory (CTT) framework, an observed score consists of a
true score and measurement error unrelated to the true score or
any other variables. In linear regression, measurement error in a pre-
dictor can bias both standardized and unstandardized coefficient
estimates and mislead their corresponding statistical inference
(Bloch, 1978; Lord & Novick, 1968). While measurement error in
the outcome would not impact unstandardized coellicient estimates,
it would bias the standardized estimates and increase the chance of
obtaining a nonsignificant result in linear regression (Charter, 1997;
Cohen et al., 2003). In a simple mediation model, although (random)
assignment to treatment may be measured without error (Judd &

B. Parallel two-mediator model

D. Sequential two-mediator model

F. Omitting My, in a sequential two-mediator model
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Kenny, 2010), measurement error may affect the mediator and/or the
outcome (Fritz et al., 2016; Liu & Wang, 2021). In short, it is impor-
tant to consider both My, and potential measurement error within
mediation analyses.

Collectively, both My; and measurement error introduce bias and
can affect statistical inferences. However, researchers often cannot
(a) capture My or (b) know the reliability of their measures for
observed variables. In response, sensitivity analyses can be espe-
cially useful, as they can inform researchers about the strength of
the evidence undergirding their inferences (e.g., Frank et al., 2021;
Rosenbaum, 2002; VanderWeele & Arah, 2011). More specifically,
sensitivity analyses quantify conditions that would invalidate infer-
ences, considering, for example, specific correlations (Frank, 2000),
the percent of variance explained (Cinelli & Hazlett, 2020), or
graphical representations like contour plots (Imbens, 2003). For
instance, correlation-based sensitivity analyses indicate how
strongly an omitted variable must be correlated with both the predic-
tor and the outcome to change the inference regarding the effect of
the treatment on the outcome (Frank, 2000).

Omitted Confounders and Measurement Error in
Mediation Analyses

Confounders in Traditional and Modern Mediation
Frameworks

In the past decade, many studies have investigated the influence of
potential confounders on mediation inferences and provided differ-
ent approaches for sensitivity analyses (e.g., Imai, Keele, & Tingley,
2010; Imai, Keele, & Yamamoto, 2010; Imai & Yamamoto, 2013;
Liu & Wang, 2021; Park & Esterling, 2021; Tchetgen Tchetgen &
Shpitser, 2012; VanderWeele, 2015). To better understand these dif-
ferent approaches to sensitivity analysis, we start with the relation-
ship between modern causal mediation methods based on the
potential outcomes framework (e.g., Hong et al., 2018; Imai &
Yamamoto, 2013; VanderWeele, 2015) and traditional mediation
analyses (e.g., Baron & Kenny, 1986). The potential outcomes
framework emphasizes the estimation of causal quantities and
stresses  the  assumptions
(Mackinnon et al., 2020). Although some researchers prefer non-

required for causal conclusions
parametric analyses that compare expected values between treatment
and control cases (e.g., Hong, 2010; Hong et al., 20135, 2018), many
widely adopted modern causal mediation analyses are based on
regression models (e.g., VanderWeele, 2015, Chapter 2.2;
VanderWeele & Vansteelandt, 2009, 2010). In the absence of an
XM interaction or any other nonlinear form in a single mediator
model with a continuous mediator and outcome, both the potential
outcomes framework (modern approach) and traditional mediation
analyses estimate the same mediation effect (Mackinnon et al.,
2020).

The comparison between the modern approach and traditional
mediation analyses is more complicated in more complex mediation
models since the mediation effect of interest could vary across differ-
ent studies. Using the potential outcomes framework, Daniel et al.
(2015) discussed 24 possible decompositions of the total treatment
effect in a dual mediator model. As Daniel et al. (2015) explain,
when researchers focus on M, they often decompose the total treat-
ment effect into an indirect effect through pathways involving Mg
and a direct effect not involving Mg. We refer to these two effects

as Mn-oriented effects. In a dual mediator model (Figure 1C, with
dotted line), the indirect Mp-oriented effect then includes both
X—->My—=Y and X—>My—-My— Y, and the direct effect not
involving Mg, includes both X — Yand X — My; — ¥. Many modem
causal mediation analyses adopt this approach of Mg-oriented
effects to treat My in corresponding sensitivity analyses (e.g.,
Hong et al., 2018; Tchetgen Tchetgen & Shpitser, 2012;
VanderWeele & Chiba, 2014).

Researchers using traditional mediation analysis handle multiple
mediator models differently. Instead of starting from causal quanti-
ties based on potential outcomes, they specify linear models with
stricter assumptions which allow them to estimate each path-specific
effect. For example, Hayes (2018, p. 167) presents a “serial multiple
mediator model” (Figure 1C, with dotted lines) assuming no interac-
tion effects. Hayes then estimates all four specific linear pathways:
the specific indirect effect of X on ¥ through Mg only (X = Mg —
Y), the specific indirect effect of X on Y through My only (X —
My, — Y), the specific indirect effect of X on Y through both Mg
and My (X - My— Mgp—Y), and the direct effect of X on ¥
(X — Y). Similarly, adopting linear assumptions with no interaction
effects, Preacher and Hayes (2008) present models with multiple
mediators that do not causally affect one another and decompose
the total treatment effect into the specific indirect effect via each
mediator and the specific direct effect from X to Y.

Importantly, a specific indirect effect via Mg alone measures the
effect of X on Y through Mg “while holding constant other media-
tors” (Hayes, 2018, p. 183). In contrast, the Mg-oriented indirect
effect is a sum of all indirect effects via M. In both cases, however,
My; acts as a posttreatment confounder because X causes My, which,
in turn, confounds the relationship from Mg to Y. In other words,
omitting My; may bias the statistical inference whether the researcher
is interested in the Mg-oriented indirect effect or the specific indirect
effect via Mg alone.

Co-Occurrence of Confounders and Measurement Error

Building on previous research on the impact of measurement error
on linear regression and traditional mediation analyses (e.g., Cohen
et al., 2003; Judd & Kenny, 2010; Kenny, 1979; Lord & Novick,
1968; Sengewald & Pohl, 2019), recent studies have started to con-
sider the co-occurrence of confounding variables and measurement
error. Fritz et al. (2016) discuss how the co-occurrence of omitted
confounders and measurement error impacts the point estimation
of the mediation effect. Liu and Wang (2021) extend Fritz et al.’s
(2016) work by (a) discussing the combined impact of confounders
and measurement error on the statistical inference of mediation
effects and (b) proposing a sensitivity analysis. However, both
Fritz et al. and Liu and Wang focus on pretreatment confounders;
they do not evaluate cases where there is an association between
the treatment and the confounder.

The Current Study

While recognizing the value of the modern potential outcomes
framework, most existing psychological research relies on the tradi-
tional approach specified in terms of linear models. In this context,
researchers, especially those conducting meta-analyses, need a tool
to evaluate the robustness of their mediation inferences in linear
models given the strong likelihood of potential omitted mediators
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and measurement error. Therefore, we focus on the traditional
approach and assume both linearity and no interaction between the
treatment and mediators.' With these assumptions, we identify and
focus on the specific indirect effect via a single mediator alone
and the direct effect from treatment to outcome in complex media-
tion models, and further propose a correlation-based sensitivity anal-
ysis that considers both an unmeasured confounding mediator and
potential measurement error. In particular, building off previous
research on pretreatment confounders (e.g., Fritz et al., 2016; Liu
& Wang, 2021), we examine if/how (a) omitting an alternative medi-
ator (as a posttreatment confounder) and (b) measurement error bias
the estimated mediation effects from the path-specific linear perspec-
tive. We also propose a sensitivity analysis and provide an R package
Lo assess the robustness of mediation inferences given the omission
of an unobserved My; and incorporating potential measurement error
in observed Mg, and Y.

To clarify, rather than decomposing the total treatment effect into
two Mg-oriented effects (as mentioned in the last section), we focus
on (a) the specific direct effect from X to ¥ (X — Y), and (b) the spe-
cific indirect effect via Mg alone (X — Mg — Y), estimated as the
product of the paths X — Mg and Mg — Y (Hayes, 2018, p. 170).
For simplicity, we may refer to these two effects as simply indirect
effect (or mediation effect) and direct effect in the following discus-
sions. With the omission of My; from the model (Figure 1C with dot-
ted line), the indirect effect via My, alone (X = My — Y) and the
indirect effect via both mediators (X — My — Mg — Y) are mistak-
enly reallocated to either the specific indirect effect via Mg alone or
the direct effect from X to ¥, leading to bias in the estimation of
these two effects. This approach affords conceptual clarity and the-
ory building for those familiar with the linear framework.
Furthermore, it enables our analysis of measurement error and the
development of a sensitivity analysis. While our sensitivity analysis
approach is also applicable for unobserved pretreatment confound-
ers, we assume no other confounding given observed covariates, the
unobserved confounding mediator, and measurement error so that
the effects of interest are well defined.

To follow, we first introduce dual-mediator designs that consider
measurement error in Mg and ¥ as the true model. Then, we discuss
bias when omitting unobserved mediators and/or measurement error
in Mg and Y. We present the analytical findings along with an illus-
trative example to show how excluding a mediator and/or not
accounting for measurement error affects parameter estimates and
standard errors and, thus, mediation inferences. We conclude with
implications for future research, specifically our proposed sensitivity
analysis and its accompanying R package.

We present our findings in terms of both path coeflicients and cor-
relations. The path coefficient approach shows how different param-
eter levels in true models affect the direction and magnitude of bias,
thereby allowing us to understand how the omission of an additional
mediator generates bias (assuming the “truth” is known). Such
approach is especially useful when interpreting analytical findings
(Part I). The correlation approach, on the other hand, presents how
path coefficient estimates vary by the magnitude of correlations
among variables. Based on the left out variable error (L.O.V.E)
framework (Cox et al., 2013; Mauro, 1990) and Frank’s (2000)
impact threshold for a confounding variable (ITCV), we proposed
a sensitivity analysis method (Part IT) using correlations as sensitiv-
ity parameters so that applied researchers could consider and evalu-
ate such values more easily. Leveraging the joint significance test

LIN, NUTTALL. ZHANG, AND FRANK

and the ITCV approach, the proposed sensitivity analysis method
allows researchers Lo use one or two sensitivity parameters o under-
stand how omitting My; impacts statistical inference through influ-
encing both the point estimate and the standard error. In short, the
path coefficient framework and the correlation framework provide
a comprehensive representation of the potential threat posed by con-
founding My; and measurement error to mediation analyses.

