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Submitted to the Annals of Applied Statistics

VARYING IMPACTS OF LETTERS OF RECOMMENDATION ON COLLEGE
ADMISSIONS

BY ELI BEN-MICHAEL1, AVI FELLER2,* AND JESSE ROTHSTEIN2,†

1Carnegie Mellon University, ebenmichael@cmu.edu

2UC Berkeley, *afeller@berkeley.edu; †rothstein@berkeley.edu

In a pilot program during the 2016-17 admissions cycle, the University
of California, Berkeley invited many applicants for freshman admission to
submit letters of recommendation. This proved controversial within the uni-
versity, with concerns that this change would further disadvantage applicants
from disadvantaged groups. To inform this debate, we use this pilot as the
basis for an observational study of the impact of submitting letters of recom-
mendation on subsequent admission, with the goal of estimating how impacts
vary across pre-defined subgroups. Understanding this variation is challeng-
ing in an observational setting because estimated impacts reflect both actual
treatment effect variation and differences in covariate balance across groups.
To address this, we develop balancing weights that directly optimize for “lo-
cal balance” within subgroups while maintaining global covariate balance
between treated and control units. Applying this approach to the UC Berke-
ley pilot study yields excellent local and global balance, unlike more tradi-
tional weighting methods, which fail to balance covariates within subgroups.
We find that the impact of letters of recommendation increases with applicant
strength. However, we find little average difference for applicants from disad-
vantaged groups, although this result is more mixed. In the end, we conclude
that soliciting letters of recommendation from a broader pool of applicants
would not meaningfully change the composition of admitted undergraduates.

1. Introduction and motivation. In a pilot program during the 2016-17 admissions cy-
cle, the University of California, Berkeley invited many applicants for freshman admission to
submit letters of recommendation (LORs) as part of their applications. UC Berkeley had (and
has) a “holistic review” admissions process, which attempts to examine the whole applicant,
taking account of any contextual factors and obstacles overcome without over-reliance on
quantitative measures like SAT scores (Hout, 2005). Unlike other highly selective universi-
ties, however, UC Berkeley had not routinely asked applicants to submit letters from teachers
and guidance counselors.

The new approach proved controversial within the university. The LORs were intended to
help identify students from non-traditional backgrounds who might otherwise be overlooked
(UC Berkeley, 2017). But there was also legitimate concern that applicants from disadvan-
taged backgrounds might not have access to adults who could write strong letters, and that
the use of letters would further disadvantage these students (Chalfant, 2017).

In this paper, we use the Berkeley pilot as the basis for an observational study of the impact
of submitting letters of recommendation on subsequent admission. Our goal is to assess how
impacts vary across pre-defined subgroups, in order to inform the debate over the Berkeley
policy and similar debates at other universities.

Assessing such heterogeneity is difficult in non-randomized studies like this because vari-
ation in estimated impacts reflects both actual treatment effect variation and differences in

Keywords and phrases: Higher education, Observational study, Subgroup analysis, Balancing weights.
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covariate balance across groups. Existing approaches, such as balancing weights and tradi-
tional inverse propensity score weighting (IPW), face a curse of dimensionality when es-
timating subgroup effects: balancing all covariate-by-subgroup interactions is difficult, and
fully interacted models can over-fit.

To address this, we develop a balancing weights approach tailored to estimating heteroge-
neous treatment effects in the UC Berkeley LOR pilot study. Specifically, we present a convex
optimization problem that finds weights that directly target the level of local imbalance within
each subgroup — ensuring approximate local covariate balance — while guaranteeing exact
global covariate balance between the treated and control samples. The resulting weights con-
trol the estimation error of subgroup-specific effects, allowing us to better isolate treatment
effect variation. This proposal also has a dual representation as inverse propensity weighting
with a hierarchical propensity score model. Finally, we propose combining weighting with
an outcome model to adjust for any remaining imbalance, analogous to bias correction for
matching.

We then use this approach to assess heterogeneity in the impacts of letters of recommen-
dation during the 2016 UC Berkeley undergraduate admissions cycle. Based on the Berkeley
policy debate, we focus on variation in the effect on admissions rates by Berkeley’s preferred
markers of student disadvantage (such as low income, or from a low-scoring high school),
and by applicant strength estimated using data from the prior year’s admissions cycle. We
first show that the proposed weights indeed yield excellent local and global balance, while
traditional propensity score weighting methods yield poor local balance. We then find evi-
dence that the impact of letters increases with the applicant’s predicted strength. Applicants
who are very unlikely to be admitted see little benefit from letters of recommendation, while
applicants on the cusp of acceptance see a larger, positive impact.

The evidence on the differential effects across student groups is more mixed. Overall, the
point estimates for disadvantaged and non-disadvantaged applicants are close to each other.
However, these estimates are noisy and mask important variation by applicant strength. For
applicants with the strongest quantifiable credentials, we estimate larger impacts for non-
disadvantaged applicants, though these estimates are sensitive to augmentation with an out-
come model. For all other applicants, we estimate the reverse: larger impacts for disadvan-
taged than non-disadvantaged applicants. Since student disadvantage is correlated with ap-
plicant strength, this leads to a Simpson’s Paradox-type pattern for subgroup effects (Bickel,
Hammel and O’Connell, 1975; VanderWeele and Knol, 2011): there is a slightly larger point
estimate for non-disadvantaged applicants pooled across applicant strength, but larger point
estimates for disadvantaged applicants within most levels of applicant strength.

We also conduct extensive robustness and sensitivity checks, detailed in Appendix A. In
addition to alternative estimators and sample definitions, we conduct a formal sensitivity
analysis for violations of the assumption of no unmeasured confounding, adapting a proposal
from Soriano et al. (2020). We also explore an alternative approach that instead leverages
unique features of the UC Berkeley pilot study, which included an additional review without
the letters of recommendation for a sample of 10,000 applicants. Finally, we conduct a simple
simulation exercise to project the impact of a policy requiring letters of recommendation for
all applicants, finding minimal effects on the demographic composition of admitted students.
Overall, our conclusions are similar across a range of approaches. Thus, we believe our anal-
ysis is a reasonable first look at this question, albeit best understood alongside studies that
also examine the content of the letters (Rothstein, 2022).

The paper proceeds as follows. In the next section we introduce the letter of recommenda-
tion pilot program at UC Berkeley. Section 3 introduces the problem setup and notation, and
discusses related work. Section 4 proposes and analyzes the approximate balancing weights
approach. Section 5 presents empirical results on the effect of letters of recommendation.
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Section 6 concludes with a discussion about possible extensions. The supplementary mate-
rial includes additional analyses and theoretical discussion, as well as an extensive simulation
study (Ben-Michael, Feller and Rothstein, 2023).

2. A pilot program for letters of recommendation. There is a longstanding policy de-
bate around the relative roles of quantitative and qualitative measures, including letters of
recommendation, in selective undergraduate admissions; see, for example, Bowen and Bok
(1996); Rothstein (2004); Karabel (2005); Bleemer (2022). LORs have the potential to offer
insight into aspects of the applicant not captured by the available quantitative information or
by the essays that applicants submit (Kuncel, Kochevar and Ones, 2014). At the same time,
letters from applicants from disadvantaged backgrounds or under-resourced high schools may
be less informative or prejudicial against the applicant, due, e.g., to poor writing or grammar,
or to lower status of the letter writer (Schmader, Whitehead and Wysocki, 2007). A related
concern arises in admissions essays: Alvero et al. (2021) find that essay text is strongly pre-
dictive of family income.

