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Abstract
In the November 2016 U.S. presidential election, many state level public opinion polls, particularly in the Upper
Midwest, incorrectly predicted the winning candidate. One leading explanation for this polling miss is that the
precipitous decline in traditional polling response rates led to greater reliance on statistical methods to adjust
for the corresponding bias—and that these methods failed to adjust for important interactions between key
variables like educational attainment, race, and geographic region. Finding calibration weights that account
for important interactions remains challenging with traditional survey methods: raking typically balances the
margins alone, while post-stratification, which exactly balances all interactions, is only feasible for a small
number of variables. In this paper, we propose multilevel calibration weighting, which enforces tight balance
constraints for marginal balance and looser constraints for higher-order interactions. This incorporates some
of the benefits of post-stratification while retaining the guarantees of raking. We then correct for the bias
due to the relaxed constraints via a flexible outcome model; we call this approach Double Regression with
Post-stratification (DRP). We use these tools to to re-assess a large-scale survey of voter intention in the 2016
U.S. presidential election, finding meaningful gains from the proposed methods. The approach is available in
the multical R package.

1 Introduction
Given the precipitous decline in response rates for traditional polling approaches and increased
reliance on possibly non-representative convenience samples, a pressing statistical question in mod-
ern public opinion research is how to find survey weights that appropriately adjust for higher-order
interactions between key variables. Traditional approaches, like raking, can perform poorly with
even a moderate number of characteristics, typically balancing marginal distributions while failing
to balance higher-order interactions. By contrast, post-stratification, which in principle exactly
balances all interactions, is only feasible for a small number of variables. And while approaches like
multilevel regression and post-stratification (MRP; Gelman and Little 1997) use outcome modeling
to overcome this, they do not produce a single set of survey weights for all outcomes and can lead
to unchecked extrapolation away from the data. Fortunately, recent research on modern survey
calibration (e.g., Guggemos and Tillé 2010; Chen, Li, and Wu 2020) and on balancing weights for
causal inference (e.g., Zubizarreta 2015; Hirshberg and Wager 2019) offer promising paths forward.

Building on these advances, we propose two principled approaches to account for higher-
order interactions when estimating population quantities from non-probability samples. First,
we propose multilevel calibration weighting, which exactly balances the first-order margins and
approximately balances interactions, prioritizing balance in lower-order interactions over higher-
order interactions. Thus, this approach incorporates some of the benefits of post-stratification
while retaining the guarantees of the common-in-practice raking approach. And unlike outcome
modeling approaches like MRP, multilevel calibration weights are estimated once and applied to
all survey outcomes, an important practical constraint in many survey settings.
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In some cases, however, multilevel calibration weighting alone may be insufficient to achieve
good covariate balance on all higher order interactions, possibly leading to bias; or researchers
might only be focused on a single outcome of interest. For this, we propose Double Regression with
Post-stratification (DRP), which combines multilevel calibration weights with outcome modeling.
This approach uses outcome modeling, taking advantage of flexible modern prediction methods,
to estimate and correct for possible bias from imperfect balance. When the weights alone achieve
good balance on higher-order interactions, the adjustment from the outcome model is minimal.
When the higher-order imbalance is large, however, the bias correction will also be large and the
combined estimator will rely more heavily on the outcome model. We characterize the numerical
and statistical properties of both multilevel calibration weighting and the combined DRP estimator.

With these tools in hand, we consider the question of the failure of state-level polls in the 2016
US Presidential election. Kennedy et al. 2018 show that many 2016 surveys failed to accurately
account for the shift in public opinion among white voters with no college education, particularly
in the Midwestern region of the country, indicating that failing to adjust for the interaction between
key variables of education, race, and geographic region resulted in substantial bias. We evaluate
whether accounting for this higher-order interaction of race, education level, and geographic
region can, retrospectively, improve public opinion estimates in the final publicly available pre-
election Pew poll. We show that the multilevel weights substantially improve balance in interactions
relative to raking and ad hoc post-stratification and that further bias correction through DRP can
meaningfully improve estimation.

Our proposed approach builds on two important advances in both modern survey methods
and in causal inference. First, there has been a renewed push to find calibration weights that allow
for approximate balance on covariates, rather than exact balance (Park and Fuller 2009; Guggemos
and Tillé 2010; Zubizarreta 2015). Second, several recent approaches combine such weights with
outcome modeling, extending classical generalized regression estimators in survey sampling and
doubly robust estimation in causal inference (e.g. Chen, Li, and Wu 2020; Hirshberg and Wager
2019); we view our proposed DRP approach as a particular implementation of such augmented
balancing weights. We give more detailed reviews in Sections 2.2 and 3.2.

The paper proceeds as follows. Section 2 describes the notation and estimands, and formally
describes various common survey weighting procedures such as raking and post-stratification.
Section 3 characterizes the estimation error for arbitrary weighting estimators to motivate our
multilevel calibration procedure, then describes the procedure. Section 4 proposes the DRP esti-
mator and analyzes its numerical and statistical properties. Section 5 uses these procedures in the
application. The methods we develop here are available in the multical R package.

1.1 2016 U.S. Presidential Election Polling
While national public opinion polls for the November 8, 2016 U.S. presidential election were, on
average, some of the most accurate in recent public opinion polling, state-level polls were notable
in their failure to accurately predict the winning candidate, particularly in the Upper Midwest.
These state-level errors in turn led public opinion researchers to incorrectly predict the winner of
the electoral college. Kennedy et al. 2018 attribute these errors to three main sources: (1) a late
swing among undecided voters towards Trump, (2) failure to account for non-response related
to education level, particularly among white voters, and (3) to a lesser degree, failure to properly
predict the composition of the electorate.