Part I: Bias Due to Omitted Mediators and/or
Measurement Error

Two Mediator Designs with Potential Measurement
Error in M, and Y

Hayes (2018) presented a serial multiple mediation model with
two mediators (see Figure 1C), where one mediator (My;) has a serial
or sequential effect on the second mediator (M) on route to Y. The
parallel and sequential mediation models (see Figure IE and F,
respectively) are likewise dual mediator models, but they are special
cases. Thus, we focus on the more general serial mediation model to
evaluate if/fhow omitting My; biases the estimates of the direct effect
from X to ¥ and the specific indirect effect via Mg alone, defined as
the product of the paths X — Mg and Mg — Y. Additionally, in line
with previous literature (Fritz et al., 2016; Liu & Wang, 2021), we
assume that in the true model, X is perfectly reliable and Mg and
Y have potential measurement error. Equations (1)-(5) specify the
true model with standardized coefficients,

o=k-My+a -X+eum, (e}

My =a - X +epm, (2)
Y*:b]vM:-,+b3vMu+CvX+s-:y. (3)
Mo = M3+ &, @)
Y=Y"+sy (5)

where ex, and &y represent the measurement error in Mo and Y,

respectively. The reliability levels of Mg and Y are
Var(M{, ar(Y*
M = % and ryy = %(Y}) We also assume &y, and ey

are independent to simplify the derivation. In contrast, Equations
(6) and (7) specify the model excluding My; and not considering
measurement error. To simplify the discussion, we excluded any
observed covariates in the analysis. However, the derived results
still pertain when observed covariates Z are included in both the
true and mis-specified models (Equations 1-7) if all quantities are
expressed conditional on Z (i.e., we residualize the other variables
with respect to Z). Additionally, the difference between Equations
(1)-(5) and Equations (6)-(7) is restricted to the confounding

! For sensitivity analysis in the modem framework, in addition to existing
approaches, users might want to consider the Robustness of Inference to
Replacement (Frank et al., 2013, 2021) which is non-parametric and quanti-
fies the robustness in terms of how many cases would have to be replaced
with cases for which there was no effect to change inference (Lin & Frank,
2023).
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mediator My; and measurement error, meaning that there is no other
confounding given observed covariates.

Mo = aime - X +epm, (6)

YZEIME'M(')+EME'X+E];'. (?)

Given our focus on the direct effect from X to Y and specific indi-
rect effect via Mg alone, we are interested in estimating ¢ and a,b,.
Accordingly, the goal is to evaluate the differences between a g,
bipe. and Sy (the standardized parameter coeflicients when exclud-
ing My, and not accounting for measurement error) and a,, by, and ¢
(the standardized parameter coefficients when including My, and
accounting for measurement error). Toward this, we first assume
zero measurement error and focus on the bias due to the omission
of My. That is, we examine the implication of fitting model
Figure 1A when the true model is Figure 1C. As shown in
Figure 2, we denote the standardized parameter coefficients as a,,
51, and ¢ when excluding My; (vs. dime, 51Mf«;« and &y when mea-
surement error is not zero). Second, we discuss scenarios with mul-
tiple My; in the true model with zero measurement error. Finally, we
examine the combined effects of measurement error and the omis-
sion of My; on estimated mediation effects.

Hlustrating the Consequences of Omitting a Potential
Confounding Mediator

We apply the example data Hayes (2018) used to demonstrate the
potential consequences of omitting a potential confounding media-
tor in a serial two-mediator model, assuming zero measurement
error. These data were originally drawn from Tal-Or et al.”s (2010)
experimental study on how the media affects behavior.
Specifically, this model tests if people’s perceptions of how the
media influences others (Mp) mediates the relationship between
the media (X) and people’s attitudes (Y). In other words, when a
hypothetical character, Ashley, reads a media report, her perception
of how other people will respond to the report may be affected by
media and further influence her attitudes and behaviors. To test
this hypothesis, participants were randomly assigned to two groups,
both of which were asked to read a newspaper article about an eco-
nomic crisis affecting the price and supply of sugar. Researchers told
one group that this article came from the front page of a major news-
paper, and they told the other group that it appeared on a supplemen-
tal page of the newspaper. Accordingly, participants were assigned
to a condition variable (X, denoted by COND), indicating whether
they were part of the front page (treatment) or the supplemental
page (control) group. After participants finished reading the article,
researchers asked them the extent to which they believed that other
readers would be inclined to buy sugar. In our model, this presumed
media influence (PMI) served as one mediator (Mg, denoted by
PMI). Researchers also asked participants to rate the article’s impor-
tance. Participants’ perception of the importance of the article acted
as the second mediator (My,;, denoted by IMPORT). Lastly, Tal-Oret
al. (2010) asked all participants how soon they intended to buy sugar
and how much they intended to purchase. Aggregating these
responses, they generated the outcome variable (¥, denoted by
REACTION), which served as a measure of participants’ intention
to purchase sugar.

As shown in Figure 3A, the first fitted model includes both medi-
ators: PMI and IMPORT. For the mediation path via PMI, people are
more likely affected by front-page news articles than those on sup-
plemental pages. Meanwhile, for the mediation path via IMPORT,
people infer the importance of the article by its placement in the
newspaper and act according to the importance of said article.
IMPORT also likely predicts PMI; the more important people
believe the article is, the more likely they believe that it will influ-
ence others. Consequently, one would expect that people who read
about this sugar crisis on the front page of a newspaper would
view this economic situation as important and be more likely to pur-
chase sugar before other readers do and, subsequently, drive up the
price. Similarly, one would expect that people who read about this
sugar situation in a supplemental article would assume this situation
is less important and be less likely to quickly buy sugar, as they
would be less concerned that others” purchasing behavior would
drive up sugar prices.

We fit Figure 3A with standardized data,” thereby creating stan-
dardized estimates for path coefficients and report both the joint
test of significance approach (Fritz & MacKinnon, 2007;
MacKinnon et al., 2002) and the 95% percentile bootstrap confi-
dence intervals based on 5,000 samples (e.g., Falk, 2018; Fritz &
MacKinnon, 2007). Both the effects from COND to IMPORT and
from IMPORT to REACTION were significant and positive, with
estimated effects of 0.181 (SE=0.086, p=.036) and 0.363
(SE =0.074, p << .001), respectively. The estimated specific indirect
effect through IMPORT alone was positive and significant (0.181 x
0.363 = 0.066, bootstrap CI [0.001, 0.150]). In contrast, the esti-
mated specific indirect effect via PMI alone was not significant
(0.134 x 0.338 = 0.045, [—0.013, 0.114]). Only the effect from
PMI to REACTION was positive and significant (0.338, SE=
0.075, p << .001), but the effect from COND to PMI was not signifi-
cantly different from zero (0.134, SE = 0.086, p =.119). That is, pre-
sumed media influence does not appear to mediate the relationship
between people’s reactions and the article’s location, when the per-
ceived importance of the issue (IMPORT) is held constant.
Additionally, the predictive relationship from IMPORT to PMI
was significant and positive (0.258, SE = (.084, p = .002), meaning
the more important people perceive an issue to be, the more likely
they believe that it will influence others’ actions.

Now, we consider what would happen if we omitted IMPORT
from the fitted model. Such a scenario could occur 1f this alternative,
theoretically relevant mediator, was not measured or considered.
Given the prevalence of published studies using single mediator
models, such omissions are likely common because it is theoretically
unlikely that any single mediator fully explains the association
between X and ¥ (Maxwell et al., 2011). In the reduced model,
PMI is the only observed mediator, and Figure 3B presents these
results. When excluding IMPORT, the specific indirect effect via
PMI was significant and positive (0.181 x 0.432 = (1.078, bootstrap
CI[0.001, 0.168]), and both paths in the indirect effect were signifi-
cantly positive. As such, one would erroneously conclude that the
specific indirect effect via PMI is significantly larger than zero.

2 We standardized all variables for analysis to be consistent with our later
derivation, including the binary treatment variable. Therefore, the coeffi-
cients we present are different from those presented in Hayes (2018).
However, this does not affect inferences based on statistical significance.
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Figure 2

True Model with Two Mediators and the Model Omitting My, (with Zero Measurement Error)

True Model (zero measurement error)

Model if omitting My

U B

M0=k‘Mu+ﬁ1'X+EM0
MU=Q2'X+EMU

Y=by-Mo+by-My+c-X+g

Mo=a, X +é&y,

Y=hy Mp+é&-X+s

Specifically, when excluding the mediator IMPORT, the direct path
from article location to PMI increased from 0.134 to 0.181, and the
direct path from PMI to participants’ reaction increased from 0.338
to .432. In short, when excluding IMPORT, the estimated effects of
both paths for this indirect effect via PMI were greater.

As illustrated by the newspaper example, the omission of an alter-
native mediator produced an alternative conclusion or inference.
Specifically, the indirect effect via PMI [rom COND to
REACTION was significantly positive. In both models, the direct

Figure 3

path from article location to participants’ reaction was not signifi-
cantly different from zero, but the point estimate increased from
0.033 to 0.082 with the exclusion of IMPORT. Thus, excluding an
alternative mediator can affect both the estimated effects and their
corresponding inferences. The differences in these results have
deep implications. In social sciences, researchers base theoretical
and real-life decisions on their inferences of such results, and deci-
sions informed by inaccurate inferences may induce not only unin-
tended, but profoundly adverse, consequences (e.g., Holland,

Mlustrative Data Example of Presumed Media Influence
A The model that includes both PMI and IMPORT B The model that excludes IMPORT

(p < 0.001)

IMPORT
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1986). This is likely especially true in the case of mediation findings
because preventive intervention efforts often target the mechanisms
through which a risk process occurs (e.g., Cicchetti & Toth, 2006).