2.1. Letters of recommendation at UC Berkeley. Historically, undergraduate admissions
at UC Berkeley were largely quantitative and mechanical, often determined by SAT scores
and high school GPA alone (see, for example, Bleemer, 2022). This began to change in the
mid-2000s when Berkeley adopted a “holistic review,” in which two separate reviewers read
and scored each application (Hout, 2005). This shifted further in the mid-2010s with a push
to consider LORs in admission, with the explicit goal of identifying students who were strong
enough to admit but were unlikely to be admitted without the additional context that LORs
provide (UC Berkeley, 2017). To explore this potential, UC Berkeley solicited LORs from a
small number of applicants in the Fall 2015 admissions cycle, expanding to a larger number
in the Fall 2016 admissions cycle.

The pilot LOR policy led to significant debate within the university. One Academic Senate
committee, following an inquiry into the “intended and unintended consequences of the in-
terim pilot admissions policy, especially for underrepresented minority students,” concluded
that “the burden of proof rests on those who want to implement the new letters of recommen-
dation policy, and should include a test of statistical significance demonstrating measurable
impact on increasing diversity in undergraduate admissions” (UC Berkeley, 2017). The UC
system-wide faculty senate was concerned that “LORs conflict with UC principles of ac-
cess and fairness, because students attending under-resourced schools or from disadvantaged
backgrounds will find it more difficult to obtain high-quality letters, and could be disadvan-
taged by a LOR requirement” (Chalfant, 2017). Ultimately, the faculty senate limited the use
of LORs following the pilot—though before any results were available.

Our goal is to conduct an impact analysis for the effect of LORs on undergraduate ad-
missions from the UC Berkeley pilot study, especially regarding how impacts vary across
key student subgroups. To the best of our knowledge, this type of impact estimate is the first
of its kind: the policy change at UC Berkeley is unique. In a companion paper, Rothstein
(2022) uses natural language processing methods to understand the role of letter content in
admissions. Unlike in our paper, Rothstein (2022) restricts his analysis to a subset of 10,000
applications that received additional review after admissions decisions were made; we discuss
this alternative approach in Appendix A. Finally, in an internal UC Berkeley report, Rothstein
(2017) discusses key implementation details and explores alternative research designs.

2.2. UC Berkeley pilot study. Our analysis focuses on applicants for undergraduate ad-
missions to UC Berkeley in the 2016 admissions cycle. Specifically, we restrict the pool of
applicants to non-athlete California residents who applied for freshman admission to either
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Fig 1: Absolute difference in means, standardized by the pooled standard deviation, between
applicants submitting and not submitting LORs for several key covariates. By design, appli-
cants submitting LORs disproportionately have a “Possible” score from the first reader (70%
of treated applicants vs. 4% of untreated applicants).

the College of Letters and Science or the College of Engineering. There were 40,541 such
applicants, 11,143 of whom submitted LORs. We examine the impacts for applicants who
both were invited to and subsequently did submit LORs; we consider alternative approaches
in Section 5 and Appendix A.

Our primary interest is in estimating treatment effects of LORs separately for students
who are and are not from groups underrepresented among admitted students. We follow the
university in defining an underrepresented (or “URM”) applicant as one who is a low-income
student, a student from a low-performing high school, a first-generation college student, or a
student from an underrepresented racial or ethnic group (Black, Hispanic, or American Indian
or Alaskan Native). Based on this definition, 55% of applicants in our sample are categorized
as URM.1

2.3. Selection into treatment. Selection into submitting letters was a two-step process: A
subset of students were invited to provide letters, and then invited applicants did or did not
submit them. The selection of students to be invited was embedded in the application review
process, and depended on the initial application review. UC Berkeley uses a two-reader eval-
uation system. Each reader scores applicants on a three-point scale, as “No,” “Possible,” or
“Yes.”2 In the LOR pilot, any applicant who received a “Possible” score from the first reader
was invited to submit letters. In addition, due to concerns that the first readers’ scores would
not be available in time to be useful, an index of student- and school-level characteristics
was generated, and applicants with high levels of the index were invited as well.3 When sub-

126% are low-income; 37% from low-performing schools; 23% are first generation; and 28% are from under-
represented racial or ethnic groups; there is substantial overlap among these categories.

2Application decisions are based on the combination of these two scores and the major to which a student
has applied. In the most selective majors (e.g., mechanical engineering), an applicant typically must receive two
“Yes” scores to be admitted, while in others a single “Yes” is sufficient.

3The index was generated from a logistic regression fit to data from the prior year’s admissions cycle, predict-
ing whether an applicant received a “Possible” score (versus either a “No” or a “Yes”). Applicants with predicted
probabilities from this model greater than 50% were invited to submit LORs. Because we observe all of the
explanatory variables used in the index, this selection depends only on observable covariates. A small share of
applicants with low predicted probabilities received first reads after January 12, 2017, the last date that LOR
invitations were sent, and were not invited even if they received “Possible” scores.

I 
I 
I 
I 
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mitted, letters were made available to the second reader for possible consideration, with the
instruction that applicants’ scores should not be harmed either by the absence of letters or by
the content of letters if submitted.

Of our sample of 40,451 applicants, 14,596 were invited to submit letters, and 11,143
(76% of those invited) eventually submitted them. No applicant submitted a letter who was
not invited to. Because the “treatment” of interest is the inclusion of letters in the reader
evaluation, we include the 3,453 applicants who were invited but did not submit LORs as
part of the possible comparison group; we consider alternative definitions in Appendix A.2.

We assume that submission of LORs is effectively random conditional on the first reader
score and on both student- and school-level covariates (Assumption 1 below). In particular,
the interaction between the covariates and the first reader score plays an important role in
the overall selection mechanism, as applicants who received a score of “No” or “Yes” from
the first reader could still have been asked to submit an LOR based on their individual and
school information. Figure 1 shows covariate imbalance for several key covariates (measured
as the absolute difference in means divided by the pooled standard deviation) for applicants
who submitted LORs versus those who did not.4 We see that there are large imbalances in
observable applicant characteristics, most notably average school income, GPA, the number
of honors and AP classes taken, and SAT score. There were also large imbalances in first
reader scores (not shown in Figure 1): 70% of applicants that submitted LORs had “Possi-
ble” scores, compared to only 4% of those who did not. There is a smaller imbalance in URM
status, with 61% of those submitting LORs classified as URMs, versus 53% of those who did
not submit. Our statistical goal is to adjust for these differences in observable characteristics
between applicants who do and do not submit LORs. However, differences in unobservable
characteristics across applicants, e.g. in conscientiousness, may bias our effects, likely up-
ward. To account for this possibility, we assess the sensitivity of our results to unmeasured
confounding variables in Appendix A.3.

2.4. Heterogeneity across application strength. The admissions office provided us with a
univariate summary of the large number of applicant- and school-level characteristics, which
we refer to as the Admissibility Index (AI). This is computed as the prediction from a logistic
regression fit to admissions data from the prior year (2015), using linear terms for the ad-
missions variables without interactions.5 Overall, we view the AI as a useful, albeit simple,
a priori measure of applicant strength and seek to adjust for it in our main analysis.6

4The full set of student-level variables we include in our analysis are: weighted and unweighted GPA, GPA
percentile within school, parental income and education, SAT composite score and math score, the number of
honors courses and percentage out of the total available, number of AP courses, ethnic group, first generation
college student status, and fee waiver status. The school level variables we control for are: average SAT reading,
writing, and math scores, average ACT score, average parental income, percent of students taking AP classes, and
the school Academic Performance Index (API) evaluated through California’s accountability tests. For students
that did not submit an SAT score but did submit an ACT score, we imputed the SAT score via the College Board’s
SAT to ACT concordance table. For the 992 applicants with neither an SAT nor an ACT score, we impute the
SAT score as the average among applicants from the school.