While all three of these concerns are important for survey practitioners, our analysis focuses on
addressing concern (2) by allowing for deep interactions among important covariates, including
race, education level, and region. To isolate this concern, we combine two high-quality surveys
from before and after the 2016 election. We begin with the October 16, 2016 Pew survey of 2, 062
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Figure 1. Percent of the population that is represented in the survey, beginning with education and successively
interacting with income, religion, race, a binary for self-reported female, age, party identification, born-again
Christian status, and region.

respondents, the final public release of Pew’s election polling (Pew Research Center 2016).1 The
primary outcome is respondents’ “intent to vote” for each major party. We combine this with the
44, 909 respondents in the 2016 Congressional Cooperative Election Study (CCES) post-election
survey, a large, high-quality public opinion survey that accurately captures electoral outcomes at
the state level (see Ansolabehere and Schaffner 2017). Here, the primary outcome is respondents’
“retrospective” vote for each major party.2

The combined Pew and CCES observations form a “population” of size N = 46, 971, where
observations from the Pew survey are coded as respondents and observations from the CCES are
coded as non-respondents. Using this target, rather than the ground truth defined by the actual
electoral outcomes, helps to address concern (3) above. Specifically, the CCES validates voters
against Secretaries of State voter files, allowing us to use known voters for whom we have measured
auxiliary covariates to define our target population.

Our goal is to adjust the respondent sample for possible non-response bias from higher-order
interactions and assess whether the adjusted estimates are closer to the ground truth. Figure 1
shows the eight auxiliary variables we consider, measured in both the Pew and CCES surveys. All
eight variables are coded as discrete, with the number of possible levels ranging from two to nine.3

Ideally, we would adjust for all possible interactions of these variables, via post-stratification. This
is infeasible, however: there are 12, 347 possible combinations, far greater than the n = 2, 062

respondents in our survey. Figure 1 shows the percentage of the population that is represented in
the survey as we progressively include—and fully interact—more covariates. With a single covariate,
education (6 levels), each cell has at least one respondent. When including all eight covariates,
the non-empty cells in the sample represent less than a quarter of the population. This motivates
our search for alternative adjustment methods that account for higher order interactions in a
parsimonious way, prioritizing adjustment for strong interactions.

1. Since our survey is from mid-October, we cannot account for concern (1) above, a late break towards Trump among
undecided voters, which may contribute to remaining residual bias.

2. Data and code to replicate this analysis are available at Ben-Michael, Feller, and Hartman (2023).
3. These are (i) education (6 levels), (ii) income (9 levels), (iii) race (4 levels), (iv) a binary for self-reported female (2 levels),

(v) age (4 levels), (vi) party ID (3 levels), (vii) born again Christian (2 levels) and (viii) region (5 levels).
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2 Background and setup
2.1 Notation and estimands

We consider a finite population of N individuals indexed i = 1, . . . ,N . We observe the outcomeYi

for units that respond to the survey. Define a binary variable R i that denotes inclusion in the survey
where R i = 1 indicates that unit i responds; n =

∑
i R i is the total number of respondents. This

response variable can include respondents to a probability sample or a convenience sample. These
response variables R i are the only random component of our setup, and all expectations, variances,
and probability statements will be with respect to the randomness in the response variables. In
addition each individual is also associated with a set of d categorical covariates Xi1, . . . ,Xi d , where
the ℓ th covariate is categorical with Jℓ levels, so that the vector of covariates isXi ∈ [J1]×. . .×[Jd ].4

Rather than consider these variables individually, we rewrite the vectorXi as a single categorical
covariate, the cell for unit i , Si ∈ [J ], where J ≤ J1 × . . . × Jd is the number of unique levels in
the target population.5 While we primarily consider a fixed population size N and total number of
distinct cells J , in Appendix C we extend this setup to an asymptotic framework where both the
population size and the number of cells can grow. With these cells, we can summarize the covariate
information. We denote N P ∈ ÎJ as the population count vector with N P

s =
∑

i 1{Si = s}, and
nR ∈ ÎJ as the respondent count vector, with nR

s =
∑

i R i1{Si = s}. While the population count
N P

s > 0 for every cell s , the respondent count nR
s may be equal to zero. We assume that we have

access to these cell counts for both the respondent sample and the population.
Finally, for each cell s we consider a set of binary vectors D (k )

s that denote the cell in terms
of its k th order interactions, and collect the vectors into matrices D (k ) = [D (k )

1 . . .D
(k )
J ] ′, and

into one combined J × J design matrix D = [D (1) , . . . ,D (d ) ]. This is the usual design matrix for
interaction terms in linear models, with the rows corresponding to unique cells, rather than units. It
can be constructed using the model.matrix command in the R programming language. Appendix
Figure A.1 shows an example of D with three covariates from our running example: a binary for
self-reported female, discretized age, and party identification.

Our goal is to estimate the population average outcome, which we can write as a cell-size
weighted average of the within-cell averages, i.e.

µ ≡ 1

N

N∑
i=1

Yi =
J∑

s=1

N P
s

N
µs where µs ≡

1

N P
s

∑
Si=s

Yi . (1)

To estimate the population average, we rely on the average outcomes we observe within each cell.
For cell s , the responder average is

Ȳs ≡
1

nR
s

∑
Si=s

R iYi . (2)

We invoke the assumption of missingness at random within cells, so that the cell responder averages
are unbiased for the true cell averages (Rubin 1976):

Assumption 1 (Missing at random within cells) For all cells s = 1, . . . , J , Å
[
Ȳs | nR

s

]
= µs .

We denote the propensity score as P (R i = 1) ≡ πi , and the probability of responding conditional
on being in cell s as π (s) ≡ 1

N P
s

∑
Si=s πi . For a probability sample, πi denotes the joint probability

4. We focus on categorical covariates because it is common to only have population counts at this level, and continuous
covariates are often coarsened. However, our method can be adapted for continuous covariates by incorporating more
structure. For example, by considering a polynomial basis expansion to include higher order moments, both marginally and
jointly for interactions.

5. Note that while there are at most J1 × . . . × Jd levels, some may never appear in the target population and so we drop
them from the definition of the cell.
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of both selection into the survey and responding. The analyst knows and controls the selection
probabilities but does not know the probability of response given selection. For a convenience sam-
ple πi is the unknown probability of inclusion in the sample. For both cases the overall propensity
score πi is unknown. We assume that this probability is non-zero for all cells.

Assumption 2 π (s) > 0 for all s = 1, . . . , J .

These assumptions allow us to identify the overall population average using only the observed data.
However, in order for Assumption 1 to be plausible, we will need the cells to be very fine-grained
and have covariates that are quite predictive of non-response and the outcome. As we will see
below, this creates a trade-off between identification and estimation: the former becomes more
plausible with more fine-grained information, while the latter becomes more difficult (see also
D’Amour et al. 2020).

