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Gun violence is a critical public safety concern in the United States.
In 2006 California implemented a unique firearm monitoring program, the
Armed and Prohibited Persons System (APPS), to address gun violence in
the state. The APPS program first identifies those firearm owners who be-
come prohibited from owning one due to federal or state law, then confiscates
their firearms. Our goal is to assess the effect of APPS on California murder
rates using annual, state-level crime data across the US for the years before
and after the introduction of the program. To do so, we adapt a non-parametric
Bayesian approach, multitask Gaussian Processes (MTGPs), to the panel data
setting. MTGPs allow for flexible and parsimonious panel data models that
nest many existing approaches and allow for direct control over both depen-
dence across time and dependence across units, as well as natural uncertainty
quantification. We extend this approach to incorporate non-Normal outcomes,
auxiliary covariates, and multiple outcome series, which are all important in
our application. We also show that this approach has attractive Frequentist
properties, including a representation as a weighting estimator with separate
weights over units and time periods. Applying this approach, we find that the
increased monitoring and enforcement from the APPS program substantially
decreased homicides in California. We also find that the effect on murder
is driven entirely by declines in gun-related murder with no measurable ef-
fect on non-gun murder. Estimated cost per murder avoided are substantially
lower than conventional estimates of the value of a statistical life, suggesting
a very high benefit-cost ratio for this enforcement effort.

1. Introduction. Every year, thousands of people in the United States are murdered with
a firearm. In 2020 alone, there were over 45,000 firearm-related deaths in the U.S., including
deaths by suicide and murder; firearm-related injuries are now the leading cause of death
among U.S. children and adolescents (Goldstick, Cunningham and Carter, 2022). This mor-
tality rate remains multiple times that of other wealthy nations, largely due to differences in
the lethality of violence in the United States (see Hemenway, 2017; Zimring, 1972).

Addressing gun violence is thus one of the most pressing public safety issues in the United
States. Policy proposals intended to curb gun violence vary considerably. At one end of the
spectrum are proposals to increase gun availability to deter potential assailants through such
policies as shall-issue concealed carry laws (see Donohue, Aneja and Weber, 2019) or the
arming of school teachers (Green and Fernandez, 2018). At the other end are policy propos-
als to restrict access to firearms through universal background checks, temporarily remov-
ing firearms from individuals deemed a danger to themselves or others (Wintemute et al.,
2019), and restricting access to assault weapons with high capacity magazines (Donohue and
Boulouta, 2019).

Keywords and phrases: Gun violence, Gaussian Processes, Panel Data, Causal Inference.
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Federal and state laws already prohibit certain individuals from owning firearms. Under
federal law, individuals with prior felony convictions as well as some individuals with a
history of mental illness are prohibited from purchasing and owning firearms. Many states
go further, restricting access to firearms for individuals convicted of violent misdemeanors,
individuals that are subjected to restraining orders, and juvenile offenders, among other cate-
gories (Giffords Law Center to Prevent Gun Violence, 2019). While law enforcement officials
confiscate firearms of prohibited persons discovered to be in possession, until recently there
was no effort to proactively and comprehensively recover firearms from prohibited individu-
als.

California was the first and remains the only state to undertake such an effort. In 2006
California implemented the Armed and Prohibited Persons System (APPS), a monitoring
program that identifies known firearm owners who become prohibited from owning a firearm
and then subsequently attempts to retrieve all prohibited weapons. Through this program,
state law enforcement has made hundreds of thousands of contacts with prohibited individu-
als and has removed tens of thousands of firearms from their possession, often permanently.1