5These variables include those in Figure 1 as well as disaggregated SAT scores, parental education, and an
indicator if less than 5% of students from the high school apply to UC Berkeley. Notably, the AI does not include
ethnic group or race information. About 15% of students in the data used to train the AI model submitted LORs
in an earlier iteration of the UC Berkeley pilot; the AI does not include any information on whether students
submitted LORs.

6Unfortunately, the AI cannot be used to impute counterfactuals on its own. The model used to generate the
AI did not include interactions, and in particular did not account for differences in admissions outcomes across
applicants to different colleges within the university. As we show in Appendix Figure D.1, while the AI has decent
calibration for the overall sample, it is mis-calibrated for Engineering applicants and high admissibility Letters
and Science applicants, both URM and non-URM.
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Fig 2: Distribution of the “admissibility index” — an a priori estimate of applicant strength
— for the 2016 UC Berkeley application cohort, separated into URM and non-URM and
those that submitted letters versus those that did not.

Figure 2 shows the AI distribution for the 2016 applicant cohort, broken out by URM sta-
tus and LOR submission. There are several features of this distribution that have important
implications for our analysis. First, applicants across nearly the full AI support submitted
LORs. This is primarily because applicants who received “Possible” scores from the first
readers come from a wide range of admissibility levels. This will allow us to estimate het-
erogeneous effects across the full distribution, with more precision for applicants with lower
AIs. Second, because the admissions model disproportionately predicted that URM students
had high chances of receiving “Possible” scores, many more URM applicants were invited
to submit letters than non-URM applicants, and so our estimates for URM applicants will
be more precise than those for non-URM applicants. Third, at higher AI levels large shares
of applicants submitted LORs, leaving few comparison observations. This will make it chal-
lenging to form balanced comparison groups for high-AI applicants who submit letters.

From Figure 2 we know that the distribution of AI varies between URM and non-URM
applicants, and so apparent differences in estimated average effects between the two groups
may be due to compositional differences. Therefore, in the subsequent sections we will focus
on estimating effects within subgroups defined by both URM status and the AI. To do this,
we define subgroups by creating four (non-equally-sized) strata of the AI: < 5%, 5%− 10%,
10% − 20% and > 20%. Interacting with URM status, this leads to eight non-overlapping
subgroups; we will marginalize over these to estimate the other subgroup effects above. Ap-
pendix Table D.1 shows the total number of applicants in each of the eight groups, along
with the proportion submitting letters of recommendation. As we discuss in Section 5, we
will further divide each of these subgroups by first reader score and college, to ensure exact
balance on these important covariates.

3. Treatment effect variation in observational studies.

3.1. Setup and estimands. We now describe the letter of recommendation study as an
observational study where for each applicant i = 1, . . . , n, we observe applicant and school
level-covariates Xi ∈ X ; a group indicator Gi ∈ {1, . . . ,K} denoting a pre-defined subgroup
of interest; a binary indicator for submitting a letter of recommendation Wi ∈ {0,1}; and

111111■■••·-·----- 111111■■••------

l1 ... _____________ I ... ___ _ 
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whether the applicant is admitted, which we denote as Yi ∈ {0,1}. Let n1g and n0g represent
the number of treated and control units in subgroup Gi = g, respectively. We assume that
for each applicant, (Xi,Gi,Wi, Yi) are sampled i.i.d. from some distribution P(·). Following
the potential outcomes framework, we assume SUTVA and posit two potential outcomes
Yi(0) and Yi(1) for each applicant i, corresponding to i’s outcome if that applicant submits a
letter of recommendation or not, respectively; the observed outcome is Yi =WiYi(1) + (1−
Wi)Yi(0).

Importantly, this assumption rules out interference between applicants; that is, we assume
that the availability of LORs for one student does not affect any other student’s admission
probability. While this assumption cannot strictly hold in our setting — there are more ap-
plicants than admissions slots — we view this as a reasonable working assumption. UC
Berkeley admitted nearly 19,000 students for Fall 2017 in a relatively mechanistic way, with
minimal coordination across application readers. We discuss this further in Appendix B and
also formalize the relevant no interference assumption.

In this study we are interested in estimating two types of effects. First, we wish to estimate
the overall Average Treatment Effect on the Treated (ATT), the treatment effect for applicants
who submit letters,

τ = E[Y (1)− Y (0) |W = 1] = µ1 − µ0,

where we denote µ1 = E[Y (1) |W = 1] and µ0 = E[Y (0) |W = 1]. Second, for each sub-
group Gi = g, we would like to estimate the Conditional ATT (CATT),

(1) τg = E[Y (1)− Y (0) |G= g,W = 1] = µ1g − µ0g,

where similarly we denote µ1g = E[Y (1) |G= g,W = 1] and µ0g = E[Y (0) |G= g,W =
1].

Estimating µ1g is relatively straightforward: we can simply use the average outcome for
treated units in group g, µ̂1g ≡ 1

n1g

∑
Gi=gWiYi. However, estimating µ0g is more difficult

due to confounding; we focus much of our discussion on imputing this counterfactual mean
for the group of applicants who submitted letters of recommendation. To do this, we rely on
two key assumptions that together form the usual strong ignorability assumption.

ASSUMPTION 1 (Ignorability). The potential outcomes are independent of treatment
given the covariates and subgroup:

(2) Y (1), Y (0)⊥⊥W |X,G.

ASSUMPTION 2 (One Sided Overlap). The propensity score e(x, g)≡ P (W = 1 |X =
x,G= g) is less than 1:

(3) e(X,G)< 1.

In our context, Assumption 1 says that conditioned on the first reader score and applicant-
and school-level covariates, submission of LORs is independent of the potential admissions
outcomes. Due to the selection mechanism we describe in Section 2.3, we believe that this is
a reasonable starting point for estimating these impacts; see Rothstein (2017) and Appendix
A.2 for alternatives. In Appendix A.3 we assess the sensitivity of our conclusions to violations
of this assumption.

Assumption 2 corresponds to assuming that no applicant would have been guaranteed to
submit a letter of recommendation. Although some applicants were guaranteed to be invited
to submit an LOR, we believe that this is a reasonable assumption for actually submitting a
letter. In Section 5.1 we assess overlap empirically.

--
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With this setup, let m0(x, g) = E[Y (0) |X = x,G = g] be the prognostic score, the ex-
pected control outcome conditioned on covariates X and group membership G. Under As-
sumptions 1 and 2, we have the standard identification result:

(4) µ0g = E[m0(X,G) |W = 1] = E
[

e(X,G)

1− e(X,G)
Y |W = 0

]
.

Therefore we can obtain a plug-in estimate for µ0g with an estimate of the prognostic score,
m0(·, ·), an estimate of the propensity score, e(·, ·), or an estimate of the treatment odds
themselves, e(·,·)

1−e(·,·) . In our setting, the large number of groups and relatively small number of
observations per group means that we cannot estimate any of these quantities precisely at the
group level. Thus, our methodological approach will focus on ways of borrowing information
across groups to improve precision while maintaining validity.

3.2. Related work. There is an extensive literature on estimating varying treatment ef-
fects in observational studies; see Anoke, Normand and Zigler (2019) and Carvalho et al.
(2019) for recent discussions. This is an active area of research, and we narrow our dis-
cussion here to methods that assess heterogeneity across pre-defined, discrete subgroups. In
particular, we will focus on linear weighting estimators that take a set of weights γ̂ ∈Rn, and
estimate µ0g as a weighted average of the control outcomes in the subgroup:

(5) µ̂0g ≡
1

n1g

∑
Gi=g

γ̂i(1−Wi)Yi.