Asymptotic Bias When Omitting My,

Now, we present analytical findings for asymptotic bias when
omitting My, Recall we used Hayes™ (2018) serial two-mediator
model to assess the potential effects of omitted confounding media-
tors. Following the notations introduced earlier, we derived a,. 51,
and ¢ (the standardized parameter coefficients when excluding
M) and evaluate their differences with a,, by, and ¢ (the standard-
ized parameter coefficients when including My), assuming zero
measurement error (see Figure 2). For the derivation, we applied
the Law of Iterated Expectation, which states that E(¥Y1X ) = E[E(N
X, Z)IX], where X, ¥, and Z are three variables, and E(X) represents
the conditional expectation (or conditional mean) of ¥ given X
(Wooldridge, 2009). The following equations present the results
(see online supplemental materials A for more detailed derivations
and discussion):

i =a+k-a (8)
]—a%

5:!}4_ Y ———
S 1—k-ay+a)

)

a» — (k+ay-ax)-(k-as +ap)

E=c+ b
€=c 1 —(k-a2 + a1
—pitb _pXMu_pMUMU 'PXZM(, (10)
I —(k-a, +ay)
- k-bo- k- (1 =a2
Gty = aiby p kb ke Al =), g

l—(k-aa+a)

As reflected in Equations (8)-(10), a,, 51, and ¢ are functions of
true ]:m.lamt:tcrs.3 More specifically, a, and b, represent the true
effects via Mg, while a; and b, represent the true effects via My,.
In our earlier example, the product of a; and b, is the true indirect
effect through the observed mediator PMI only, while the product
of a, and b5 is the true indirect effect through the omitted mediator
IMPORT only.

First, only under stringent conditions are d, 51 ,and ¢ equal to a,,
by, and ¢. Importantly, the conditions under which asymptotically
unbiased direct and indirect effects occur are not the same, meaning
one cannot simultaneously obtain both accurate direct and indirect
effects. To obtain an asymptotically unbiased indirect effect via
Mg alone when omitting My, My must have zero effect on Mg,
This is equivalent to a parallel two-mediator model (ie.,
Figure 1B). However, 1o obtain an asymptotically unbiased direct
effect when omitting My, either one of the following conditions
must be met: (a) py p, = Putg My ~ Px g ©F (b) b2 = 0. The former
condition occurs when X and My; are uncorrelated, conditional on
M. That is, when My; contains no unique information about X (in
terms of linear relationships) omitting My; does not have an impact
on the estimated direct effect from X to ¥. The latter condition indi-
cates that My; has no effect on Y. In general, when the mediation
effect via My; is nonzero (a; # 0 and b, # 0), and My, has a nonzero

effect on My (k # 0), the estimates for a;, by, and c are biased
(ay # @, by # by, c # 0.

Second, the direction and magnitude of bias depend on the
three My-related path coefficients (k, a,, and b;). From
Equation (11), the indirect effect estimate via Mg alone is
always positively biased when k, a,, and b,—the three My;-related
path coefficients—all take the same sign (see online supplemental
materials A for detailed proof). The bias equals to:
k-by-(ay+k-a)-(1 —aj)

1 —(k-ay+ay)’
the three path coefficients associated with IMPORT were all posi-
tive. Thus, when excluding IMPORT, the indirect effect through
PMI increased from (0.045 to 0.078.

In terms of the direct effect &, the direction of bias
depends on whether b, and [a;— (k+a,-az) (k-ax+a;)]
have the same sign (in online supplemental materials A, we show
that ay —(k+ay-ay)-(k-ax+a)) = pxa, — Pxmy * Prtomy, )
Returning to our example case, the path coeflicient from IMPORT
to the outcome REACTION (b,) was positive. Additionally, the cor-
relation between COND and IMPORT was greater than the product
of the correlations between COND and PMI and between PMI and
IMPORT (pxps, = Pxmy * Pugm,)- Accordingly, the direct effect
increased from 0.033 to 0.082 upon omitting IMPORT.

Note that bias could also be written in terms of correlations only.
Equations A5.1-A5.3 in online supplemental materials A present
the result, which show that the bias 18 a function of three unknown
correlations associaled with My: pyag,» Pyag,» and Pyy gy, - Such a
function is also consistent with our analytical results in Equations
(8)-(11), where the three unknown parameters related to My (aa,
b,, and k) determine the bias due to My. In our example, this
means we can either consider bias in terms of unknown path coeffi-
cients related to IMPORT or the three unknown correlations associ-
ated with IMPORT. Later we will use the correlations as sensitivity
parameters to evaluate how sensitive the estimated direct and spe-
cific indirect effects via PMI alone are to a potential postireatment
confounder My;.

k-a-b1+

. In our earlier example,

Asymptotic Bias When Omitting Multiple My,

Above, we accounted for only one My in the true model
However, in practice, more than one omitted confounding mediator
likely exists in the true underlying mediating process. In the online
supplemental materials A, we provide analytical results for scenarios
with N unobserved mediators My ... Myy. When these unobserved
mediators are all independent of each other* (Figure 4A shows the
case for N=2), we show that the asymptotic bias due to omission
of the N unobserved mediators is the sum of the asymptotic bias
caused by each My. For example, when the two biases have the
same direction (e.g., both positive), then the presence of a second
My; increases overall asymptotic bias. This is consistent with Fritz
et al’s (2016) discussion of pretreatment confounders and
Clarke’s (2005) conclusions that the bias can increase, decrease,
or remain the same when excluding more than one confounder
from the model. The assumption of independent omitted mediators

3 We can also write ., ?3., and ¢ as functions of correlations among vari-
ables, see Equations SAS5.1-SAS5.3 in online supplemental material.

* But their correlations are not zero because they are all caused by the treat-
ment X.
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Figure 4

Omitting Two Mediators in Serial, Parallel, and Sequential Mediation Models

A. Serial mediation model with 2 omitted mediators

C. Sequential mediation model with 2 omitted mediators

is a natural assumption for unobserved hypothetical variables. One
could also conceptualize orthogonalizing the related mediators to
establish independence (e.g., regressing each mediator on the previ-
ous mediators and using the residuals as the orthogonalized media-
tor) and then the presented results would pertain.

In the special scenario with N unobserved mediators in a parallel
mediation model (Figure 4B shows such case for N = 2), the indirect
effect via Mg alone is always asymptotically unbiased, irrespective
of the total number of My; in the true model. At the same time, the
direct effect from X to ¥ is asymptotically biased unless the indirect
effects via the other omitted mediators cancel each other out. In the
special scenario with N unobserved mediators in a sequential medi-
ation model (Figure 4C shows such a case for N = 2), the estimates
for by and ¢ are asymptotically unbiased while the estimate of a, is
always biased because the estimated effect of X — Mg picks up all
the intermediated processes via those omitted mediators.

Measurement Error in Mg and Y

In addition to bias due to the omission of potential confounding
mediators, it is also very likely that measurement error affects medi-
ation analyses. In line with previous literature (e.g., Fritz et al., 2016;
Liu & Wang, 2021), we assume there is only one omitted mediator
and X is perfectly reliable, and there is measurement error in M and
Y. Building on Fritz et al.’s (2016) work, we start with the scenario
where there is measurement error in Mg and ¥ but no omitted My,
and illustrate the analytical findings using our earlier illustrative
example.

As before, we focus on standardized coefficients. As shown by
Kenny (1979) and Fritz et al. (2016), when X has no measurement

B. Parallel mediation model with 2 omitted mediators

error (i.e., the reliability of X is equal to 1; ryx = 1), the standardized
estimates of a, b, and ¢ in a single mediator model equal:

= T (12)

by =b-o- Y% 13)
Tym
eme = iy -[c+a-b-(1 — )] (14)

where w is the reliability of M after partialling out X and equals
vy — ’fm
-7,
that do not account for measurement error. ryg, and ryy represent the
reliability of M and ¥, respectively.

When ryay << 1, amg is always smaller than a, indicating the
estimated effect of a is attenuated by measurement error in M.
Also, o is always less than 1 when ry, << 1, indicating the esti-
mated effect of b is also attenuated by measurement error when

(Fritz et al., 2016). app, Pyp. and oy are the estimates

Fagne = ryy (e, by < b). To get sense of how measurement
error affects cpp, we regard the standardized estimate oy as a
product of /ryy and [c+a- b - (1 —w)], where the latter part is
the unstandardized estimate of c¢. As Fritz et al. (2016) explain,
when a - b and ¢ have the same sign,S the unstandardized estimate
of ¢ is biased in the same direction of ¢, resulting in the overesti-
mation of ¢. The overestimation, as reflected by [a-b - (1 —w)],

3 This is also known as consistent mediation. See MacKinnon et al. (2000).
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shows a “complementing™ of the attenuation in the estimated
effect of b.° As such, in the standardized case of cyg, the first
part of ﬁ shows attenuation due to measurement error in Y,
while the second part [c+a-b- (]l —w)] shows overestimation
due to measurement error in M. The final impact on the standard-
ized estimate ¢y then depends on the relative magnitude of the
attenuation versus overestimation.

To illustrate, we revisit the example regarding presumed media
influence (PMI). We generated two random errors independent
from all other variables and used them as measurement error
for the mediator PMI and outcome REACTION, respectively.
We adjusted the variance of the two random errors so that the reli-
ability levels for both are (0.7. Then, we fit the new data with a sin-
gle mediator model for PMI (see Figure 5 for the results).
Comparing Figure 5 with Figure 3B, the effect from COND to
PMI (a path) is attenuated from 0.181 to 0.151, and the estimate
is no longer significant. Also, the effect from PMI to
REACTION (b path) is attenuated from 0.432 1o 0.299. The effect
from COND to REACTION increases from 0.082 to 0.089. That
is, in this example, with a consistent mediation, the overestimation
due to measurement error in PMI exceeds the attenuation due to
measurement error in REACTION, leading to the overestimation
of the hnal estimated effect of ¢ (the direct effect from COND to
REACTION). However, changing the reliability of PMI to 0.9
while leaving the reliability of REACTION at 0.7 (i.e., rym =
0.9 and ryy=0.7), the attenuation due to measurement error in
REACTION exceeds the overestimation due to measurement
error in PMI, leading to the underestimation of the final estimated
effect of ¢ (see Table 1).7

Combined Effect of Omitted My, and Measurement Error
inMupand Y

Next, we examine the effect on the model upon omitting a
single My, assuming there is measurement error in both Mg and Y.
We first present analytical findings and then illustrate the results
with the PMI example. Extending Fritz et al.’s (2016) work, we
write the standardized point estimates of a;, by, and ¢ as follows
(see online supplemental materials A for derivation details).