2.2 Review: Raking and post-stratification
We first consider estimating µ by taking a weighted average of the respondents’ outcomes, with
weights γ̂i for unit i . Because the cells are the most fine-grained information we have, we will
restrict the weights to be constant within each cell. Researchers typically face a trade-off, discussed
below, between feasibility of the cell-level estimator, known as post-stratification, and imposing
modeling assumptions to address sparsity concerns, such as through calibration weighting. Our
goal is to parsimoniously balance the feasibility advantage of calibration with the nonparametric
bias-reduction of post-stratification. In particular, we leverage the fact that first-order coefficients
typically explain more variation in outcome and response models than higher-order interactions
(Cox 1984), and so mitigating bias can be accomplished by enforcing balance on these first-order
terms and allowing approximate balance on higher-order interactions.

We start by denoting the estimated weight for cell s as γ̂ (s), and estimate the population average
µ via:

µ̂ (γ̂) ≡ 1

N

N∑
i=1

R i γ̂iYi =
1

N

∑
s

nR
s γ̂ (s)Ȳs . (3)

If the individual probabilities of responding were known, we could choose to weight cell S by the
inverse of the propensity score, 1

π (s) . Since the propensity score π (s) is unknown, researchers can
estimate π (s) via π̂ (s) and weight cell s by the inverse estimated propensity score γ̂ (s) = 1

π̂ (s) .
Post-stratification weights estimate the propensity score as the proportion of the population in

cell s that responded, nRs
N P
s

, leading to γ̂ps (s) = N P
s

nRs
. Under Assumption 1, these post-stratification

weights give an unbiased estimator for the population average µ. However, in practice post-
stratification faces feasibility constraints due to sparsity — this estimator is only defined if there is at
least one responder within each cell, which is unlikely with even a moderate number of covariates.
For example, in Figure 1, cells corresponding to nearly one quarter of the population are empty
when post-stratifying on only five of our eight covariates.6

An alternative, calibration, chooses weights so that the weighted distribution of covariates ex-
actly matches that of the full population, which identifies the population average under a modeling
assumption called linear ignorability (Hartman, Hazlett, and Sterbenz 2021). A common imple-
mentation, raking on margins, matches the marginal distribution by solving a convex optimization
problem that finds the minimally “disperse” weights that satisfy this balance constraint (Deming
and Stephan 1940; Deville and Särndal 1992; Deville, Särndal, and Sautory 1993). For example,

6. Researchers can partly address this by coarsening covariates, although how to do so is not straightforward while still
meeting Assumption 1, and the problem persists with even a moderate number of coarsened covariates. Researchers can
also redefine the target population to only include those cells represented in the sample, however this may greatly change
the interpretation of the results depending on the response pattern.
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raking on the margins ensures that the percent of female, the percent of Democrats, Independents,
and Republicans, and so forth for our eight covariates all match the target population; however it
would not ensure that the pairwise interactions are matched. Bias is mitigated so long as these
higher-order interactions are not important to the outcome or response model. Calibration thus
addresses feasibility concerns by focusing on balancing lower-order interactions, which are less
likely to contain empty cells. For example, in Figure 1, focusing on three-way interactions and below
would retain nearly the whole population.

Specifically, starting with baseline weights q (s) for cell s , calibration finds weights that solve

min
γ

∑
s

nR
s f (γ (s), q (s))

subject to
∑
s

D
(1)
s nR

s γ (s) =
∑
s

D
(1)
s N P

s

L ≤ γ (s) ≤ U [ s = 1, . . . , J ,

(4)

where the function f : Ò×Ò → Ò+. in the first equation, is a measure of dissimilarity. Some choices
include the scaled and squared distance f (γ (s), q (s)) = 1

2q (s) (γ (s) −q (s))2 and the KL divergence
f (γ (s), q (s)) = γ (s) log γ (s)

q (s) . Common choices for baseline weights, q (s), include probability
weights when they are known (e.g. Deville and Särndal 1992), or estimated inverse propensity
weights. Below we will use uniform weights q (s) = N

n , for which the dissimilarity measures reduce
to standard notions of the spread of the weights: the scaled and squared distance becomes the
variance of the weights and the KL divergence becomes the entropy of the weights. As we will see
below, the variance of the weights is directly related to the variance of the weighting estimate, and
so is a natural choice of penalty.

The second equation encodes the calibration constraints, or the weighted survey moments that
must exactly match the target population. In addition to the dispersion penalty in the objective,
in the third equation, we constrain the weights to be between a lower bound L = 0 and an upper
boundU = ∞, which restricts the normalized cell weights, 1

N γ (s)nR
s to be in the J − 1 simplex. This

ensures that the imputed cell averages are in the convex hull of the respondents’ values and so
do not extrapolate, and that the resulting estimator µ̂ (γ̂) is between the minimum and maximum
sample outcomes.7

Note that the general calibration procedure can also include exact constraints on higher order
interaction terms, and including all interactions recovers the post-stratification weights. We use
the raking and post-stratification nomenclature to distinguish between calibration weighting with
first order margins and with all interactions. Several papers have proposed “soft” or “penalized”
calibration approaches to relax the exact calibration constraint in Equation (4), allowing for approx-
imate balance in some covariates (see, e.g. Rao and Singh 1997; Park and Fuller 2009; Guggemos
and Tillé 2010; Gao, Yang, and Kim 2022). Our multilevel calibration approach below can be seen as
adapting the soft calibration approach to full post-stratification.

Before turning to our proposal for balancing higher-order interactions, we briefly describe
some additional approaches. Chen, Valliant, and Elliott (2019) and McConville et al. (2017) discuss
model-assisted calibration approaches which rely on the LASSO for variable selection. Caughey
and Hartman (2017) select higher-order interactions to balance using the LASSO. Hartman, Hazlett,
and Sterbenz (2021) provide a kernel balancing method for matching joint covariate distributions
between non-probability samples and a target population. Linzer (2011) provides a latent class
model for estimating cell probabilities and marginal effects in highly-stratified data.

7. If we allow unbounded extrapolation and set L = −∞ andU = ∞, the resulting estimator will be equivalent to linear
regression weights from a linear regression of the outcome on first order indicators D (1) (Ben-Michael, Feller, and Rothstein
2021).
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Finally, in Section 4, we also discuss outcome modeling strategies as well as approaches that
combine calibration weights and outcome modeling. A small number of papers have previously
explored this combination for non-probability samples. Closest to our setup is Chen, Li, and Wu
(2020), who combine inverse propensity score weights with a linear outcome model and show that
the resulting estimator is doubly robust. Related examples include Yang, Kim, and Song (2020),
who give high-dimensional results for a related setting; and Si et al. (2020), who combine weighting
and outcome modeling in a Bayesian framework.