Many estimators take this form; we focus on design-based approaches that do not use out-
come information in constructing the estimators (Rubin, 2008). See Hill (2011); Künzel et al.
(2019); Carvalho et al. (2019); Nie and Wager (2017); Hahn, Murray and Carvalho (2020)
for discussions of approaches that instead focus on outcome modeling.

3.2.1. Methods based on estimated propensity scores. A canonical approach in this set-
ting is Inverse Propensity Weighting (IPW) estimators for µ0g (see Green and Stuart, 2014;
Griffin et al., 2022). Traditionally, this proceeds in two steps: first, estimate the propen-
sity score ê(x, g), e.g., via logistic regression; second, estimate µ0g as in Equation (5), with
weights γ̂i =

ê(Xi,Gi)
1−ê(Xi,Gi)

:

(6) µ̂0g =
1

n1g

∑
Wi=0,Gi=g

ê(Xi,Gi)

1− ê(Xi,Gi)
Yi,

where these are “odds of treatment” weights to target the ATT. A natural approach to estimat-
ing ê(Xi,Gi), recognizing that Gi is discrete, is to estimate a logistic model for treatment
separately for each group or, equivalently, with full interactions between Gi and (possibly
transformed) covariates ϕ(Xi) ∈Rp using some transformation function ϕ :Rd →Rp:

(7) logit(e(x, g)) = αg + βg · ϕ(x).

Due to the high-dimensional nature of the problem, it is often infeasible to estimate Equation
(7) without any regularization: the treated and control units might be completely separated,
particularly when some groups are small. Classical propensity score modeling with random
effects is one common solution, but can be numerically unstable in settings similar to this
(Zubizarreta and Keele, 2017). Other possible solutions in high dimensions include L1 pe-
nalization (Lee, Nguyen and Stuart, 2019), hierarchical Bayesian modeling (Li, Zaslavsky
and Landrum, 2013), and generalized boosted models (McCaffrey, Ridgeway and Morral,
2004). In addition, Dong et al. (2020) propose a stochastic search algorithm to estimate a
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similar model when the number of subgroups is large, and Li, Morgan and Zaslavsky (2017)
and Yang et al. (2021) propose overlap weights, which upweight regions of greater overlap.

Under suitable assumptions and conditions, methods utilizing the estimated propensity
score will converge to the true ATT asymptotically. However, in high dimensional settings
with a moderate number of subgroups, these methods can often fail to achieve good covariate
balance in the sample of interest; as we show in Section 5.1, these methods fail to balance
covariates in the UC Berkeley LOR study. The key issue is that traditional IPW methods
focus on estimating the propensity score itself (i.e., the conditional probability of treatment)
rather than finding weights that achieve good in-sample covariate balance.

3.2.2. Balancing weights. Unlike traditional IPW, balancing weights estimators instead
find weights that directly target in-sample balance. One example is the Stable Balanc-
ing Weights (SBW) proposal from Zubizarreta (2015), which finds the minimum variance
weights that achieve a user-defined level of covariate balance in transformed covariates
ϕ(Xi) ∈Rp:

(8)

min
γ

∥γ∥22

subject to max
j

∣∣∣∣∣ 1n1

∑
Wi=1

ϕj(Xi)−
1

n1

∑
Wi=0

γiϕj(Xi)

∣∣∣∣∣≤ δ

∑
Wi=0

γi = 1 and γi ≥ 0, for all i,

for weights γ, typically constrained to the simplex as we have written, allowable covariate
imbalance δ, and a transformation function ϕ : Rd → Rp giving transformations of the co-
variates ϕj(·), j = 1, . . . , p. These methods have a long history in calibrated survey weight-
ing (see, e.g. Deville, Särndal and Sautory, 1993), and have recently been extensively studied
in the observational study context (e.g. Zubizarreta, 2015; Athey, Imbens and Wager, 2018;
Hirshberg, Maleki and Zubizarreta, 2019; Hazlett, 2020). They have also been shown to esti-
mate the propensity score with a loss function designed to achieve good balance (Wang and
Zubizarreta, 2020).

While balancing weights typically achieve better balance than the traditional IPW meth-
ods above, we must take special care to use them appropriately when estimating subgroup
treatment effects. As we will show in Section 5.1, designing balancing weights estimators
without explicitly incorporating the subgroup structure also fails to balance covariates within
subgroups in the LOR study. We turn to designing such weights in the next section.

4. Balancing weights for treatment effect variation. We now describe a specialization
of balancing weights that minimizes the bias for estimating both the overall treatment effect
and the subgroup-specific treatment effects. This approach incorporates the subgroup struc-
ture into the balance measure and optimizes for the “local balance” within each subgroup.
First we show that the error for the subgroup treatment effect estimate is bounded by the
level of local imbalance within the subgroup. Furthermore, the error for estimating the over-
all ATT depends on both the global balance and the local balance within each subgroup. We
then describe a convex optimization problem to minimize the level of imbalance within each
subgroup while ensuring exact global balance in the full sample. Next, we connect the pro-
cedure to IPW with a hierarchical propensity score model, using the procedure’s Lagrangian
dual formulation. We conclude by describing how to augment the weighting estimate with an
outcome model.
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4.1. Subgroup effects. We initially consider the role of local imbalance in estimating
subgroup treatment effects. This is the subgroup-specific specialization of standard results in
balancing weights; see Ben-Michael et al. (2021) for a recent review. We will compare the
estimate µ̂0g to µ̃0g ≡ 1

n1g

∑
Gi=gWim0(Xi, g), our best approximation to µ0g if we knew

the true prognostic score. Defining the residual εi = Yi −m0(Xi,Gi), the error is
(9)

µ̂0g−µ̃0g =
1

n1g

∑
Gi=g

γ̂i(1−Wi)m0(Xi, g)−
1

n1g

∑
Gi=g

Wim0(Xi, g)︸ ︷︷ ︸
biasg

+
1

n1g

∑
Gi=g

(1−Wi)γ̂iεi︸ ︷︷ ︸
noise

.

Since the weights γ̂ are design-based (Rubin, 2008), they will be independent of the out-
comes, and the noise term will be mean-zero and have variance proportional to the sum of the
squared weights 1

n2
1g

∑
Gi=g(1−Wi)γ̂

2
i .7 At the same time, the conditional bias term, biasg ,

depends on the imbalance in the true prognostic score m0(Xi,Gi). The idea is to bound this
imbalance by the worst-case imbalance in all functions m in a model class M. While the
setup is general,8 we describe the approach assuming that the prognostic score within each
subgroup is a linear function of transformed covariates ϕ(Xi) ∈ Rp with L2-bounded coef-
ficients; i.e., M = {m0(x, g) = ηg · ϕ(x) | ∥ηg∥2 ≤ C}. We can then bound the bias by the
level of local imbalance within the subgroup via the Cauchy-Schwarz inequality:

(10) |biasg| ≤C

∥∥∥∥∥∥ 1

n1g

∑
Gi=g

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)

∥∥∥∥∥∥
2︸ ︷︷ ︸

local imbalance

.

Based on Equation (10), we could control local bias solely by controlling local imbalance.
This approach would be reasonable if we were solely interested in subgroup impacts. In
practice, however, we are also interested in overall effects and aggregated subgroup effects.