AiME = a1 - /Tym + ke - Game (15)

Figure 5
Hlustrative Data Example of Presumed Media
Influence When ryps = ryy= 0.7

(p = 0.300)

A TYY

MM

bive = by - o- + bame - kme

1 — a2,
x a2Mh 5 {16)
I — (kmE - @ame + aime)

Eme = /Fyy - [c+a; - by - (1 — )] + bave
Ix sy — "M My " TX Mo

. an

1 — (ks - @ome: + arue)”
where ® is the reliability of Mgy after partialling
out X and My,. Specifically, it equals

Faase + 2 - Tuto * Thiobty * TXMy = TMM * Tie, — Tnty — Tty The
1+2. Fxmy - Txmy - PMgmy — ri’M(} K r}m” BE rifuMU

terms kyg. dome. and boygg are the path coefficients biased by mea-

surement error, and ry a,,. Fag, s, - and 7y 5, are the observed corre-

lations biased by measurement error.

Equations (15)-(17) demonstrate how measurement error biases
the estimated point effects with the omitted My;. When kyg, dames
and by (the three My-related path coefficients) all take the same
sign, measurement error and the omitted My; have opposing effects
on ayme and P;um«;. 4ASSUMIng rasas = ryy- This is remarkably like
Fritz et al.’s (2016) explanation of the combined effect of measure-
ment error and a pretreatment confounder; the overall bias in @ime
and {;1 mE depend on whether measurement error or the omitted con-
founder has a stronger effect. If the measurement error has a stronger
effect (smaller reliability), then the overall bias is negative
(aime < ap and f)mu < by). If the omitted confounder has a stron-
ger effect (such as larger kyg). then the overall bias is positive
(aime = ap and FJ]ME = by). Although it is mathematically possible
Lo get unbiased estimates (i.e., if the two effects cancel each other), it
is exceedingly rare in practice for ajme = a; and EIME = by.

‘When we examine the effect of measurement error and My, sepa-
rately, we conclude that, in both cases, the estimated effect of ¢ could
be positively biased, negatively biased, or unbiased depending on
either the magnitude of path coefficients in the true model or the reli-
ability levels of My; and ¥. Equation (17) makes it clear that the effect
on the bias is even more complicated when we allow simultaneous
existence ol measurement error and My. The effect of omitting
My, depends on whether rxa, is larger than ra, s, - 'x -
Meanwhile, the effect of measurement error depends on whether
J/Try yields a stronger attenuation effect or if [c+a-b- (1 — w)]
shows a stronger overestimation effect due to measurement error
in M. The overall bias of émg depends on the relative magnitude
of all these elfects.

Now, we illustrate the combined effects of measurement error and
My; with the PMI example (Table 1). In the example, the three path
coefficients related to IMPORT (My;) were all positive. Thus,
excluding IMPORT generates positive bias for the coefficients
of both a; and b;. As reliability levels change, the corresponding

9 Note that the unstandardized estimate of a is not affected by measure-
ment error in Mg only the unstandardized estimated effect of b is biased
and attenuated.

"Note that the total effect (in terms of standardized coefficients) from
COND to REACTION in Figure 5 is attenuated as well compared to
Figure 3B because the correlation between COND and REACTION becomes

smaller due to measurement error in REACTION.
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Table 1

Standardized Point Estimates and Statistical Inferences When Mg and Y Have Unattended Measurement Error in the lllustrative Example
Regarding Presumed Media Influence

Reliability Standardized point estimates and statistical inferences
Taang ryy  Estimate of a, Inference of a, Estimate of b, Inference of by Estimate of ¢ Inference of ¢
1 1 181 Sig. 432 Sig. 082 Not Sig.
9 9 A71 Not Sig. 387 Sig. 086 Not Sig.
Exclude My; (i.e., IMPORT) ) 7 A71 Not Sig. 341 Sig. 076 Not Sig.
a 9 151 Not Sig. 339 Sig. 101 Not Sig.
| 7 151 Not Sig. 299 Sig. 089 Not Sig.
Include My, (i.e., IMPORT) 1 1 134 Not Sig. 338 Sig. 033 Not Sig.

Note. ay; = direct effect of X — M, (i.e., COND — PMI); b, = direct effect of My — Y (i.e., PMI — REACTION); ¢ = direct effect of X — ¥ (i.e., COND —

REACTION).

attenuation also changes. When rypy = ryy = 0.9, the effect of mea-
surement error is weaker than the effect of excluding IMPORT.
Accordingly, both the estimated effect from COND to PMI and
from PMI to REACTION increase with the co-occurrence of mea-
surement error and the exclusion of IMPORT, leading the indirect
effect through PMI to increase from 0.045 to 0.066. Note that
0.066 1s smaller than 0.078, which is the estimate of the indirect
effect when we only exclude IMPORT but have zero measurement
error. This reflects what we previously described as opposing elfects
of measurement error and M.

As the reliability drops to 0.7 (rypss = ryy=(0.7), the attenuation
effect of measurement error becomes even stronger that it counters
the positive bias caused by omitting My;. In that case, the estimated
effect from COND to PMI drops to 0.151, and the estimated effect
from PMI to REACTION drops to 0.299, generating an estimated
indirect effect of 0.045 via PMIL. The indirect effect via PMI is no
longer statistically significant. That is, even if we exclude the medi-
ator IMPORT, the inference regarding the indirect effect via PMI
alone does not change because of the attenuation effect of measure-
ment error on PMI and REACTION. From this perspective, the mea-
surement error is useful as it counters the bias due to My,. Practically,
this also means it is more conservative to consider My and assume
everything is perfectly measured.

In terms of the direct effect from COND to REACTION, it increased
from 0.033 to 0.082 with the exclusion of IMPORT, assuming no mea-
surement error. When PMI and REACTION are measured with differ-
ent reliability levels, the estimated direct effect varies between 0.076
and 0.101 (Table 1). The largest estimated effect—0.101—occurs
when the attenuation associated with REACTION’s measurement
error 1s weak, but the overestimation associated with PMI's measure-
ment error 1s strong (ryy = 0.9 and rymy=0.7). The inference, how-
ever, stays the same; the effect is not statistically significant from zero.

To further illustrate the magnitude of bias with the co-occurrence of
My; and measurement error, we calculate the severity of bias relative to
the true effect (i.e., relative bias) under different scenarios. Specifically,
like other studies on bias in mediation models (e.g., Maxwell & Cole,
2007; Maxwell et al., 201 1; Mitchell & Maxwell, 2013), we determine
the severity of bias under varying magnitudes of a,, b, and k (i.e., 0.1
and 0.4) and reliability levels of My and Y (i.e., 0.7 and 1). Starting
with the serial dual mediator design, we solve for the asymptotic
bias of the direct effect of X on Y and the indirect effect via Mg
alone (see Table 2 and Figure 1C). We replicate these calculations
for a parallel mediation model (k= 0; see Table 3 and Figure 1E)

and for a sequential mediation model (@, = b, = 0 see Table 4 and
Figure 1F). In all models (Tables 2-4), a, =0.2, by =0.15, a1, =
0.03, and c¢=0.1, except in the case of the sequential mediation
model, where a; = (). The rows in each table display the estimated
level of relative bias given different values of as, by, k, ryy and rapy.

Magnitude of Asymptotic Bias in Serial Dual Mediator
Models

For simplicity, we continue to assume all pathway coeflicients were
positive (results for negative pathways can be obtained by symmetry).
‘When the measurement error 1s zero, the estimated indirect effect via
Mg (X = Mg — Y) is always positively biased (see Table 2). Except
for two minor cases, the direct effect from X to ¥ is also positively
biased. Meanwhile, the magnitude of bias for the estimated indirect
elfect via Mg varies among cases. Based on our numerical computation
of the analytical results, the largest level of (or worst) relative bias—a
staggering 265.29% —occurred when we assumed a,, b, and k were
all 0.4. The smallest level of (or best) relative bias at 12.25% occurred
when we assumed a5, b,, and k were all ().1. Indeed, through additional
analysis, we show that as k increases, the asymptotic bias (and relative
bias) 0]'5151 increases, while the asymptotic bias of ¢ decreases (see
online supplemental materials A for more detailed discussion). The
magnitude of asymptotic bias for the estimated direct effect (¢€) also var-
ied substantially by case, with the most severe relative bias reaching an
immense 151.44%. When the reliability levels of Mg and ¥ decreased
from 1 to 0.7, measurement error then demonstrated the opposite effect
of My, generating either a smaller positive bias or even a negative bias,
except for one minor case for the direct effect from X to ¥. The attenu-
ation effect from measurement error is especially strong for the indirect
effect, with the largest level of (or worst) relative bias drops from
265.29% to 104.79% due to measurement emor (a2, = b, = k= 0.4).