3 Multilevel calibration: approximate post-stratification
We now propose multilevel calibration weights, which bridge the gap between post-stratification
and raking on the margins. First, we inspect the finite-sample estimation error and mean square
error of the weighting estimator µ̂ (γ̂) for a set of weights γ̂ that are deterministic functions of the
cell counts nR , differentiating the impact of imbalance in lower- and higher-order terms on the
bias. Importantly, we note that first-order terms typically explain more variation in the outcome
and response process than higher-order terms. We then use our decomposition to find weights
that control the components of the MSE by approximately post-stratifying while maintaining raking
on the margins, thus leveraging the advantages of both raking and post-stratification.

3.1 Estimation error
We begin by inspecting the estimation error µ̂ (γ) − µ for weights γ. Define the residual for unit
i as εi ≡ Yi − µSi , and the average respondent residual in cell s as ε̄s = 1

nRs

∑
Si=s R i εi . The

estimation error decomposes into a term due to imbalance in the cell distributions and a term due
to idiosyncratic variation within cells:

µ̂ (γ̂) − µ =
1

N

∑
s

(
nR
s γ̂ (s) − N P

s

)
× µs︸                               ︷︷                               ︸

imbalance in cell distribution

+ 1

N

∑
s

nR
s γ̂ (s)ε̄s︸               ︷︷               ︸

idiosyncratic error

. (5)

By Assumption 1, which states that outcomes are missing at random within cells, the idiosyncratic
error will be zero on average, and so the bias will be due to imbalance in the cell distribution. By
Hölder’s inequality, we can see that the MSE, given the number of respondents in each cell, is

Å
[
(µ̂ (γ̂) − µ)2 | nR ]

=
1

N 2

(∑
s

(
nR
s γ̂ (s) − N P

s

)
µs

)2
︸                                  ︷︷                                  ︸

bias2

+
∑
s

(
nR
s

N

)2
γ̂ (s)2σ2

s︸                   ︷︷                   ︸
variance

≤ 1

N 2

∑
s

µ2s ×
∑
s

(
nR
s γ̂ (s) − N P

s

)2
︸                     ︷︷                     ︸

imbalance in cell distribution

+σ2
∑
s

(
nR
s

N

)2
γ̂ (s)2︸                   ︷︷                   ︸

noise

,

(6)

where σ2
s = Var(Ȳs | nR) and σ2 = maxs σ2

s . We therefore have two competing objectives if we
want to control the MSE for any given realization of our survey. To minimize the bias we want to
find weights that control the imbalance between the true and weighted proportions within each
cell. To minimize the variance we want to find “diffuse” weights so that the sum of the squared
weights is small.

The decomposition above holds for imbalance measures across all of the strata, without taking
into account their multilevel structure. In practice, we expect cells that share features to have similar
outcomes on average. We can therefore have finer-grained control by leveraging our representation
of the cells into their first order marginalsD (1)

s and interactions of order k ,D (k )
s . To do this, consider
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the infeasible population regression using the D
(k )
s representation as regressors,

min
η

N∑
i=1

(
Yi −

d∑
k=1

D
(k )
Si

· ηk

)2
. (7)

With the solution to this regression, η∗ = (η∗1, . . . , η
∗
d ), we can decompose the population average

in cell s based on the interactions between the covariates, µs =
∑d

k=1 D
(k )
s · η∗k .8

This decomposition in terms of the multilevel structure allows us to understand the role of
imbalance in lower- and higher-order interactions on the bias. Plugging this decomposition into
Equation (6) we see that the bias term in the conditional MSE further decomposes into the level of
imbalance for the k th order interactions weighted by the strength of the interactions:

Å
[
(µ̂ (γ̂) − µ)2 | nR ]

=
1

N 2

(
d∑

k=1

η∗k ·
∑
s

(
nR
s γ̂ (s) − N P

s

)
D

(k )
s

)2
+

∑
s

(
nR
s

N

)2
γ̂ (s)2σ2

s

≤ 1

N 2

(
d∑

k=1



η∗k 

2 




∑
s

(
nR
s γ̂ (s) − Ns

)
D

(k )
s







2

)2
+ σ2

∑
s

(
nR
s

N

)2
γ̂ (s)2.

(8)

Equation (8) formalizes the benefits of raking on the margins as in Equation (4). If there is an
additive functional form with no influence from higher-order interaction terms — so η∗k = 0 for all
k ≥ 2 — then raking will yield an unbiased estimator. Even if the “main effects” are stronger than
any of the interaction terms and so the coefficients on the first order terms, ∥η∗1∥2, are large relative
to the coefficients for higher order terms, raking can remove a large amount of the bias and so it is
often seen as a good approximation (Mercer, Lau, and Kennedy 2018). However, ignoring higher
order interactions entirely can lead to bias. We therefore propose to find weights that prioritize
main effects while still minimizing imbalance in interaction terms when feasible.

3.2 Multilevel calibration
We now design a convex optimization problem that controls the conditional MSE on the right hand
side of Equation (8). To do this, we apply the ideas and approaches developed for approximate
balancing weights (e.g. Zubizarreta 2015; Hirshberg, Maleki, and Zubizarreta 2019; Wang and
Zubizarreta 2020; Ning, Sida, and Imai 2020; Xu and Yang 2022) to the problem of controlling for
higher order interactions, using our MSE decomposition as a guide. We find weights that control the
imbalance in all interactions in order to control the bias, while penalizing the sum of the squared
weights to control the variance. Specifically, we solve the following optimization problem:

min
γ∈ÒJ

d∑
k=2

1

λk






∑
s

D
(k )
s nR

s γ (s) − D
(k )
s N P

s






2
2︸                                            ︷︷                                            ︸

approximate higher order balance

+
∑
s

nR
s

(
γ (s) − N

n

)2
︸                    ︷︷                    ︸

variance penalty

subject to
∑
s

D
(1)
s nR

s γ (s) =
∑
s

D
(1)
s N P

s︸                                   ︷︷                                   ︸
raking constraint

L ≤ γ (s) ≤ U [s = 1, . . . J ,

(9)

where the λk are hyper-parameters. Note that the optimization problem is on the scale of the

8. As we describe above, if we consider up to three-way interactions of age, gender, and educational attainment, the
coefficients capture the main effects and the pair-wise second and third order interactions in explaining vote choice.
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population counts rather than the population proportions. This follows the bound on the bias in
Equation (8); categories and interactions with larger population counts D (k )′N P contribute more
to the bias. With a common hyper-parameter, this means that higher-order interactions or smaller
categories — which have lower population counts — will have less weight by design.