4.2. Overall treatment effect. We estimate aggregated effects by taking weighted av-
erages of the subgroup-specific estimates, e.g., we estimate µ0 as µ̂0 =

∑K
g=1

n1g

n1
µ̂0g =

1
n1

∑
Wi=0 n1Gi

γ̂iYi. The imbalance within each subgroup continues to play a key role in
estimating this overall treatment effect, alongside global balance. To see this, we again com-
pare to our best estimate if we knew the prognostic score, µ̃0 =

1
n1

∑K
g=1 n1gµ̃0g , and see that

local imbalance plays a part. The error is
(11)

µ̂0 − µ̃0 = η̄ ·

(
1

n1

n∑
i=1

n1Gi
γ̂i(1−Wi)ϕ(Xi)−

1

n1

n∑
i=1

Wiϕ(Xi)

)
+

1

n1

k∑
g=1

n1g (ηg − η̄) ·

∑
Gi=g

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)

 +

1

n1

n∑
i=1

γ̂i(1−Wi)εi,

7In the general case with heteroskedastic errors, the variance of the noise term is 1
n2
1g

∑
Gi=g γ̂

2
i Var(εi) ≤

maxi{Var(εi)} 1
n2
1g

∑
Gi=g γ̂

2
i .

8See Wang and Zubizarreta (2020) for the case where the prognostic score can only be approximated by a
linear function; see Hazlett (2020) for a kernel representation and Hirshberg, Maleki and Zubizarreta (2019) for a
general nonparametric treatment.
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where η̄ ≡ 1
K

∑K
g=1 ηg is the average of the model parameters across all subgroups. Again

using Cauchy-Schwarz we see that the overall bias is controlled by the local imbalance within
each subgroup as well as the global balance across subgroups:

(12)

|bias| ≤ ∥η̄∥2

∥∥∥∥∥ 1

n1

n∑
i=1

n1Gi
γ̂i(1−Wi)ϕ(Xi)−

1

n1

n∑
i=1

Wiϕ(Xi)

∥∥∥∥∥
2︸ ︷︷ ︸

global balance

+

G∑
g=1

n1g

n1
∥ηg − η̄∥2

∥∥∥∥∥∥
∑
Gi=g

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)

∥∥∥∥∥∥
2︸ ︷︷ ︸

local balance

.

In general, we will want to achieve both good local balance within each subgroup and good
global balance across subgroups. Ignoring local balance can incur bias by ignoring hetero-
geneity in the outcome model across subgroups, while ignoring global balance leaves poten-
tial bias reduction on the table. Equation (12) shows that the relative importance of local and
global balance for estimating the overall ATT is controlled by the level of similarity in the
outcome process across groups. In the extreme case where the outcome process does not vary
across groups — i.e., ηg = η̄ for all g — then controlling the global balance is sufficient to
control the bias. In the other extreme where the outcome model varies substantially across
subgroups — e.g., ∥ηg − η̄∥2 is large for all g — we will primarily seek to control the local
imbalance within each subgroup in order to control the bias for the ATT. Typically, we expect
that interaction terms are weaker than “main effects,” i.e., ∥ηg − η̄∥2 < ∥η̄∥2 (see Feller and
Gelman, 2015). As a result, our goal is to find weights that prioritize global balance while
still achieving good local balance.

4.3. Optimizing for both local and global balance. We now describe a convex optimiza-
tion procedure to find weights that optimize for local balance while ensuring exact global
balance across the sample. The idea is to stratify across subgroups and find approximate bal-
ancing weights within each stratum, while still constraining the overall level of balance. To
do this, we find weights γ̂ that solve the following optimization problem:

(13)

min
γ

K∑
g=1

∥∥∥∥∥∥
∑

Gi=g,Wi=0

γiϕ(Xi)−
∑

Gi=g,Wi=1

ϕ(Xi)

∥∥∥∥∥∥
2

2

+
λg

2

∑
Gi=G,Wi=0

γ2i

subject to
∑
Wi=0

γiϕ(Xi) =
∑
Wi=1

ϕ(Xi)

∑
Gi=G,Wi=0

γi = n1g, γi ≥ 0 ∀i= 1, . . . , n

The optimization problem (13) has several key components. First, following Equation (10)
we try to find weights that minimize the local imbalance for each stratum defined by G; this
is a proxy for the stratum-specific bias. We also constrain the weights to exactly balance the
transformed covariates globally over the entire sample. Equivalently, this finds weights that
achieve exact balance marginally on the transformed covariates ϕ(Xi) and only approximate
balance for the interaction terms ϕ(Xi)× 1Gi

, placing greater priority on main effects than
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interaction terms.9 Taken together, this ensures that we are minimizing the overall bias as
well as the bias within each stratum. In principle, weights that exactly balance the covariates
within each stratum would also yield exact balance globally. Typically, however, the sample
sizes are too small to achieve exact balance within each stratum, and so targeting local balance
alone without the global balance constraint can fail to achieve good global balance. On the
other hand, including the exact global balance constraint guarantees global balance. As we
discuss in Section 5.1, in our study this global balance constraint improves global balance at
a small cost to local balance.

From Equation (12), we can see that if there is a limited amount of heterogeneity in the
baseline outcome process across groups, the global exact balance constraint will limit the
estimation error when estimating the ATT, even if local balance is relatively poor. By contrast,
if there is more heterogeneity, local balance is a higher priority. In principle, incorporating
the global balance constraint could lead to worse local balance. However, we show in both
the simulations in Appendix C and the analysis of the LOR pilot study in Section 5 that the
global constraint leads to negligible changes in the level of local balance and the performance
of the subgroup estimators, but can lead to large improvements in the global balance and the
performance of the overall estimate. Thus, there seems to be little downside in terms of
subgroup estimates from an approach that controls both local and global imbalance — but
large potential gains for overall estimates.

In Appendix B we also show that if the estimand is the difference in treatment effects
between two subgroups there are also possible gains to balancing the difference in covariate
values across the two groups. Note that while we choose to enforce exact global balance,
we could also limit to approximate global balance, with the relative importance of local and
global balance controlled by an additional hyperparameter set by the analyst.

The optimization problem in Equation (13) also includes an L2 regularization term that
penalizes the sum of the squared weights in the stratum; from Equation (9), we see that this
is a proxy for the variance of the weighting estimator. For each stratum, the optimization
problem includes a hyper-parameter λg that negotiates the bias-variance tradeoff within that
stratum. When λg is small, the optimization prioritizes minimizing the bias through the local
imbalance, and when λ is large it prioritizes minimizing the variance through the sum of the
squared weights. As a heuristic, we limit the number of hyperparameters by choosing λg =
λ
ng

for a common choice of λ. For larger strata where better balance is possible, this heuristic
will prioritize balance — and thus bias — over variance; for smaller strata, by contrast, this
will prioritize lower variance. We discuss selecting λ in the letters of recommendation study
in Section 5.1.

Next, Equation (13) incorporates two additional constraints on the weights. We include a
fine balance constraint (Rosenbaum, Ross and Silber, 2007): within each stratum the weights
sum up to the number of treated units in that stratum, n1g . Since each stratum maps to only
one subgroup, this guarantees that the weights sum to the number of treated units in each
subgroup. We also restrict the weights to be non-negative, which stops the estimates from
extrapolating outside of the support of the control units.10 Together, these induce several
stability properties, including that the estimates are sample bounded.

9We could extend the optimization problem in Equation (13) to balance intermediate levels between global
balance and local balance. Incorporating additional balance constraints for each intermediate level is unwieldy
in practice due to the proliferation of hyperparameters. Instead, we can expand the set of transformed covariates
ϕ(x) to include additional interaction terms between covariates and levels of the hierarchy. We discuss this choice
in the letters of recommendation study in Section 5.