Magnitude of Asymptotic Bias in Parallel and Sequential
Mediation Models

Assuming zero measurement error, all cases of parallel mediation
model yield positively biased direct effects from X to ¥, but unbiased
indirect effects via My alone (Table 3). In contrast, all cases of the
sequential mediation model yield positively biased indirect effects
via My alone but unbiased direct effects from X to ¥ (Table 4).
Equations (11) and (10) likewise suggest these patterns, where k=0
produces an asymptotically unbiased estimated effect for ;b in the
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Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via Mg Alone

Parameters® Reliability Relative Bias (%)

iy by k Tamm Tyy (@ime — a1)/a (bime — bi)/by (Eme — c)fc (@mebive — aiby)/aiby
4 4 .1 1 1 20.00 23.77 151.44 48.52

4 4 4 1 1 80.00 102.94 104.41 265.29

4 1 1 1 1 20.00 5.94 37.86 27.13

4 1 4 1 1 80.00 25.74 26.10 126.32

" | 4 .1 1 1 5.00 27.62 31.30 34.00

2l 4 4 1 1 20.00 112.05 —0.34 154.47

.1 1 1 1 1 5.00 6.90 7.83 12.25

.1 1 4 1 1 20.00 28.01 —0.08 53.62

4 4 .1 o 7 0.40 —14.92 122.03 —14.58

4 4 4 a 7 50.60 3598 101.27 104.79

4 .1 .1 et 7 0.40 -27.18 25.31 -26.89

4 1 4 7 7 50.60 —15.75 24.25 26.88

A 4 1 ) 7 —12.15 —11.89 20.27 —22.59

. 4 4 a 7 0.40 45.77 335 46.35

| .1 .1 et 7 —12.15 -26.19 -1.07 =35.16

b | 1 4 P 7 0.40 -12.00 —4.35 —11.65

Note. a=directeffect of X — M\;; by = direct effect of My, — Y; k=direct elTect of My, — Mgy ryge=reliability of My,; ryy=reliability of ¥; ay = direct effect of

X = Mg by =direct effect of Mg — ¥: e=direct effect of X — ¥; @i = direct effect of X — Mg, with the omission of M, and not accounting for measurement
error; by = direct effect of My — ¥ with the omission of My, and not accounting for measurement error; &y = direct effect of X — ¥ with the omission of My,

and not accounting for measurement error.
* Hypothetical path coefficients for the model depicted in Figure 1C.

parallel model, and b; = 0 produces an unbiased estimated effect for ¢
in the sequential model. Additionally, both the bias of estimated direct
effect in the parallel mediation model and the bias of the estimated
indirect effect in the sequential mediation model increase as
My;related path coeflicients (k, ap, and b,) increase. In the parallel
mediation model, the relative bias of the estimated direct effect
increases from 10% to 160%, as a; and b, increase from (.1 to 0.4.
More importantly, the actual indirect effect in the sequential model
is zero (since a; = ), but the omission of My; can give the impression
ol a considerable indirect effect: as a; and k increase from 0.1 to 0.4,
the asymptotic bias of the estimated indirect effect increases from
0.0015 to 0.024, while the true value of a, b, is zero.

The effect on the estimated indirect and directs effects changes when
We assume non-zero measurement error in Mg and Y. In the parallel
mediation model, although the omitted My; does not cause bias in the

Table 3

indirect effect, the presence of measurement error leads to its underes-
timation, specifically a negative relative bias of 42.16% (Table 3).
Measurement error also attenuated the positive bias in the direct effect;
the largest (worst) relative bias drops to 125.28% (Table 3). Similarly,
the direct effect X — ¥ in the sequential model is no longer unbiased
with non-zero measurement error. Instead, it is negatively biased,
with a relative negative bias of around 15%. Measurement error also
dilutes the positive bias caused by the omitted My; in the indirect effect
via Mg alone, reducing the largest (worst) bias from 0.0240 to 0.0139.

Through these various investigations, we demonstrate how omitting
polential mediators/postireatment confounders can bias the estimate of
the direct effect and the specific indirect effect via Mg alone. For exam-
ple, the relative bias in the estimation of the indirect effect can exceed
2009 when ay, by, and k are relatively large. We also show how the
co-occurrence of measurement error and My may further complicate

Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect Via Mg Alone in a Parallel Mediation Model

Parameters® Reliability Relative bias (%)

az by k T ryy (@ime — ar)/a (Bime — b1)/by (eme — c)fe (@mebive — aiby)/aiby
il 1 0 1 1 0.00 0.00 10.00 0.00

1 4 0 1 1 0.00 0.00 40.00 0.00

4 1 0 1 1 0.00 0.00 40.00 0.00

4 4 0 1 1 0.00 0.00 160.00 0.00

| i 0 T 7 -16.33 -30.86 -0.22 —42.16

A 4 0 7 7 —-16.33 —30.86 24.88 —42.16

4 N 0 7 7 -16.33 —30.86 24.88 —42.16

4 4 0 7 7 —-16.33 —30.86 125.28 —42.16

Note. as=direct effect of X — Myy; bz = direct effect of My, — Y; k= direct effect of My — Mo: ryme= reliability of Mo; ryy=reliability of ¥; ay = direct effect of

X = Mg by=direct effect of Mo — Y: c=direct effect of X — ¥; @y =direct effect of X — Mg with the omission of My; and not accounting for measurement
error; bywe = direct effect of Mg — ¥ with the omission of My and not accounting for measurement error; &y = direct effect of X — ¥ with the omission of My,

and not accounting for measurement error.,
* Hypothetical path coefficients for the model depicted in Figure 1E.
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Table 4

Bias in the Estimated Direct Effect of X on Y and Estimated Indirect Effect via Mg Alone in a Sequential Mediation Model

Parameters®  Reliability Bias Relative bias (%)

a, by k Ty Tyy 8iME — @ Ji—’]MI: by &me —c 51MH-’3|M15 aihy  (@ime — ai)/a; (Emﬂz bi)/bi  (éme — c)fe (&'IMI‘IE]MH arby)faib
d 0 a4 1 1 .0 0.00 0.00 0015 NA 0.00 0.00 NA

d 0 4 1 1 04 0.00 0.00 L0060 NA 0.00 0.00 NA

4 0 1 1 1 04 0.00 0.00 L0060 NA 0.00 0.00 NA

4 0 4 1 1 16 0.00 0.00 .0240 NA 0.00 0.00 NA

d 0 a7 7 008 —.045 -.016 L0009 NA -30.00 -15.96 NA

d 0 4 3 7 033 —.045 -015 0035 NA -30.03 -14.83 NA

4 0 a1 7 7 033 —.045 -.015 L0035 NA -=30.03 -14.83 NA

4 0 4 7 7 134 —.046 —.010 L0139 NA —-30.55 -10.20 NA

Note. a,=direct effect of X — My; b, =direct effect of My, — Y; k = direct effect of My, — My rygy = reliability of My; ryy = reliability of ¥; a, = direct effect
of X — M2 by = direct effect of M — Y: e = direct effect of X — ¥ @ymi = direct effect of X — M, with the omission of My, and not accounting for measurement
ermor; byye = direct effect of M, — ¥ with the omission of My, and not accounting for measurement error; éyg = direct effect of X — ¥ with the omission of My,

and not accounting for measurement error.
# Hypothetical path coefficients for the model depicted in Figure IF.

the scenarios. However, in practice, researchers rarely, if ever, know the
actual parameters of underlying mediation models, which brings us to
our proposed sensitivity analysis.

Part II: Sensitivity Analysis

As mentioned in the introduction, sensitivity analyses gauge the
strength of inferences by quantifying conditions that would alter said
inference. In this section, we quantify the robustness of inferences
regarding Mg by evaluating how sensitive the estimated direct and spe-
cific indirect effects via Mg, alone are (o a potential postireatment con-
founder My; for given reliability levels of Mg and Y. Specifically, we
quantify the sensitivity of estimates and robustmess of inferences as
functions of comrelations between My, and other observed variables

X, Y, and M. We use correlations as sensitivity parameters because
these quantities are easier for applied researchers to consider and use to
gauge the robustness of their inferences. Additionally, such
correlation-based approach, by extending Frank’s (2000) ITCV, allows
us to consider how omitting My; may impact the statistical inference
through affecting both the point estimate and the standard error.

We use the joint significance test (MacKinnon et al., 2002) in this
sensitivity ;malysis.“ Using the joint significance test, researchers
claim evidence for statistically significant mediation effects when
both paths (a and !3] are jointly significantly different from zero.
As such, the statistical inference of a mediation effect essentially
depends on the statistical inference regarding the a and b pathways
in their respective linear regression models. Leveraging the joint sig-
nificance test and extending Frank’s (2000) ITCV, we propose a sen-
sitivity approach where the researchers only need to consider one or
two sensitivity parameters to evaluate the robustness of inference
regarding the specific indirect effect via the mediator of interest.
Below, we first introduce the ITCV in the context of linear models.
Then, we present how to extend the ITCV approach to a mediation
model, incorporating potential measurement error. Lastly, we intro-
duce an R package to conduct such sensitivity analysis, using the
illustrate example regarding presumed media influence.

Impact Threshold for a Confounding Variable (ITCV)

Extending Mauro’s (1990) L.O.V.E framework, Frank (2000)
developed an index to quantify the properties of an omitted variable

necessary to change an inference regarding one key predictor of
interest in a linear regression model. In particular, Frank quantified
the conditions in terms of the Impact Threshold for a Confounding
Variable (ITCV), where impact refers to the smallest product of ry,
cv- vy needed to change the statistical inference regarding X on
Y from statistically significant to not significant. The two correla-
tions—ry oy and ryecp—refer o the two arms of a confounder
(CV) as the confounder must correlate with both X and Y.
Specifically, Frank derives the smallest possible impact that changes
the inference which occurs when |ryey| = |rxey| = +/impact and ry.
cv* Ix.cv = 0. Other combinations of ry -y and ry oy could also alter
the inference, but their product would need to be larger than the
impact threshold. As such, Frank (2000) refers this smallest impact
as the Impact Threshold for a Confounding Variable (ITCV). Note
that the derivation of ITCV deals with statistical inference by focus-
ing on the t value, taking into account not only the bias in the point
estimate, but also the change in the standard error.” See online sup-
plemental materials A and Frank (2000) for more derivation details.

‘We can use Frank’s (2000) ITCV approach to quantify how strong
a confounder would need to be to change a statistical inference. The
larger the ITCV, the more robust the inference is, as the confounder
must show stronger correlations with X and ¥ to change the infer-
ence. We can extend the calculation to multivariate scenarios, in
which cases impact refers to the product of two partial correlations
conditional on all the other covariates in the linear model. For exam-
ple. for a model with two covariates Z; and Z,, such that ¥ = fi, +
BiX + PBoZy + B3Z> + £, the impact threshold, or ITCV, needed to
alter the inference regarding X represents the product of (a) the

®We use the joint significance test for the following reasons. Although
bootstrap tests can deal with multiple sources of bias more holistically than
other approaches, they assume users have access lo complete datasets,
which is often not the case, particularly when social scientists conduct meta-
analyses. In such cases, researchers likely only have access to the information
reporied in the result tables, such as estimated coefficients, standard errors,
and the final statistical inference.