In this paper, we assess whether the implementation of APPS affected murder rates in Cal-
ifornia, using annual, state-level data for the 50 states. To do so, we adapt a non-parametric
Bayesian approach, multitask Gaussian Processes (MTGPs), to estimate the causal effect of
APPS. Originally developed for the setting with multiple outcomes rather than multiple units
(Bonilla, Chai and Williams, 2008; Álvarez, 2017), Multitask GPs separately parameterize
dependence across time and dependence across units. This allows for a flexible and parsimo-
nious panel data model that nests many existing approaches: Our primary model is a natural
generalization of low-rank factor models commonly used in panel data settings (e.g., Xu,
2017; Athey et al., 2021) with an additional prior that encourages smoothness in the underly-
ing factors. We also take advantage of the large literature on the statistical and computational
properties of Gaussian Processes (Williams and Rasmussen, 2006; Gelman et al., 2013) to ex-
tend this model. Immediate extensions include: allowing for a count (Poisson) observational
model; allowing for multiple outcome series; incorporating a mean model; and incorporating
auxiliary covariates.

Applying these ideas to the impact of APPS yields large, negative effect estimates on gun-
related homicides in California. Specifically, we estimate over 100 murders prevented per
year, a decline of at least 5 percent relative to California’s murder rate immediately prior
to the program. In addition, we find that the effect on murder is driven entirely by declines
in gun-related murder with no measurable effect on non-gun murder. Back-of-the-envelope
calculations find that program expenditures are likely under $100,000 per murder prevented,
much lower than conventional estimates of the value of a statistical life, suggesting a very
high benefit-cost ratio for this enforcement effort.

Methodologically, we believe that the MTGP framework is a promising approach for esti-
mating causal effects with panel data more broadly. First, we can naturally incorporate many
panel data diagnostics and other model checks in terms of standard Bayesian workflows, such
as posterior predictive checks. This is especially important in settings such as ours, with rela-
tively few units and (pre-treatment) time periods. The Bayesian approach also yields coherent

1While California is not the only state that screens existing gun owners for prohibiting conditions, it is the
only state to screen daily for triggering events, to carefully monitor whether the person has been disarmed, and to
have a law enforcement unit in charge of following up, disarming such individuals, and storing the firearms. That
being said, 19 states and D.C. currently have Extreme Risk Protection Orders (Giffords Law Center to Prevent
Gun Violence, 2022) and several local jurisdictions have targeted efforts to remove firearms from those who are
a danger to themselves or others as well as to prevent straw purchases of firearms for those who cannot legally
purchase. For an example of the former, see Barron (2022). For an example of the latter, see the description of the
Chicago Anti-Gun Enforcement Program, in operation during the 1990s (Sheppard, 1999).
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uncertainty quantification, appropriately propagating uncertainty from the different sources
of information in the model. In particular, the specific model we consider automatically pro-
duces uncertainty intervals that grow over time post-treatment. Surprisingly, this last point is
a departure from many existing approaches, which sometimes have constant uncertainty in-
tervals post-treatment. We also report many flexible summaries of the posterior distribution,
allowing us to obtain posterior distributions for estimands like the benefit-cost ratio, a key
quantity in policy analysis.

Finally, we adapt results from Kanagawa et al. (2018) showing that the Gaussian Process
can be represented as a weighting estimator. We then use this representation to show that
the overall weights decompose into separate unit and time weights. As a result, the proposed
MTGP approach has the form of a doubly-weighted average over units and time periods, sim-
ilar to recent proposals in the panel data literature (Arkhangelsky et al., 2019; Ben-Michael,
Feller and Rothstein, 2021).

As we discuss in Section 3.3, our proposed approach combines the growing literature on
Gaussian Processes for causal inference (see Oganisian and Roy, 2020) with the robust lit-
erature on estimating causal effects for a single treated unit with panel data (see Samartsidis
et al., 2019). Of particular relevance are Modi and Seljak (2019) and Carlson (2020), who
also consider GPs in this context, albeit with different structures. More broadly, our proposed
framework is a natural (Bayesian) generalization of recent proposals for low-rank factor mod-
els with panel data (e.g., Xu, 2017; Athey et al., 2021); see also recent extensions from Pang,
Liu and Xu (2020).