10Without this constraint, the optimization problem is equivalent to fitting a hierarchical ridge regression
outcome model. For additional discussion, see Ben-Michael, Feller and Hartman (2021).
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Finally, we compute the variance of our estimator conditioned on the design (X1,Z1,W1), . . . ,
(Xn,Zn,Wn) or, equivalently, conditioned on the weights. The conditional variance is

(14) Var(µ̂0g | γ̂) =
1

n2
1g

∑
Gi=g

(1−Wi)γ̂
2
i Var(Yi).

Using the ith residual to estimate Var(Yi) yields the empirical sandwich estimator for the
treatment effect

(15) V̂ar(µ̂1g − µ̂0g | γ̂) =
1

n2
1g

∑
Gi=g

Wi(Yi − µ̂1g)
2 +

1

n2
1g

∑
Gi=g

(1−Wi)γ̂
2
i (Yi − µ̂0g)

2,

where, as above, µ̂1g is the average outcome for applicants in subgroup g who submit LORs.
This is the fixed-design Huber-White heteroskedastic robust standard error for the weighted
average. See Hirshberg, Maleki and Zubizarreta (2019) for discussion on asymptotic normal-
ity and semi-parametric efficiency for estimators of this form.

4.4. Dual relation to partially pooled propensity score estimation. Thus far, we have
motivated the approximate balancing weights approach by appealing to the connection be-
tween local bias and local balance. We now draw on recent connections between approximate
balancing weights and (calibrated) propensity score estimation through the Lagrangian dual
problem. The weights that solve optimization problem (13) correspond to estimating the in-
verse propensity weights with a (truncated) linear odds function with the stratum G interacted
with the covariates ϕ(X),11

(16)
P (W = 1 |X = x,G= g)

1− P (W = 1 |X = x,G= g)
= [αg + βg · ϕ(x)]+ ,

where [x]+ =max{0, x}, and the coefficients βg are partially pooled towards a global model.
To show this, we first derive the Lagrangian dual. For each stratum g, the sum-to-n1g

constraint induces a dual variable αg ∈ R, and the local balance measure induces a dual
variable βg ∈Rp. These dual variables are part of the balancing loss function for stratum z:

(17) Lg(αg, βg)≡
∑

Wi=0,Gi=g

[αg + βg · ϕ(Xi)]
2
+ −

∑
Wi=1,Gi=g

(αg + βg · ϕ(Xi)) ,

With this definition we can now state the Lagrangian dual.

PROPOSITION 1. With λg > 0, if a feasible solution to (13) exists, the Lagrangian dual
is

(18) min
α,β1,...,βJ ,µβ

K∑
g=1

Lg(αg, βg)︸ ︷︷ ︸
balancing loss

+

J∑
z=1

λg

2
∥βg − µβ∥22︸ ︷︷ ︸

shrinkage to global variable

.

If α̂, β̂1, . . . , β̂J are the solutions to the dual problem, then the solution to the primal problem
(13) is

(19) γ̂i =
[
α̂Zi

+ β̂Zi
· ϕ(Xi)

]
+
.

11The truncation arises from constraining weights to be non-negative, and the linear odds form arises from
penalizing the L2 norm of the weights. We can consider other penalties that will lead to different forms; In
particular, with an entropy penalty, the weights are linear in the log-odds. See Ben-Michael et al. (2021) for a
review of the different choices.
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The Lagrangian dual formulation sheds additional light on the approximate balancing
weights estimator. First, we apply results on the connection between approximate balanc-
ing weights and propensity score estimation (e.g., Wang and Zubizarreta, 2020; Hirshberg
and Wager, 2021). We see that this approach estimates propensity scores of the form (16),
which corresponds to a fully interacted propensity score model where the coefficients on ob-
served covariates vary across strata. Recall that we find approximate balancing weights for
each stratum because the number of units per stratum might be relatively small; therefore we
should not expect to be able to estimate this fully interacted propensity score well.

The dual problem in Equation (18) also includes a global dual variable µβ induced by
the global balance constraint in the primal problem (13). Because we enforce exact global
balance, this global model is not regularized. However, by penalizing the deviations between
the stratum-specific variables and the global variables via the L2 norm, ∥βg − µβ∥22, the
dual problem partially pools the stratum-specific parameters towards a global model. Thus,
we see that the approximate balancing weights problem in Equation (13) corresponds to
a hierarchical propensity score model (see, e.g. Li, Zaslavsky and Landrum, 2013), as in
Section 3.2, fit with a loss function designed to induce covariate balance.

Excluding the global constraint removes the global dual variable µβ , and the dual problem
shrinks the stratum-specific variables βg towards zero without any pooling. In contrast, ig-
noring the local balance measure by setting λg →∞ constrains the stratum-specific variables
βg to all be equal to the global variable µβ , resulting in a fully pooled estimator. For inter-
mediate values, λg controls the level of partial pooling. When λg is large the dual parameters
are heavily pooled towards the global model, and when λg is small the level of pooling is
reduced. By setting λg =

λ
ng

as above, larger strata will be pooled less than smaller strata.

4.5. Augmentation with an outcome estimator. The balancing weights we obtain via the
methods above may not achieve perfect balance, leaving the potential for bias. We can aug-
ment the balancing weights estimator with an outcome model, following similar proposals
in a variety of settings (see, e.g. Athey, Imbens and Wager, 2018; Hirshberg and Wager,
2021; Ben-Michael, Feller and Rothstein, 2021). Analogous to bias correction for match-
ing (Rubin, 1973) or model-assisted estimation in survey sampling (Särndal, Swensson and
Wretman, 2003), the essential idea is to adjust the weighting estimator using an estimate of
the bias. Specifically, we can estimate the prognostic score m0(x, g) with a working model
m̂0(x, g), e.g., with a flexible regression model. An estimate of the bias in group g is then:

(20) b̂iasg =
1

n1g

∑
Wi=1,Gi=g

m̂0(Xi, g)−
1

n1g

∑
Wi=0,Gi=g

γ̂im̂0(Xi, g).

This is the bias due to imbalance in estimated prognostic score in group g after weighting.
With this estimate of the bias, we can explicitly bias-correct our weighting estimator, esti-
mating µ0g as
(21)
µ̂aug
0g ≡ µ̂0g + b̂iasg

=
1

n1g

∑
Wi=0,Gi=g

γ̂iYi +

 1

n1g

∑
Wi=1,Gi=g

m̂0(Xi, g)−
1

n1g

∑
Wi=0,Gi=g

γ̂im̂0(Xi, g)

 .
Thus, if the balancing weights fail to achieve good covariate balance in a given subgroup, the
working outcome model, m̂0(Xi, g), can further adjust for any differences. See Ben-Michael
et al. (2021) for further discussion.
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Fig 3: (a) Imbalance measured as the square root of the objective in (13) plotted against the
effective sample size of the overall control group. (b) Effective sample size of the control
group for each subgroup, with weights solving Equation (13) with λg =

104

ng
.

5. Differential impacts of letters of recommendation. We now turn to estimating the
differential impacts of letters of recommendation on admissions decisions. We focus on the
eight subgroups defined by the interaction between URM status (2 levels) and admissibility
index (4 levels); see Appendix Table D.1. Due to the selection mechanism described in Sec-
tion 2, however, it is useful to create even more fine-grained strata and then aggregate to these
eight subgroups. Specifically, we define G= 41 fine-grained strata based on URM status, AI
grouping, first reader score, and college applied to.12 While we are not necessarily interested
in treatment effect heterogeneity across all 41 strata, this allows us to exactly match on key
covariates and then aggregate to obtain the primary subgroup effects.