? The ITCV does not assume invariant standard errors across different con-
founding amounts. In other words, the ITCV accounts for changes in the stan-
dard error due to the confounding variable which can reduce or increase the
standard error depending on its correlations with the predictor and the out-
come in a given model (see Equation 2 in Frank, 2000).
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partial correlation between Y and CV conditional on both Z; and Z,
(rycvi, #,)) and (b) the partial correlation between X and CV condi-
tional on both Z; and Z; (rxcv |z, ). See Frank (2000) and Xu et al.
(2019) for more derivation details.

Now, we extend the ITCV to a mediation model, where the regres-
sion M =B, +aX+0,Z, +& estimates the a pathway, and the
regression Y= gz + bM + ¢X + 0,7, + £ estimates the b and ¢ path-
ways. Z; and Z; are observed covariates. Because the [ITCV approach
allows for any number of covariates, we can apply this sensitivity
technique to mediation models with any number of covariates Z,
including observed pretreatment confounders and interaction terms
of any covariates. Assessing the robustness of the inference regard-
ing the ¢ pathway is a direct application of the ITCV approach, mean-
ing the impact threshold needed to change the inferences, or ITCV,
refers to the smallest product of rycyia ) and rxevim z)-

However, in terms of the inference of the specific indirect effect
via M, there could be two distinct impact thresholds for the a and
b pathways. These two ITCV values require researchers to consider
multiple correlations simultaneously: ryeviz . Txevizs Tvevi 2
and rycy|x z,). which essentially reflects the fact that the exact
point estimates and standard errors of the a and b pathways depend
on three unknown correlations: ry oy, ry ey and rM‘CVAm

Researchers may sometimes have ideas about a particular omitted
confounder and know which pathway (either a or b pathway) might
be impacted more, in which case ITCV could be applied directly to
the specific pathway (see Figure SB2 and R code in the online supple-
mental materials). When the researcher knows little about the omitted
confounder, which is likely the case in practice, it is difficult for
researchers to consider multiple unknown parameters simultaneously.
To simplify the sensitivity analysis in this case, we leverage the joint
significance test and focus on the pathway where the inference is “eas-
ier” to invalidate. That is, considering & and b, we select the one with
the least robust inference because once one pathway becomes non-
significant, the mediation path is broken. Specifically, we compare
the ITCV for @ and b respectively and focus on the path with the
smaller ITCV."" We then use this smaller ITCV to assess the robust-
ness of the inference regarding the specific indirect effect. For example,
if ITCV for a is smaller than the ITCV for 5, we consider the inference
regarding the a pathway less robust and easier to invalidate.'* In this
case, the ITCV quantifies the smallest product of rycyyz, and ryeyig,
to change a from statistically significant to not significantly from
zero. A larger ITCV indicates a more robust inference. If the ITCV
for b is smaller, then we consider the inference regarding the b pathway
is less robust. In this case, the ITCV quantifies the smallest product of
ryevioe)s and Iyeyioe,) 10 overtum our conclusion regarding b and
thus the indirect effect as well. Like the ITCV approach where we
assume rycy=rycy 0 maximize the impact of a confounder
(Frank, 2000), we take a conservative standpoint here by favoring
the challenger/skeptic of the inference and picking one from & and b
that is easier to alter the statistical inference of a mediation effect.

Incorporating Measurement Error in Sensitivity Analysis

Now, we extend the sensitivity analysis o incorporate potential
measurement error. To simplify the discussion, we start with a regres-
sion model Y= P+ B,X + & where we consider how a potential CV
affects our inference regarding X, along with potential measurement
error in the predictor (X) and in the outcome (V). As before, we
first calculate the correlation between X and Y, but now, the correlation

is potentially biased by measurement error in X and ¥ (revgyy x)- Thus,
we correct for measurement error first, using the following formulate:
FME)Yx

+/ PxxTyy
ITCV. Online supplemental materials A also shows how we correct
for measurement error when there are covariates in the model.

Note that royeyy.x is always smaller than the true ry x because mea-
surement errorin X and ¥ attenuates the correlation."* From a conser-
vative standpoint, it is not necessary to consider measurement error

Fyx = Then, we use the corrected correlation to calculate

in sensitivity analyses such as this one because correcting for it
would only make a significant inference more robust. That is, if
we considered measurement error, the resulting ITCV would
become larger, suggesting a more robust inference. However, we
present this approach here in case researchers have some knowledge
of the reliability level of their measures and want to explore the
potential impact on their inferences due to measurement error.

Following the same approach, we can also consider measurement
error in M and Y for a mediation model in the sensitivity analysis.
Specifically, we first correct for measurement error in the estimated
rveExmyz, and roveyymoes,) for given reliability levels of M and Y.
Alter solving for ryuy, and ryyxz,), we follow the same procedure
explained before to find the least robust pathway and evaluate the
sensitivity using the corresponding ITCV."*

Illustration of Sensitivity Analysis Using R Package
ConMed

To demonstrate this sensitivity analysis, we return to our earlier
illustrative example regarding the presumed media influence
(PMI). If we fit the model with only one mediator (PMI), the esti-
mated specific indirect effect via PMI was 0.078 and significantly

" To highlight the connection between our bias formula and ITCV, take
the a pathway as an example. Equation SAS.1 in online supplemental mate-
rial shows how py, and py, \ determine the bias when estimating the a
pathway. In the context of ITCV, My, is the confounder CV and thus, the
key unknown correlations are exactly ry ¢ and ryy . Additionally, the der-
ivation of ITCV deals with statistical inference by focusing on the  value,
laking into account not only the bias in the point estimate, but also the change
in the standard error (see Equation 2 in Frank, 2000). Such a correlational
[ramework also allows a straightforward extension lo scenarios with any
number of observed covariates (see Equations 10 and 11, in Frank, 2000).

"' One can also draw on Frank (2000) Equation (18) to express the [TCV
unconditional on covariates allowing for a more direct comparison between
the ITCV for é@ and the ITCV for b. These calculations require extra quantities
that may not be available or directly interpretable in all settings (e.g.. RZ for
each regression model). Therefore, we will add this option in future versions
of the software.

2 An alternative approach is to compare the robustness of inferences
regarding @ and b using the percent of bias necessary to invalidate the infer-
ence (Frank et al., 2013). See http:/konfound-it.com (Rosenberg et al., 2020).

13 This is because ToEyx = Tyx - £/ TxxTyy. where ryy and ryy are the reli-
ability levels of X and Y, respectively.

" The proposed approach does not work 1f the interest is the inference
regarding the direct effect from X to ¥ while the concern is measurement
error in the observed mediator M. In this case, one may consider using
Equations (20) and (21) in Frank (2000) that address the guestion: how
small must be the reliability of the confounding wariable such that the
observed relationship between X and ¥ can be attributed to the unreliability
of the measure of the confounding variable. This was intended to address
polential measurement error in observed covariates. In other words, here
we are asking: how small must be the reliability of M such that the observed
relationship between X and ¥ can be attributed to the unreliability of M7 Note
that we are not considering another omitted M, in this case.
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positive. Next, we consider how sensitive the inference about this
indirect effect is to an unobserved posttreatment confounding medi-
ator. Specifically, although we recognize IMPORT as a potential
confounding mediator, we did not, for any number of reasons, mea-
sure this variable. Focusing on the indirect effect via PMI, we walk
through how to use and interpret the results of our R package,
ConMed (short for “Confounding Mediator™).

Use the function conmed_ind in the ConMed R package to con-
duct the sensitivity analysis. The first four arguments
est eff a, std err a, est eff b, and std err b
specify the estimated effects and standard errors for the a, pathway
(from X to M) and b, pathway (from Mg to Y), respectively. In our
illustrative example, we estimated that the path coefficient from
COND to PMI was 0.181. with a standard error of (.087. We also
estimated that the path coefficient from PMI to REACTION was
0.432, with a standard error of 0.074. The fifth argument, nobs,
specifies the sample size, which in our example was 123. The
sixth and seventh arguments, n_covariates a and n_cova-
riates b, specify the number of covariates in the linear regres-
sion model for estimating the a; pathway and b, pathway,
respectively. In this case, these values were 0 and 1. The last two
arguments, alpha and tails, specify the significance level for
inference and whether it 1s a one-tail or two-tail test, with alpha
set by default to 0.05 and tails set by default to 2. As such,
we call the function conmed ind by filling in all the
arguments: conmed ind(est eff a=0.181, std err a
=0.087, est eff b=0.432, std err b=0.074,
n obs=123, n covariates a=0, n covariates b=
1, alpha=0.05, tails=2). Figure 6 presents the output
generated by ConMed.

Based on the R output, the mediation effect would become non-
significant if the correlation between COND and My; and the corre-
lation between PMI and My, are above the impact curve, as shown in
Figure 6. The smallest impact (ITCV =0.011) occurs when both
correlations equal to 0.103 (the point in Figure 6 where the impact
curve intersects with the 45-degree angle line). From Figure 6, one
can tell that it is highly likely to have such confounder My, where
the correlation between COND and My; and the correlation between
PMI and My, are above the impact curve. Thus, we conclude that the
inference regarding the specific mediation effect via PMI is not
robust to a potential confounder My;.