We can view this optimization problem as adding an additional objective optimizing for higher
order balance to the usual raking estimator in Equation (4) with the scaled squared dissimilarity
function and uniform baseline weights. As with the raking estimator, the multilevel calibration
weights are constrained to exactly balance first order margins. Subject to this exact marginal
constraint, the weights then minimize the imbalance in k th order interactions for all k = 2, . . . , d .
In this way, the multilevel calibration weights approximately post-stratify by optimizing for balance
in higher-order interactions rather than requiring exact balance in all interactions as the post-
stratification weights do. Following the bias-variance decomposition in Equations (6) and (8), this
objective is penalized by the sum of the squared weights. As with the raking estimator, we can also
replace the variance penalty with a different penalty function, including penalizing deviations from
known sampling weights following Deville and Särndal (1992). A benefit of the variance penalty is
that Equation (9) is a Quadratic Program (QP) that can be solved efficiently via first-order methods
(Boyd et al. 2010). We use OSQP, an efficient first-order method developed by Stellato et al. (2020).

Variations on the measure of approximate higher order balance are also possible. Equation (8)
uses the Cauchy–Schwarz inequality to relate the sum of the squared imbalances in k th-order
interactions to the bias. We can instead use Hölder’s inequality to relate the maximal imbalance via
the L∞ norm. Using this measure in Equation (9) would find weights that minimize the imbalance
in the worst-balanced k th-order interaction, related to the proposal from Wang and Zubizarreta
(2020). We could also solve a variant of Equation (9) without the multilevel structure encoded by
the D

(k )
s variables. This would treat cells as entirely distinct and perform no aggregation across

cells while approximately post-stratifying. From our discussion in Section 3.1, this would ignore
the potential bias gains from directly leveraging the multilevel structure. Finally, in Appendix B we
inspect the Lagrangian dual of this optimization problem and show that the weights are a form of
propensity score weights with a multilevel GLM propensity score model.

An important component of the optimization problem are the hyper-parameters λk for k =

2, . . . , d . They control the relative priority that balancing the higher-order interactions receives in
the objective in an inverse relationship, and define a bias-variance trade-off. If λk is large, then
the weights will be more regularized and the k th order interaction terms will be less prioritized. In
the limit as all λk → ∞, no weight is placed on any interaction terms, and Equation (9) reduces to
raking on the margins. Conversely, if λk is small, more importance will be placed on balancing k th

order interactions. For example, if λ2 = 0, then the optimization problem will rake on margins and
second order interactions. As all λk → 0 we recover post-stratification weights, if they exist.

The trade-off between bias and variance can be viewed as one between balance and effective
sample size. Improving the balance decreases the bias, but comes at the expense of increasing
variance by decreasing the effective sample size. In practice, we suggest explicitly tracing out this
trade-off. For a sequence of potential hyper-parameter values λ (1) , λ (2) , . . ., set all of the hyper-
parameters to be λk = λ (j ) . We can then look at the two components of the objective in Equation

(9), plotting the level of imbalance
∑d

k=2




∑s D
(k )
s nR

s γ (s) − D
(k )
s N P

s




2
2

against the effective sample

size neff =
(∑s n

R
s γ̂ (s))2∑

s n
R
s γ̂ (s)2

. After fully understanding this trade-off, practitioners can choose a common
λ somewhere along the curve. For example, in our analysis in Section 5, we choose λ to achieve
95% of the potential balance improvement in higher-order terms of λ = 0 relative to raking.
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4 Double regression with post-stratification (DRP)
So far we have focused on multilevel calibration, with weights that exactly match the first-order
marginals between the weighted sample and the full population, while approximately balancing
higher order interactions. This approach is independent of the outcomes and so we can use a single
set of weights to estimate the population average for multiple different outcomes. However, in
some cases it may not be possible to achieve good covariate balance on higher order interactions,
meaning that our estimates may still be biased. We can address this by specializing to a particular
outcome and by explicitly using outcome information to estimate and correct for the bias.

Outcome models for adjustment are widely used in the study of public opinion in Political
Science. Multilevel regression with post-stratification (MRP), in particular, is often used to obtain
subnational estimates of public opinion on issues such as climate change (e.g. Howe et al. 2015)
and support for gay rights (e.g. Lax and Phillips 2009) and for the study of policy responsiveness (e.g.
Tausanovitch and Warshaw 2014). We begin by reviewing outcome modeling and then propose
double regression with post-stratification (DRP).

4.1 Using an outcome model for bias correction
A common alternative to the weighting approach above is to estimate the population average µ

using an outcome regression model m (xi ) to predict the outcome given the covariates, averaging
over the predictions m̂ (xi ). When observations are in discrete cells, this is equivalent to taking the
modelled regression estimates of the cell averages, µ̂s , and post-stratifying them to the population
totals as (Gelman and Little 1997):

µ̂omp =
1

N

∑
i

m̂ (xi ) =
1

N

∑
s

N P
s µ̂s , (10)

where µ̂s = 1/ns
∑

i :Si=s m̂ (xi ) is the cell-level average prediction, and where “omp” denotes
outcome modeling and post-stratification. For example, we could obtain a prediction from our
model of vote choice in each 8-way interacted cell in our running example, and obtain an overall
estimate for vote choice by weighting these by the population proportion in each cell. By smoothing
estimates across cells, outcome modeling gives estimates of µ̂s even for cells with no respondents,
thus sidestepping the primary feasibility problem of post-stratification. We discuss particular
choices of outcome regression model in Section 4.2 below.