Another key component in the analysis is the choice of transformation of the covariates
ϕ(·). Because we have divided the applicants into many highly informative strata, we choose
ϕ(·) to include all of the raw covariates. Because of the importance of the admissibility index,
we also include a natural cubic spline for AI with knots at the sample quantiles. We next in-
clude the probability of a “Possible” score predicted by the admissions model, interacted with
a binary indicator for whether it is greater than 50%. We further prioritize local balance in
the admissibility index by including in ϕ(x) the interaction between the AI, URM status, and
an indicator for admissibility subgroup; this ensures local balance in the admissibility index
at an intermediate level of the hierarchy between global balance and local balance. Finally,
we standardize each component of ϕ(X) to have mean zero and variance one. If desired, we
could also consider other transformations such as a higher-order polynomial transformation,
using a series of basis functions for all covariates, or computing inner products via the kernel
trick to allow for an infinite dimensional basis (see, e.g. Hazlett, 2020; Wang and Zubizarreta,
2020; Hirshberg and Wager, 2021).

12Of the 48 possible strata, we drop 7 strata where no applicants submitted a letter of recommendation. These
are non-URM applicants in both colleges in the two lowest AI strata but where the first reader assigned a “Yes” or
“No”. This accounts for ∼ 2% of applicants. The remaining 41 strata have a wide range of sizes with a few very
large strata. Min: 15, p25: 195, median: 987, p75: 1038, max: 8000.

D 

D 
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Fig 4: Distribution of imbalance in each component of ϕ(X) after weighting, for partially-
and fully-pooled balancing weights and fully interacted IPW estimator.

5.1. Diagnostics: local balance checks and assessing overlap. In order to estimate ef-
fects, we must first choose values of the common hyperparameter λ in the optimization prob-
lem (13), where we set λg =

λ
ng

. Recall that this hyperparameter negotiates the bias-variance
tradeoff: small values of λ will prioritize bias by reducing local imbalance while higher values
will prioritize variance by increasing the effective sample size. Figure 3a shows this trade-
off. We plot the square root of the local balance measure in (13) against the effective sample
size for the re-weighted control group, n1

/(∑
Wi=0 γ̂

2
i

)
. Between λ= 100 and 104, we see

that the imbalance is relatively flat while the overall effective sample size increases, after
which the imbalance increases quickly with λ. We therefore select λ= 104 for the results we
present.

Figure 3b shows the effective control group sample size for each of the primary URM and
AI subgroups, scaled by the number of applicants in the group submitting LORs. Across the
board, the URM subgroups have larger effective sample sizes than the non-URM subgroups,
with particularly stark differences for the lower AI subgroups. For all non-URM subgroups
the effective sample size is less than 250. Comparing to the sample sizes in Appendix Table
D.1 we see that the weighting approach leads to a large design effect: many applicants who
did not submit LORs are not comparable to those who did. However, lower admissibility non-
URM applicants also submitted letters at lower rates. This design effect, combined with the
smaller percentage of non-URM applicants submitting LORs, means that we should expect
to have greater precision in the estimates for URM applicants than non-URM applicants.

We now assess the level of local balance within each subgroup, following the discussion
in Section 4.1. We focus on three estimators: fully- and partially-pooled balancing weights,
which solve Equation (13) with λg → ∞ and λg =

104

n1g
, respectively, and traditional IPW

with a fully-interacted propensity score model. See Appendix C for complete descriptions.
Figure 4 shows the distribution of the imbalance in each of the 51 (standardized) components
of ϕ(X). The fully interacted IPW approach has very poor balance overall, due in part to
the difficulty of estimating the high-dimensional propensity score model. As expected, both
the fully- and partially-pooled balancing weights achieve perfect balance overall; however,
only the partially pooled balancing weights achieve excellent local balance. Appendix Figure
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D.4 shows these same metrics for the no-pooled balancing weights and fixed effects IPW
estimators we discuss in Appendix C, as well as subgroup overlap weights (Yang et al., 2021).
The partially- and no-pooled approaches have similar global and local balance overall, but
the partially-pooled approach sacrifices a small amount of local balance for an improvement
in global balance. In contrast, both the fixed effects IPW and overlap weights approaches
yield poor local balance.

Finally, we assess overlap within each subgroup. A key benefit of weighting approaches
is that overlap issues manifest in the distribution of our weights γ̂. Appendix Figure D.6
plots the distribution of the weights over the comparison applicants by URM status and AI
group, normalized by the number of treated applicants in the subgroup. The vast majority of
control units receive zero weight and are excluded from the figure. Of the 28,556 applicants
who did not submit LORs, only 9,834 (34%) receive a weight larger than 0.001. This is
indicative of a lack of “left-sided” overlap: very many applicants who did not submit a letter
of recommendation had nearly zero odds of doing so in the pilot program. This is problematic
for estimating the overall average treatment effect, but is less of a concern when we focus on
estimating the average treatment effect on the treated.

For each AI subgroup we also see that the distribution of weights is skewed more positively
for the non-URM applicants. In particular, for the lower AI, non-URM subgroups we see a
non-trivial number of comparison applicants that “count for” over 1% of the re-weighted
sample, with a handful of outliers that count for more than 2%. While large weights do not
necessarily affect the validity of the estimator, large weights decrease the effective sample
size, reducing the precision of our final estimates, as we see in Figure 3b.

5.2. Treatment effect estimates. After assessing local balance and overlap, we can now
turn to estimating the differential impacts of letters of recommendation. Figure 5 shows the
ATT estimates, µ̂1g− µ̂0g; Appendix Figure D.7 gives the corresponding means. The standard
errors are computed via the sandwich estimator in Equation (15).

Overall, we estimate that LORs increased admission rates by 5 percentage points (pp).
We estimate a larger effect for non-URM applicants (6.2 pp) than URM applicants (4.5 pp),
though there is insufficient evidence to distinguish between the two effects. We also see a
roughly positive trend between treatment effects and the AI, potentially with a peak for the
10%-20% group. This is driven by the very small estimated effect for applicants with AI
< 5%, who are very unlikely to be accepted with or without LORs. LORs thus seem to have
a larger effect for applicants closer to the cusp of acceptance.

The right panel of Figure 5 further stratifies the subgroups, showing the effects jointly
by URM status and AI. While the point estimate for the overall increase in admission rates
is slightly larger for non-URM applicants than for URM applicants, this is mainly a com-
position effect. For applicants very unlikely to be admitted (AI < 5%) the point estimates
are nearly identical for URM and non-URM applicants, although the URM subgroup is esti-
mated much more precisely. For the next two levels of the admissibility index (AI between
5% and 20%), URM applicants have a higher estimated impact, with imprecise estimates for
non-URM applicants. For the highest admissibility groups (AI > 20%), non-URM applicants
have larger positive effects, though again these estimates are noisy. Since URM applicants
have lower AI on average, the overall estimate is also lower for URM applicants. We view this
as a form of Simpson’s Paradox (Bickel, Hammel and O’Connell, 1975; VanderWeele and
Knol, 2011): the prima facie difference between the point estimates for URM and non-URM
applicants is a result of the correlation between AI and URM status and masks differences in
estimates within admissibility groups. Furthermore, the peak in the effect for middle-tier ap-
plicants is more pronounced for URM applicants than non-URM applicants. From Appendix
Figure D.7 we see that this is primarily because high admissibility URM applicants have very
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Fig 5: Estimated treatment effects of letters of recommendation on admission ± two standard
errors: overall, by URM status, by Admissibility Index, and by URM × AI.

high imputed admission rates. However, we emphasize that there is insufficient precision to
make strong claims about any of these differences between effects for URM and non-URM
applicants at any resolution.