To further illustrate this sensitivity analysis technique, we also
applied the approach to indirect effects for different effect sizes, as
shown in Figure 7. In particular, each plot represents the sensitivity
analysis result for particular indirect effect size. " From Figure 7A
F, a ranges from 0.2 to 0.7, while b is fixed at 0.432. The standard
errors for both @ and b are also fixed across all plots
(SE(a) = 0.087: SE(,i)) = (.074). As such, all plots in Figure 7 gen-
erate the same inference that the specific indirect effect via M is stat-
istically different from zero; but the inference in each plot has
different levels of robustness. Figure 7A has the smallest indirect
effect estimate (0.086) with the smallest ITCV (0.183 x 0.183 =
0.033): a confounder CV would invalidate the inference if the corre-
lation between X and CV and the correlation between M and CV are
above the impact curve in Figure 7A. As a increases to 0.5
(Figure 7D), the estimated indirect effect increases to (.216.
Accordingly, the ITCV also increases to 0.349 (0.591 x 0.591),
indicating a more robust inference. Comparing Figure 7D with
7TA, the impact curve moves toward the upper right comer: the

correlation between X and CV and the correlation between M and
CV needs to be much stronger to invalidate the inference in
Figure 7D. We focus on a across Figure TA-D as a is less robust
than b. However, as & [urther increases to 0.6 (Figure 7E) and 0.7
(Figure 7F), we turn to invalidate b as b is considered as easier to
invalidate than a. As such, even though a keeps increasing, the
same ITCV is calculated based upon the unchanged b that relates
Lo ry.cvix. and ryg cvy (1.e., ITCV are the same in Figure 7E and F)."‘

The function, conmed ind, is especially designed for con-
founders like My, that could impact the a pathway and b pathway
simultaneously. For those concerned about an unobserved pretreat-
ment confounder that biases one specific pathway of interest (i.e.,
a, f), or ¢), we recommend using the konfound R package
(J. M. Rosenberg et al., 2020) that provides the ITCV approach in
a general linear regression framework. For instance, one can use
the function pkonfound to evaluate the robusiness of inference
regarding a if they are concerned about any omitted pretreatment
confounder that correlates with X and M but not ¥. This function
also works well with any observed covariates as the user only
needs to specify a and its standard error when the observed covariate
Z is included in the regression model. Assume a = (0.181,
SE(a) = 0.087 and there is one observed covariate Z included in
the regression model, then we call pkonfound(est eff=
0.181, std err=0.087, n cbs=123, n covariates
=1, alpha=0.05, tails=2, index="1T"). In such
case, ITCV is the smallest product of ry oz and ryy oz See online
supplemental materials B for more detailed documentation and an
example for the function pkonfound. See Figure SB2 in the online
supplemental materials for guidance regarding what R function to
use in different cases and the corresponding interpretation of ITCV.

For concerns about measurement error in the mediator and the out-
come, users can also use the function, conmed ind ME, to spec-
ily reliability levels. Most of this function’s arguments are the same
as those in conmed _ind. However, conmed ind ME includes a
few additional arguments, requiring users to, for example, specify
reliability levels, the standard deviations of observed variables,
and R squared information for linear models. Nevertheless, as
noted earlier, it 1s more conservative to not account for measurement
error in M and ¥ when considering a potential confounder on the
mediation effect. Also, as mentioned before, although measurement
error affects standardized and unstandardized point coeflicients dif-
ferently, the way measurement error impacts the statistical inference
is the same.

' The effect sizes across each plol are comparable as the only change
across plots is the value of a. Since we standardized all variables, the indirect
effect specified in the plots can be interpreted as either “partially standardized
effect size” or “completely standardized effect” (Hayes, 2018, pp. 133-136).

'®We resist the temptation to provide absolute thresholds for the ITCV
because doing so would invile a spiraling conversation about how close a cal-
culated ITCV is to a threshold. Instead, we seek more generally to inform
inferences regarding concerns about potentially unobserved mediators by
quantifying the conditions necessary lo invalidate an inference. We also
encourage researchers to consider these conditions within contexts of specific
fields and research focuses. One approach could be benchmarking with other
observed control variables (e.g., an observed pretreatment confounder Z)
included in the model. For example, researchers can examine the impact of
any given control variable Z to determine whether it seemns plausible an omii-
ted My, could influence the parameter estimate of @ by an amount that exceeds
the impact of Z.
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Figure 6
R Output for the Sensitivity Analysis for Unobserved Post-Trearment Confounder Using ConMed

conmed_ind(est_eff a = 0.181, std err_a = 0.087, est_eff b = 0.432, std_err b= 0.074,
n_obs = 123, n_covariates a = 0, n_covariates b = 1, alpha = 0.05, tails = 2)

## The original estimated mediation effect is 0.078 and it is statistically significant.To invalidate an inferenc
e of a significant mediation effect, we consider an omitted confounder CV to change the inference regarding the a
pathway (from the treatment to the mediator).The minimum impact as defined by Frank 2000 (the product of rX,CV an
d rM,CV) would be 0.011 to invalidate an inference for a null hypothesis of 0 pathway.This is generated by a scen
ario that generates the smallest impact necessary to invalidate the inference where |rX,CV| = |rM,CV| = 0.103 (c
onditioning on observed covariates). The correlation is also based on a threshold of 0.178 for statistical signif
icance (alpha = 0.05).

## NOTE: the two correlations would have to have same signs (rX,CV * rM,CV > 0) because the initial estimate of t
he pathway is positive. Accordingly, the mediation effect via M is not significant anymore, based on a joint sign
ificance test.Other combinations of rX,CV and rM,CV with impacts greater than 0.011 can change the inference. The
se are shown on the impact curve below for which combinations of correlations on or above the curved line would i
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nvalidate the inference regarding the a pathway (from the treatment to the mediator).
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Discussion

Our analysis shows that omitting a mediator will typically gener-
ate biased estimates for the specific indirect effect via M alone and
the direct effect from X to ¥. Additionally, our simulation results
show the magnitude of bias can be substantial. In the case of our
illustrative example, the exclusion of an alternative mediator
(IMPORT) yields a different conclusion, one that suggests that the
indirect effect via PMI (Mg) alone is significantly positive, rather
than not statistically significant. Indeed, when including IMPORT
(My) in the model, the indirect effect via PMI was not significantly
different from zero, decreasing from 0.078 to 0.045. Finally,

although the inference about the direct path from article location
(X') to participants’ reaction (Y) does not change with the inclusion
or exclusion of IMPORT, the point estimate decreases from 0.082 to
0.033 with the inclusion of IMPORT in the model. When there is
measurement error in PMI (M) and participants’ reaction ('), the
exclusion of an alternative mediator (IMPORT) may or may not
yield a statistically significant indirect effect via PMI because of
the counterbalancing effect of excluding the mediator (IMPORT)
and measurement error. The overall impact of excluding IMPORT
and measurement error on the estimated direct effect from article
location (X ) to participants’ reaction (') also varies by the measures’
reliability levels.
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‘igure 7

How ITCV Quantifies the Robustness of Inference for Estimated Specific Indirect Effect with Different

Effect Sizes
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Patterns of Asymptotic Bias

A critical finding from this study is that the exact pattern of asymp-
totic bias depends on the specific underlying mediation process. In
the parallel two-mediator model (Figure 1E) in which My; is inde-
pendent of Mg, the estimate of the specific indirect effect via Mg
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is asymptotically unbiased. However, the estimate of the direct effect
from X to Y can be either positively or negatively biased, depending
on the specific indirect effect via My;. If the specific indirect effect
via My is positive, then the direct effect from X to Y is overestimated.
That is, some explanatory power via the direct effect from X to Vis
likely attributed to My; as a mediator. If the specific indirect effect via
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My, is negative, then the direct effect from X to Y is underestimated.
The magnitude of the asymptotic bias in the estimate of ¢ is also the
true specific indirect effect via M.

We encounter similar findings when excluding more than one My,
in a parallel mediation model. In such cases, the specific indirect
effect via Mg is always asymptotically unbiased, irrespective of
the total number of omitted mediators in the true model. However,
the direct effect from X to Y is asymptotically biased unless the indi-
rect effects via the other omitted mediators cancel each other out. In
fact, the indirect effects through all other omitted M,; are mistakenly
attributed to the direct elfect from X to ¥.

In the sequential two-mediator model, the estimate of the direct
effect from X to Y is asymptotically unbiased, but the estimate of
the specific indirect effect via Mg can be either positively or nega-
tively biased, depending on the My-related path coefficients.
Specifically, the estimated effect attributed to X — Mg should be
attributed to X — My — Mg, If the effect X — My — Mg is positive,
then the effect from X to M is overestimated. That is, some explan-
atory power via the direct effect from X to Mg, is likely attributed to
My; as a mediator. The magnitude of the asymptotic bias in the esti-
mation of X to Mg is also the true effect of the following path: X —
My; = Mg. Note that the estimated effect from Mg to ¥ is unbiased,
50 the bias for the specilic indirect effect via Mg comes from the esti-
mation of X to Mg, alone. In other words, the true effect of the path
X — My — Mg—directly determines the direction and magnitude of
the asymptotic bias in the estimation of the specific indirect effect via
M. If this path’s true effect is negative, then the specific indirect
effect via Mg is negatively biased, and the magnitude of the asymp-
totic bias equals the true effect of this path (X — My — Mg) multi-
plied by the effect of Mg 1o Y.

Similar conclusions can be drawn of such models excluding more
than one My;. One can always obtain asymptotically unbiased esti-
mates for the direct effect from X to ¥, while the estimate of the spe-
cific indirect effect via Mg can be either positively or negatively
biased because the estimated effect of X to M includes all the inter-
mediated effects via those omitted mediators. However, unlike the
parallel mediation model, these different omitted mediators cannot
cancel each other’s bias.

If the underlying mediating process represents a serial two-
mediator model where all path coefficients are positive, then the
indirect effect via My alone is overestimated, and the magnitude
of bias can vary substantially. In fact, the specific indirect effect
via Mg 1s always positively biased if all three My;-related path coef-
ficients take the same sign. The estimate of the direct effect from X to
Y can be either positively or negatively biased. When the path coel-
ficient from My; to Mg is relatively small (approaches zero), research-
ers overestimate the direct effect from X to Y. In contrast, when the
effect from My to Mg approaches one, researchers underestimate
the direct effect from X to ¥ (see Figure SA1 in the online supple-
mental materials). To understand this more intuitively, consider a
flow starting from following path: X — M. When the path coeffi-
cient from My; to Mg is relatively small, most of the flow follows
X — My — ¥, contributing to the asymptotic bias of the direct effect
from X to Y. In contrast, when the path coefficient from My; to Mg is
relatively large, more flow goes through X — My — Mp— ¥, con-
tributing to the asymptotic bias of the indirect effect via Mo."” As
such, the larger the path coelficient from My to Mg (indicating a
stronger correlation between Mg and My;), the larger the positive
asymptotic bias in the estimation of the indirect effect via Mg, the

smaller the positive bias or even negative bias in the estimation of
the direct effect from X to ¥. We also find when omitting multiple
independent mediators, that the overall asymptotic bias equals to
the sum of the asymptotic bias caused by each My;. Thus, depending
on the direction and magnitude of bias due to each My, the overall
bias can increase, decrease, or remain the same compared to that
with one single My,.