Our paper proceeds as follows. In Section 2 we give an overview of the APPS program
and other institutional details and present an initial analysis of the effect of APPS. In Section
3 we describe the underlying causal problem and review related work. In Section 4 we review
single- and multi-task Gaussian Processes and apply these ideas to our application setting. In
Section 5 we represent the MTGP approach as a weighting estimator. In Section 6 we report
model diagnostics and the estimated impact of APPS under different models. Finally, in Sec-
tion 7 we discuss open questions and possible extensions. The Appendix includes additional
computational details, diagnostics, and results. All code and replication files are available at
github.com/darbour/mtgp_panel.

2. Armed and Prohibited Persons System.

2.1. Description of the system. The Armed and Prohibited Persons System is a law en-
forcement program devoted to proactively removing firearms from known gun owners who
become prohibited from owning a gun. The program has two components: an intricate data
infrastructure and monitoring system that updates daily; and an enforcement operation, which
includes both non-sworn analysts and a small force of sworn state officers, dedicated solely
to enforcing state firearms restrictions for gun owners who become prohibited. While the
state has maintained the database on gunowners and associated firearms since the mid 1990s,
the active effort to remove firearms from prohibited individuals did not begin until December
2006 (California Department of Justice, 2015).

The core of the data system is the APPS database, a list of known gunowners that draws
on Dealer Record of Sales (DROS) transactions, voluntary gun registrations with the state,
and an Automated Firearm System (AFS) database that records all known firearms involved
in sales through licensed dealers. The database then links each individual known to own a
firearm to specific firearms identified by serial numbers. This system has recorded owners of
handguns and their associated weapons since 1996. In 2014, the state expanded the system
to include all gunowners and all firearms, including long guns. The known population of

https://github.com/darbour/mtgp_panel
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gunowners in the APPS database has grown substantially over time, from under 900,000 in
2006 to over 2.5 million in 2019, or roughly 6 percent of the state’s resident population.2

The APPS data are cross referenced daily against several databases that record events that
trigger a firearm prohibition. These include the state’s Automated Criminal History System
(the state’s criminal history repository), the Mental Health Reporting system (a database used
by mental health providers to record involuntary commitments and other mental health events
that may trigger a prohibition), the California Restraining and Protective Order system, and
a statewide Wanted Persons System. When the cross-reference uncovers a triggering event
for an individual in APPS, the case is analyzed by state criminal intelligence specialists to
determine whether the person is actually prohibited and if the person is still armed. Local
law enforcement across the state conducts gun relinquishment efforts for those who become
prohibited; hence, local agencies may have already removed the person’s firearms.3 In the
event that the APPS database reveals that the person is still armed, the case is referred to
the state Bureau of Firearms (BOF) for an enforcement action. Of these, 54 percent were
prohibited due to a felony conviction, 11 percent were prohibited due to a misdemeanor
conviction, 19 percent were prohibited due to an existing restraining order, 18 percent were
prohibited due to a mental health prohibition, 24 percent were prohibited due to provisions of
the Federal Brady Act, while the remaining 7 percent were prohibited due to active probation
status (California Department of Justice, 2019).

BOF officers attempt to contact these individuals, usually at their last known address, and
request to perform a consensual search of the premises. If refused, officers will return with a
search warrant. In many instances, officers only recover some of the firearms associated with
the individual in question, possibly due to a prior unrecorded sale, the individual turning over
firearms to friends and family, the gun being lost or stolen, or local law enforcement already
collecting the firearms at conviction and failing to update the person’s record in APPS. In ad-
dition, officers frequently discover unregistered weapons along with the registered firearms.4

Once all guns associated with prohibited individuals are removed from possession, the indi-
viduals are removed from the APPS database as they are no longer armed. Gunowners are
also removed from the APPS database upon death. Between 2007 and 2017, the BOF directly
retrieved nearly 32,000 firearms from prohibited individuals. However, the total number of
firearms relinquished statewide is likely much larger given the role of local law enforcement
and the fact the BOF works cases that are somehow not handled locally.