Heuristically, for weights γ̂ we can use an outcome regression model to estimate the bias
(conditional on the cell counts) due to imbalance in higher order interactions by taking the difference
between the outcome regression model estimate for the population and a hypothetical estimate
with population cell counts nR

s γ̂ (s):

b̂ias = µ̂omp − 1

N

∑
s

nR
s γ̂ (s)µ̂s =

1

N

∑
s

µ̂s ×
(
N P

s − nR
s γ̂ (s)

)
. (11)

This uses the outcome model to collapse the imbalance in the J cells into a single diagnostic.
Our main proposal is to use this diagnostic to correct for any remaining bias from the multilevel
calibration weights. We refer to the estimator as Double Regression with Post-Stratification (DRP),
as it incorporates two forms of “regression”—a regression of the outcome µ̂ (s) and a regression of
response γ̂ (s) through the dual problem, as we discuss in Appendix B. We construct the estimator
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using weights γ̂ (s) and cell estimates µ̂s as

µ̂drp (γ̂) = µ̂ (γ̂) + 1

N

∑
s

µ̂s ×
(
N P

s − nR
s γ̂ (s)

)
︸              ︷︷              ︸

imbalance in cell s

= µ̂omp + 1

N

∑
s

nR
s γ̂ (s) × (Ȳs − µ̂s )︸     ︷︷     ︸

error in cell s

.

(12)

The two lines in Equation (12) give two equivalent perspectives on how the DRP estimator adjusts
for imbalance. The first line begins with the multilevel calibration estimate µ̂ (γ̂) and then adjusts
for the estimate of the bias using the outcome model 1

N

∑
s µ̂s (N P

S
− nR

s γ̂ (s)). If the population and
re-weighted cell counts are substantially different in important cells, the adjustment from the DRP
estimator will be large. On the other hand, if the population and re-weighted sample counts are
close in all cells then µ̂drp (γ̂) will be close to µ̂ (γ̂). In the limiting case of post-stratification where
all the counts are equal, the two estimators will be equivalent, µ̂drp (γ̂ps) = µ̂ (γ̂ps). The second line
instead starts with the outcome regression estimate, µ̂omp, and adjusts the estimate based on the
error within each cell. If the outcome model has poor fit in cells that have large weight, then the
adjustment will be large. This estimator is a special case of augmented approximate balancing
weights estimators (e.g. Hirshberg and Wager 2019) and is closely related to generalized regression
estimators (Cassel, Sarndal, and Wretman 1976), augmented IPW estimators (Chen, Li, and Wu
2020), and bias-corrected matching estimators (Rubin 1976).

This DRP approach uses outcome information to reduce bias by adjusting for imbalance remain-
ing after weighting. To see this, we can again inspect the estimation error. Analogous to Equation
(5), the difference between the DRP estimator and the true population average is

µ̂drp (γ̂) − µ =
1

N

∑
s

(
nR
s γ̂ (s) − N P

s

)
︸              ︷︷              ︸

imbalance in cell s

× (µ̂s − µs )︸     ︷︷     ︸
error in cell s

+ 1

N

s∑
s=1

nR
s γ̂ (s)ε̄s︸               ︷︷               ︸

noise

. (13)

Comparing to Equation (5), where the estimation error depends solely on the imbalance and the
true cell averages, we see that the estimation error for DRP depends on the product of the imbalance
from the weights and the estimation error from the outcome model. Therefore, if the model is a
reasonable predictor for the true cell averages, the estimation error will decrease.

In Appendix C we formalize this intuition via finite-population asymptotic theory. We find that
as long as the modelled cell averages estimate the true cell averages well enough, the model and
the calibration weights combine to ensure that the bias will be small enough to conduct normal-
based asymptotic inference. Furthermore, the asymptotic variance will depend on the variance
of the residuals εi , which we expect to have much lower variance than the raw outcomes. So
asymptotically the DRP estimator will also have lower variance than the oracle Horvitz-Thompson
estimator that uses the true response probabilities, similar to other model-assisted estimators
(Breidt and Opsomer 2017). We construct confidence intervals for the population total µ based on
these asymptotic results. First, we start with a plug-in estimate for the variance,

V̂ =
1

N 2

n∑
i=1

R i γ̂ (Si )2 (Yi − µ̂Si )2. (14)

We then construct approximate level α confidence intervals via µ̂drp (γ̂) ± z1−α/2
√
V̂ , where z1−α/2

is the 1 − α/2 quantile of a standard normal distribution.
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4.2 Choosing an outcome model for bias correction
The choice of outcome model is crucial for bias correction. As we discussed in Section 3, we often
believe that the strata have important hierarchical structure where main effects and lower-order
interactions are more predictive than higher-order interactions. We consider two broad classes of
outcome model that accommodate this structure: multilevel regression outcome models, which
explicitly regularize higher-order interactions; and tree-based regression models, which implicitly
regularize higher-order interactions. Appendix C gives technical conditions on the outcome regres-
sion model under the finite-population asymptotic framework above. We require these regularized
models to estimate the true relationship sufficiently well — i.e. the regression error of the cell-level
estimates

∑
s (µs − µ̂s )2 must decrease to zero at a particular rate as the population and sample

size increases — depending on how the total number of cells and the population size relate.

Multilevel outcome model. We first consider multilevel models, which have a linear form as
µ̂mr
s = η̂mr ·Ds , where η̂mr are the estimated regression coefficients (Gelman and Little 1997; Ghitza

and Gelman 2013). MRP directly post-stratifies these model estimates, using the coefficients to
predict the value in the population:

µ̂mrp = η̂mr · 1

N

∑
s

N P
s Ds .

This is closely related to the multilevel calibration approach in Section 3.2 above. If we set L = −∞
andU = ∞ in Equation (9) — and so allow for unbounded extrapolation — the resulting estimator
will be equivalent to using the maximum a posteriori (MAP) estimate of η̂mr, with regularization
hyper-parameters λ (k ) (Ben-Michael, Feller, and Rothstein 2021). In contrast, the DRP estimator
only uses the coefficients to adjust for any remaining imbalance after weighting,

µ̂drp (γ̂) = µ̂ (γ̂) + η̂mr ·
(
1

N

∑
s

Ds

(
N P

s − nR
s γ̂ (s)

))
.