A second critical finding is that different conditions are required
to obtain asymptotically unbiased direct and indirect estimates
when omitting My;, meaning that researchers may not be able to
accurately estimate direct and indirect effects at the same time. In
the case of our illustrative example, IMPORT (My;) must have no
effect on PMI (M) to obtain an asymptotically unbiased indirect
effect via PMI with the exclusion of IMPORT. In other words, if
IMPORT and PMI are two parallel mediators, then one can accu-
rately obtain the indirect effect via PMI and the estimates for
both the path coefficients from article location (X)) to PMI (Mg)
and from PMI (M) to participants’ reaction (). However, to attain
an asymptotically unbiased direct effect from article location (X)) to
participants’ reaction (Y) when omitting IMPORT (My,), one of the
following two conditions must be met. Either IMPORT must have
no effect on participants’ reaction, or article location and IMPORT
must be uncorrelated conditional on PMI (pugicie 1ocation, iMpORT =
PPMLIMPORT * Particle Tocation,pmi)- Lhat is, IMPORT cannot contain
any unique or extra information about article location in addition
to PMI (in terms of linear relationships). To note, the illustrative
example meets neither of these conditions. In sum, asymptotically
unbiased direct and indirect effects occur under different
conditions.

A third critical finding is that measurement error in Mg and ¥ may
affect overall bias when it co-occurs with an omitted confounding
My;. When the three My-related path coefficients all take the same
sign, measurement error and the omitted My; have opposing effects
on the estimated indirect effect via M. Specifically, measurement
error in Mg and ¥ attenuates the estimated indirect effect via Mg,
while omitting My; overestimates the estimated indirect effect via
M. In the illustrative example, excluding IMPORT increases the
estimated indirect effect via PMI from (0.045 to 0.078. As measure-
ment error in PMI and REACTION increases (reliability levels
decrease from 1 to (.7), the attenuation effect due to measurement
error becomes stronger, and the estimated indirect effect via PMI
drops to 0.045. In other words, measurement error in PMI and
REACTION counteracts the effect of excluding the other mediator
(IMPORT), ultimately generating the same inference regarding the
mediation effect via PML In terms of the estimated direct effect
from COND to REACTION, however, measurement error in PMI
and REACTION may have the same or opposing effect as excluding
IMPORT. Specifically, the direct effect from COND to REACTION
increases from 0.033 to 0.082 with the exclusion of IMPORT.
Different reliability levels of PMI and REACTION may further
increase the estimate from 0.082 to 0.101 or decrease the estimate
from 0.082 to 0.076. To sum, the combined effect of measurement
error and omitted My; depends on the specific reliability levels of
Mg and Y.

17 Gee Lin (2019) for a more detailed explanation.
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Sensitivity Analysis

Omitting an altemnative confounding mediator may have extreme
consequences for hypothesis tests involving M. Therefore, we pro-
pose a sensitivity analysis where My-related correlations serve as
sensitivity parameters. We also offer an R package for researchers
to examine how an alternative omitted mediator may affect the
robustness of their inference regarding the specific indirect effect
via M, alone or the direct effect from X to ¥. We present one way
to apply our R package to assess the robusiness of an inference
regarding a significant indirect effect by considering if the estimated
effect from X to M, or from M, to ¥ is less robust and, thus, easier to
invalidate. Extending Frank’s (2000) ITCV, the R package reports
how large the correlation between both the unmeasured My; and X
and the correlation between the unmeasured My; and Mg need 1o
be to alter the inference regarding the estimated effect from X to
M. It also indicates how large the partial correlation between the
unmeasured My, and Y and the correlation between the unmeasured
My, and the My (conditional on X ) need to be to alter the inference
regarding the effect from Mg to Y. In particular, the proposed R pack-
age defines the product of the two unknown correlations in each case
as impact and reports the minimum impact needed to change the
inference (or ITCV). Using the joint significance test, once either
path estimate becomes not significant, the mediation effect is broken
and no longer significant. Based on these reported correlations and
ITCV values, researchers can evaluate the robustness of their infer-
ence regarding the specific mediation effect via Mg_

To conservatively assess the robustness of their inferences, we
recommend researchers use our sensitivity analysis approach,
assuming they know little about My;. Alternatively, researchers can
use the R package to assess the robustness of inference regarding
any specific direct effect, meaning they can evaluate the robusiness
of inferences regarding X — Mg, Mg — Y or both. This could be use-
ful when researchers have some knowledge of a specific My;. For
example, the researcher may have reason to suspect that a specific
unobserved M is more strongly related to YV than X
(rya, = Txm,)- In such a case, even though the reported ITCV for
the estimated a pathway is smaller than that for the estimated b path-
way, it is more likely to achieve the second ITCV because
Tymy = TxMy-

Our sensitivity analysis is flexible. The ability to focus on any spe-
cific pathway and any combination of correlations that exceed the
ITCV (anywhere above the impact curve in Figure 6) is especially
helpful when researchers suspect a relationship between an alterna-
tive My and X, ¥, or M. Without such knowledge, however, our
sensitivity analysis takes a conservative standpoint and provides
one impact threshold (ITCV) to help facilitate evaluating the robust-
ness of inferences. Importantly, because the ITCV approach was
originally developed for the linear regression framework, it can
account for any number of observed covariates in mediation models.
The approach can also directly quantify the robustness of an infer-
ence for the treatment effect to concems about an omitted pre-
treatment confounder (see online supplemental materials B for R
code). For concerns about co-occurrence of omitting pretreatment
and posttreatment confounding along with measurement error, we
recommend considering one confounder at a time using approaches
we outline here (see Figure SB2 in the online supplemental materi-
als) or considering what pathways are of the greatest concern with
respect to confounders and calculate the corresponding ITCV for

that particular pathway. In the latter case the ITCV could be consid-
ered as the combined effect of multiple confounders.

Implementation

Our analysis can be generally applied o any set of path coeffi-
cients, regardless of their sign. To simplify the discussion, we
focus on the interpretation of scenarios where all path coeflicients
in the true model are positive; however, these path coeflicients
could all plausibly be negative too. Our derivations and analytical
results apply to such a scenario as well as others. Indeed, researchers
can input any path coefficient into Equations (8)-(11) to examine
asymptotic biases. In short, although we discuss one scenario, the
contributions of the present work can be applied more broadly.

Sensitivity analyses only serve as a post-hoc procedure, which
alerts researchers to the robustness of their inferences. As such, sen-
sitivity analyses do not resolve underlying issues within the media-
tion model in question. Considering potentially biased estimates and
changes in inferences due to My, we recommend that researchers
carefully consider potential alternative mediators when designing
their studies to better approximate the true underlying mediating pro-
cess. However, we also acknowledge that various reasons can lead to
the omission of an alternative mediator, such as data collection lm-
itations, particularly the challenge of measuring certain constructs
(e.g., teacher mindset), and secondary data analyses unanticipated
in the original design. Therefore, our R package is a useful resource
that enables researchers to assess the robustness of their mediation
inferences given the omission of My,. If the results suggest a weak
inference, researchers should consider returning to theory, refining
their measures, and/or rethinking their modeling decisions. In con-
trast, if the results suggest a robust inference, researchers may
more confidently claim and share their findings, as well as use the
inference to guide practical decision-making (Frank et al., 2013).

Even when our sensitivity analyses suggest robust inferences,
some researchers may still challenge the findings, positing that likely
more than one omitted confounding mediator affects this mediation
inference. However, as discussed, the overall bias associated with
multiple omitted confounding mediators can increase, decrease, or
even remain the same compared to that with one omitted con-
founder. Nevertheless, to assess the strength of the evidence under-
girding an inference, we argue that it is likely sufficient to consider
the effect of one confounding mediator that captures all sources of
bias similarly affecting said inference. Accordingly, using our sensi-
tivity analysis, one may understand My; as a latent variable, repre-
senting a weighted sum of all potential omitted mediators related
to X, Mg, and ¥, which may bias the inference. Ultimately, our pro-
posed approach is appropriate when researchers are unsure about the
true underlying mediating process.

Limitations and Avenues for Future Research

A few limitations of the present work suggest avenues for addi-
tional research. First, we made assumptions about model specifica-
tions such as no mediator-outcome interaction. Future research
should assess how the omission of My may affect inferences
under more complex scenarios. However, our sensitivity analysis
approach accommodates any number of observed covariates,
including interaction effects. Second, for ease of use, we applied
the joint significance test in our proposed sensitivity analysis and
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corresponding R package. However, this approach does not gener-
ate a confidence interval for the mediation effect, which may be
desirable under some scenarios. In response, future researchers
can expand our R package to estimate sampling variability using
different approaches, such as bootstrap methods (e.g., Shrout &
Bolger, 2002; Williams & MacKinnon, 2008) or other approaches
to approximate the sampling distribution of the mediation effect
when the original dataset is not available (e.g., MacKinnon et al.,
2004; Pan & Frank, 2004). Third, we examined the cross-sectional,
dual-mediator model. Scholars have also suggested using longitu-
dinal designs to test mediation effects because cross-sectional
models can generate biased estimates (e.g., Maxwell & Cole,
2007; Maxwell et al., 2011; Mitchell & Maxwell, 2013).
Accordingly, future studies should consider whether omitting
another confounding mediator can bias estimates in longitudinal
designs (Lin, 2019).

Conclusion

As theorized, our study provides evidence that omitting an alter-
native confounding mediator typically generates asymptotically
biased estimates for the specilic indirect effect via Mg alone and
the direct effect from X to ¥. While the direction and magnitude of
the asymptotic bias depend on the true underlying mediating pro-
cess, the omission of My; can sometimes profoundly affect research-
ers’ inferences. We also discuss how measurement error in the Mg
and ¥ may have the opposite or same direction of effect as the omit-
ted My;. Hence, we recommend that researchers carefully consider
alternative mediators when designing studies and pay close attention
to their data collection methods. Since various circumstances result
in the omission of an alternative My, we offer an R package that
assesses the robustness of mediation inferences given the omission
of an unobserved, confounding mediator and/or measurement error.
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