We also estimate effects separately by which college the applicant applied to. Engineering
admissions are more competitive than Letters and Science (L&S) admissions, and so the
availability of additional context through LORs might have different effects. Appendix Figure
D.9 shows the treatment effects overall, by URM status, and by AI for the two schools. We
find that effects for applicants to L&S broadly follow the same pattern we see overall. In
contrast, the effects for applicants to Engineering are either substantively small or statistical
indistinguishable from zero. This shows that the positive effects we see across the two schools
are driven by positive effects for applicants to L&S. However, for both colleges we fail to find
differential effects by URM status; although URM applicants to L&S have a higher point
estimate than non-URM applicants, the opposite is true in Engineering. This is primarily
because there is a higher degree of uncertainty about the effects for non-URM Engineering
applicants.

The Appendix includes extensive robustness checks and additional analyses. We find that
the overall pattern of results is consistent across a wide range of estimators and data defi-
nitions. We also conduct a formal sensitivity analysis for violations of the ignorability as-
sumption (Assumption 1), adapting a recent proposal from Soriano et al. (2020). Using this
approach we conclude that there would need to be substantial unmeasured confounding, of
roughly the same predictive power as the AI, to qualitatively change our conclusions.

5.3. Conclusions and policy implications. First, our overall finding that submitting
LORs indeed increases the probability of undergraduate admissions to UC Berkeley is largely
unsurprising: readers were given explicit instructions that letters should only help applicants.
That said, the point estimate of 5 percentage points is large relative to the expectations that
we heard from university policymakers.

More relevant for the policy debate are our estimates of treatment effect variation. Our
clearest results are for the differential impact of letters of recommendation across applicants’
a priori application strength. Treatment effects are low for applicants who are unlikely to be
accepted and—consistent with the goals of the admissions office—high for applicants on the
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margin for whom letters provide useful context, with some evidence of a dip for the highest
admissibility applicants.

At the same time, our estimates of differential impacts between URM and non-URM stu-
dents are more muddled, due to large sampling errors, and do not support strong conclusions.
Several studies have found evidence that letter writers use different language when describ-
ing different types of students, with evidence in particular that letters written for female
applicants are weaker (Trix and Psenka, 2003; Madera, Hebl and Martin, 2009; Schmader,
Whitehead and Wysocki, 2007). However, Rothstein (2022) does not find large systematic
differences in the strength of the language used in letters written for URM and non-URM
students in the UCB setting. Our point estimates of effects of letters on admissions outcomes
indicate that LORs benefit URM applicants more than they do non-URM applicants at all
but the highest academic indexes. Because non-URM applicants are overrepresented in the
high-AI category, the point estimate for the average treatment effect is larger for non-URMs;
however, there is insufficient precision to distinguish between the two groups. Thus, while
we do not find evidence of detrimental impacts on URM applicants, we also do not find a
“measurable impact on increasing diversity in undergraduate admissions,” as desired by the
Academic Senate committee (UC Berkeley, 2017).

We assess this question further in Appendix A.4 by conducting a simple policy simulation
to evaluate the impact of requiring LORs for all UC Berkeley applicants on the composition
of the admitted class, relative to the current policy of no LORs (see Chalfant, 2017; UC
Berkeley, 2017). This addresses how the overall cap on undergraduate admissions would
combine with the differential effects of LORs. We find that a universal LOR requirement
would raise the number of admits with strong applications but would have a negligible effect
on the URM composition of admitted students.

6. Discussion. Letters of recommendation and other qualitative inputs play important
roles in select undergraduate admissions. Using a pilot study from the 2016 undergraduate
admissions cycle at UC Berkeley, we find that submitting LORs increase the overall proba-
bility of admissions by 5 percentage points, relative to an estimated baseline of 17 percent.
We find strong evidence of treatment effect variation across a baseline measure of applicant
strength, with larger impacts for stronger applicants. At the same time, we find no evidence
of differential effects by URM status, although this is much noisier.

Taken together, our results are mixed on the UC Berkeley LOR policy debate. Those in
favor of LORs can find some evidence in their favor, especially the larger impacts for students
at the margins of admissions. Similarly, those opposed to the policy can point to results in
support of their position, especially the possibly adverse impacts for URM applicants with
the highest baseline probability of admission. In the end, however, it is unlikely that — at
least based on this study — expanding LORs would meaningfully change the proportion
of admitted URM students. Given the small estimated impacts, it is instead likely that other
parts of the UC Berkeley admissions process, such as decisions around requiring standardized
tests, will be more important factors.

Subsequent to the period that we study, the University of California system set new rules
governing campus admissions that provided for the regular but limited use of LORs (Uni-
versity of California Board of Regents, 2022). Specifically, admissions offices may identify
a small group of applicants for “Augmented Review” based on a judgment that the initial
application yields an incomplete picture of their qualifications, or presents extraordinary cir-
cumstances that invite further comment. Only for these applicants, no more than 15% of
the overall pool, can LORs be considered. Our results suggest that these applicants may be
helped by the inclusion of LORs, but the impact on the composition of the admitted pool will
depend importantly on who is selected for Augmented Review. These criteria suggest that
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AR candidates are likely to come from middle AI ranges, suggesting that within the AR pool
LORs will be more beneficial to URM than to non-URM applicants.

Methodologically, there are several directions for future work. First, an important limi-
tation of our approach is that subgroups are defined by discrete covariates, requiring us to
discretize important continuous measures such as the Admissibility Index. A possible exten-
sion is to adapt the recent proposal from Wang et al. (2021) to combine balancing weights
and traditional kernel weighting methods in order to estimate a conditional average treatment
effect function.

Second, hyperparameter selection for balancing weights estimators is a key question in
practice but remains an open problem. We elect to choose the hyperparameter by explicitly
tracing out the level of balance and effective sample size as the hyper-parameter changes.
However, cross validation approaches such as that proposed by Wang and Zubizarreta (2020)
may have better properties. This an an important avenue for future work.

Third, analogous to the issue of local balance is the issue of local overlap: if there are very
many fine-grained subgroups it may become impossible to find weights that achieve adequate
local balance even if we can achieve exact global balance. In extreme cases, all individuals
in a subgroup might receive either treatment or control. This occurs in the LOR pilot study,
where 7 strata have no applicants that submit LORs. In our analysis, we can drop these strata
because we target the average treatment effect on the treated. However, we could not do this
if there were any strata where all applicants submitted LORs. In such settings with a lack of
“right-sided” local overlap within subgroups, we may consider changing the estimand. For
instance, we could trim the sample by dropping subgroups with limited overlap or by chang-
ing the target estimand to the average treatment effect on the overlapping population (Li,
Morgan and Zaslavsky, 2017). We could even consider mixed estimands that shift from the
treated to overlapping populations only within subgroups with poor overlap. The weighting
procedure we propose can be adapted to target such estimands by incorporating weights on
the treated units as well. We leave an investigation of this to future work.

Finally, while we have developed this procedure specifically for the context of the LOR
pilot study, it can be applied more broadly. In particular, many observational studies exhibit
a grouped structure where individual units are part of groups, e.g. patients belonging to hos-
pitals or students belonging to schools. In fact, the LOR pilot study has such a structure,
with each individual applicant enrolled in one of over 1,000 high schools in California. Even
though measuring treatment effect heterogeneity across groups is not always the primary
aim for such studies, controlling both global balance across groups and local balance within
groups is key to controlling the bias for the overall treatment effect, as we have shown. We
anticipate that the weighting procedure we have developed will be readily applicable to such
settings; however, the exact form of the procedure may depend on study-specific factors.
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