This performs bias correction. When we use the MAP estimate of a multilevel outcome model, the
corresponding DRP estimator is itself a weighting estimator where the outcome regression model
directly adjusts the weights:

γ̃ (s) = γ̂ (s) +
(
N P − diag(nR)γ̂

) ′
D

(
D ′diag(nR)D +Q

)−1
Ds ,

where Q is the prior covariance matrix associated with the multilevel model (Breidt and Opsomer
2017). While the multilevel calibration weights γ̂ are constrained to be non-negative, DRP weights
allow for extrapolation outside the support of the data (Ben-Michael, Feller, and Rothstein 2021).

Trees and general weighting methods. More generally, we can consider an outcome regression
model that smooths out the cell averages, using a weighting function between cells s and s ′,
W (s, s ′), to estimate the population cell average, µ̂s =

∑
s′W (s, s ′)nR

s′Ȳs′ . A multilevel model is
a special case that smooths the cell averages by partially pooling together cells with the same
lower-order features. In general the DRP estimator is again a weighting estimator, with adjusted
weights

γ̃ (s) = γ̂ (s) +
∑
s′

W (s, s ′) (N P
s′ − nR

s′ γ̂ (s ′)).

Here the weights are adjusted by a smoothed average of the imbalance in similar cells. In the
extreme case where the weight matrix is diagonal with elements 1

nR
, the DRP estimate reduces to

the post-stratification estimate, as above.
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Figure 2. Difference between the re-weighted sample and the population, measured as the square root of
the sum of squared imbalances for interactions k = 1, . . . , 6, versus the effective sample size. Imbalance
measures are scaled as the percent reduction in imbalance relative to raking on margins.

One important special case are tree-based methods such as those considered by Montgomery
and Olivella (2018) and Bisbee (2019). These methods estimate the outcome via bagged regression
trees, such as random forests, gradient boosted trees , or Bayesian additive regression trees. These
approaches can be viewed as data-adaptive weighting estimators where the weight for cell s and
s ′,W (s, s ′), is proportional to the fraction of trees where cells s and s ′ share a leaf node (Athey,
Tibshirani, and Wager 2019). Therefore, the DRP estimator will smooth the weights by adjusting
them to correct for the imbalance in cells that share many leaf nodes.

Bias-variance tradeoff. The key difference between OMP and DRP is what role the outcome
model plays, and how one chooses the model to negotiate the bias-variance tradeoff. Because
outcome model-style estimators only use the outcome model, the performance of the outcome
model completely determines the performance of the estimator. For example, in a multilevel model
we want to include higher-order interaction terms in order to reduce the bias. However, this can
increase the variance to an unacceptable degree, so we choose a model with lower variance and
higher bias.

In contrast, with DRP the role of the model is to correct for any potential bias remaining after
multilevel calibration. Because we can only approximately post-stratify, this bias-correction is
key. It also means that DRP is less reliant on the outcome model, which only needs to adequately
perform bias correction. Therefore, the bias-variance tradeoff is different for DRP, and we prioritize
bias over variance. By including higher order interactions or deeper trees, the model will be able to
adjust for any remaining imbalance in higher order interactions after weighting.

5 2016 US Presidential election polls
We now turn to evaluating the proposed estimators in the context of 2016 US Presidential polling,
as described in Section 1.1. We begin by showing balance gains from the multilevel calibration
procedure and inspecting how bias correction through DRP affects both the point estimates and
confidence intervals. We then evaluate the performance of multilevel calibration and DRP when
predicting state-specific vote counts from the national pre-election survey of vote intention. In
Appendix E we conduct simulations calibrated to our application and show that there are sizeable
reductions in RMSE due to multilevel calibration over raking on the margins, and that bias reduction
can provide large improvements.

We compute population cell counts N P
s from the post-2016 election CCES poll, limiting to those

who voted in the election as indicated by a flag for a verified voter from the Secretaries of State
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Figure 3. Distribution of covariate imbalance for interactions up to order 4, measured as the difference
between the weighted and target count, divided by the target count.

files, and weighting according to provided CCES survey weights. We consider the balance of three
different weighting estimators. First, we rake on margins for eight variables measured in both
surveys, equivalent to solving (9) with λk → ∞ for k ≥ 2 and L = 0,U = ∞. Next, we create
post-stratification weights. Due to the number of empty cells, we limit to post-stratifying on four
variables, collapsed into coarser cells.9 Last, we balance up to 6th order interaction terms, setting a
common hyper-parameter λk = λ for k = 2, . . . , 6 and λk → ∞ for k = 7, 8.10 To select λ, we solve
(9) for a series of 40 potential values, equally spaced on the log scale, tracing out the bias-variance
trade-off in Figure 2. On a 2020 Intel-based MacBook Pro, finding the weights across these 40 λ

values takes 2.5 minutes, warm-starting the optimization for each value of lambda with the optimal
weights at the previous value. We find that a value of λ = 12.8 achieves 95% of the potential
imbalance reduction while having an effective sample size 30% larger than the least-regularized
solution. We also consider bias-correcting the multilevel weights with DRP with (a) a fourth order
ridge regression model and (b) gradient boosted trees, both tuned with cross validation.

Figure 3 shows the imbalance when weighting by these three approaches for interactions
up to order 4. To place the balance on the same scale, we divide the difference between the re-
weighted sample and the population in the j th interaction of order k by the population count,���∑s D

(k )
sj

(nRs γ̂ (s)−N P )
���∑

s D
(k )
sj

N P
s

. By design, both the raking and multilevel calibration weights exactly balance

first order margins; however, post-stratifying on a limited set of collapsed cells does not guarantee
balance on the margins of the uncollapsed cells, due to missing values. The multilevel calibration
weights achieve significantly better balance on second order interactions than do the raking weights
or the post-stratification weights. For higher order interactions these gains are still visible but less
stark, as it becomes more difficult to achieve good balance.

This improvement in balance comes at some cost to variance. Figure 4a shows the empirical
CDF of the respondent weights for the three approaches. The multilevel calibration weights that

9. We collapse income and age to 3 levels, education to a binary indicator for greater than a high school degree, and race
to a binary indicator for white.

10. 7th and 8th order interactions are unlikely to be meaningful given the lower-order interactions, but including them
substantially increases the memory and time complexity of solving (9).
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(a) Empirical CDF of weights (b) Predictions of Republican vote share

Figure 4. (a) Distribution of weights. Dashed line indicates a uniform adjustment N
n . (b) Point estimates and

approximate 95% confidence intervals. Thick dashed line is the weighted CCES estimate, thinner dashed lines
indicate the lower and upper 95% confidence limits.

balance higher order interactions have a greater proportion of large weights, with a longer tail than
raking or collapsed post-stratification. These large weights lead to a smaller effective sample size.
The multilevel calibration weights yield an effective sample size of 1,099 for a design effect of 1.87,
while raking and the collapsed post-stratification weights have effective sample sizes of 1,431 and
1,482 respectively.

Figure 4b plots the point estimates and approximate 95% confidence intervals for the multilevel
calibration and DRP approaches, along with the estimated Republican vote share from the weighted
CCES sample. Confidence intervals are computed as µ̂drp (γ̂) ± z1−0.025

√
V̂ , with the standard error

estimate from Equation (14). The different weights result in different predictions of the vote share,
ranging from a point estimate of 42.5% for raking to 47.5% for post-stratification. Additionally, the
somewhat smaller effective sample size for multilevel calibration manifests itself in the standard
error, leading to slightly larger confidence intervals. The DRP estimators, bias correcting with either
ridge regression or gradient boosted trees, have similar point estimates to multilevel calibration
alone. This indicates that the remaining imbalances in higher order interactions after weighting in
Figure 3 do not lead to large estimated biases. However, by including an outcome model the DRP
estimators significantly reduce the standard errors.

To empirically validate the role of balancing higher order interactions, we use the national
pre-election Pew survey to predict Republican vote share within each state. The pre-election survey
was designed as a national survey and so there are substantial differences between the sample and
the state-level totals. For each state we compute the population count vectorN P from the weighted
CCES, subset to the state of interest. Here we use a common λ = 1. We impute the Republican vote
share for that state via weighting alone and DRP with gradient boosted trees, balancing interactions
up to order six; we also include OMP estimates using gradient boosted trees for the outcome
model. We consider both restricting the sample respondents to be in the same region as the state
and including all sample respondents. Figure 5 shows the absolute bias and RMSE across the 50
states as the order increases from raking on first order margins to approximately balancing sixth
order interactions. There are substantial gains to bias-correction through DRP when raking on the
margins in terms of both bias and variance. Balancing higher order interactions also improves
estimation over raking alone. And while the relative improvement of DRP over multilevel calibration
diminishes as we balance higher order interactions, these gains are still apparent, though small.
This indicates that the additional bias-correction from gradient-boosted trees is has less impact
than balancing higher order interactions does. Finally, while not restricting respondents by region
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Figure 5. Absolute bias and MSE when imputing Republican vote share in 50 states from the national Pew
survey, using multilevel calibration weights and DRP with gradient boosted trees, balancing margins up to 6th

order interactions, restricting to respondents in the same region and unrestricted by region. Blue dashed lines
show the bias and RMSE for an OMP using gradient boosted trees for comparison.

results in lower bias across the 50 states, the higher RMSE indicates the estimates of state vote
share are poor but averaging out. In Appendix Figure A.2 we show the individual DRP estimates of
state-level Republican vote share balancing up to 6th order interactions and using gradient boosted
trees, with respondents restricted to the same region. We see that DRP is biased in the negative
direction, somewhat underestimating Republican vote share in the majority of states.

6 Discussion
As recent public opinion polling has shown, differential non-response across groups defined by
fine-grained higher order interactions of covariates can lead to substantial bias. While, ideally, we
would address such nonresponse by post-stratifying on all interactions of important covariates
simultaneously, the cost of collecting the necessary sample size is prohibitive, especially with low
response rates. In practice, analysts circumvent this via ad hoc approaches, such as only adjusting
for first-order marginal characteristics or collapsing cells together.

In this paper we provide two alternative approaches, multilevel calibration weighting and
Double Regression with Post-stratification (DRP), which provide principled ways to combine fine-
grained calibration weighting and modern machine learning prediction techniques. The multilevel
calibration weights improve on existing practice by approximately post-stratifying in a data-driven
way, while at least ensuring exact raking on first order margins. DRP then takes advantage of flexible
regression methods to further adjust for differences in fine-grained cells in a parsimonious way. For
groups where the weights successfully adjust for differences in response rates, the DRP estimate
is driven by the weights; for groups that remain over- or under-represented, DRP instead relies
on a flexible regression model to estimate and adjust for remaining non-response bias. Through
theoretical, numerical, and simulation results, we find that these approaches can significantly
improve estimation. Specifically, adjusting for higher-order interactions with multilevel calibration
has much lower bias than ignoring them by only raking on the first-order margins. Incorporating
flexible outcome estimators such as multilevel regression or tree-based approaches in our DRP
estimator further improves upon weighting alone.
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However, our proposal is certainly not a panacea, and important questions remain. First, while
we choose the value of the hyper-parameters by tracing out the bias-variance trade-off, it might be
preferable to select them via data-adaptive measures. For example, Wang and Zubizarreta (2020)
propose a cross-validation style approach that takes advantage of the Lagrangian dual formulation.
It may be possible to use such approaches in this setting.

Second, the key assumption is that outcomes are missing at random within cells. While we
never expect this to be entirely true, it allows us to make progress on estimation, and with granular
enough groups, we may hope that this assumption is approximately true. It is important then to
characterize how our conclusions would change if this assumption is violated, and the response
and the outcome are correlated even within cells. Hartman and Huang (2022) discuss this form of
sensitivity analysis for survey weights that is readily adaptable to this context. In a similar vein,
some covariates (or their interactions) may be irrelevant to the response probability, in which case
enforcing balance on them would lead to decreased precision with no reduction in bias. To avoid
this, researchers can combine our proposals with a covariate selection procedure (e.g. Egami and
Hartman 2021) that can reduce the number of covariates to balance.

Third, with many higher order interactions it is difficult to find good information on population
targets. We may have to combine various data sources collected in different manners, or estimate
unknown cells in the target population (Kuriwaki et al. 2021), and uncertainty in the population
targets can also lead to increased variance (see Caughey et al. 2020, for a recent review). Fourth,
during the survey process we can obtain very detailed auxiliary information on survey respondents
that we cannot obtain for the population, even marginally. Incorporating this sort of auxiliary
information into the estimation procedure will be important to future work.

Finally, non-response bias is far from the only difficulty with modern surveys. We therefore
view multilevel calibration and DRP as only one part of the analyst’s toolkit, supplementing design
and data considerations.
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