2.2. Related research on access to firearms. A growing literature evaluates the impact
of state-level changes in access to firearms on homicide rates; see Webster and Wintemute
(2015) and Cook and Donohue (2017). Overall, recent studies find that more permissive
firearm regulations, such as more permissive concealed carry laws and Right to Carry (RTC)
laws, are associated with increases in gun-related deaths (Donohue, Aneja and Weber, 2019;
Siegel et al., 2017).5 Similarly, policy changes that restrict firearm access, such as permit-
to-purchase laws and comprehensive background checks, are associated with decreases in

2The system likely covers only a portion of gunowners in the state since the underlying list of gunowners
used by the system is generated largely by new firearms sales. For example, the list excludes people who legally
purchase firearms in other states and fail to register them in California, as well as people who purchased handguns
prior to 1996 and long guns prior to 2014 and have not registered these firearms.

3In 2016, this became the official responsibility of county probation departments across the state for those
newly convicted of a prohibiting offense.

4For an abundance of examples of the product of these enforcement actions, see California Department of
Justice (2015, 2016, 2017, 2018, 2019).

5While Lott and Mustard (1997) find the opposite, their results have been convincingly disputed on method-
ological grounds (Aneja, Donohue III and Zhang, 2011; National Research Council, 2005).
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Fig 1: Annual homicide rate per 100,000, 1997 through 2016. The dotted line is 2006, the
year the APPS program was launched. (a) California and the rest of the United States. (b)
California and Synthetic California, matched based on the pre-intervention years 1997-2006,
de-meaned

gun-related deaths (Rudolph et al., 2015; Castillo-Carniglia et al., 2019). Methodologically,
many of these studies also use the synthetic control method, which we consider next (Rudolph
et al., 2015; Kagawa et al., 2018; Castillo-Carniglia et al., 2019; Donohue, Aneja and Weber,
2019; McCourt et al., 2020; Pear et al., 2022).

Several qualitative studies complement these quantitative estimates. Wintemute et al.
(2019) present a series of California case studies of individuals subjected to gun law re-
straining orders, where the APPS was central in identifying associated firearms. In addition,
case studies listed in recent years of the California Department of Justice annual APPS report
indicate that BOF enforcement teams are often directly involved in carrying out these orders
(California Department of Justice, 2018, 2019). In the case studies documented by Winte-
mute and colleagues, the individuals disarmed as a result of these orders all made specific
and highly alarming threats against intimate partners, coworkers, educational institutions,
and in some instances health and mental health providers. Among the cases where the in-
dividual in question threatened violence, none had committed a violent act at the time of
publication. See also Swanson et al. (2017), who find that such restraining orders may also
be effective in reducing gun suicide.

Finally, there is currently a randomized control trial of the APPS enforcement program
in the field (see Wintemute et al., 2017, for the study protocol). The study began in 2015
to randomly assign regions within California for earlier or later enforcement actions among
regions without well-established working relationships with the state Department of Justice.
To date, results from this evaluation have not been reported.

2.3. Synthetic control estimates. Figure 1a shows the annual homicide rate per 100,000
people in California versus the rest of the United States (a population-weighted average of
the remaining 49 states); the dotted line indicates 2006, the year the APPS program was first
launched (in December). The figure is based on data from the Federal Bureau of Investigation
(FBI) Uniform Crime Reports (UCR). The figure shows several striking patterns. First, the
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overall murder rate in the United States largely declined over this period, with a major in-
crease in the final years of the panel. Second, the murder rate in California was substantially
higher than the national average in the late 1990s and mid 2000s, with an average difference
in murders per 100,000 of 1.1 over the ten-year period through 2006. This gap closes after
2006: the California murder rate falls and remains below the rate for the rest of the nation by
2014.

The methodological question is whether and how we can use this panel data structure to
estimate the impact of APPS on the murder rate. Furthermore, we would like to separately
estimate effects on gun related and non-gun related homicides. The APPS program should
primarily impact gun-related homicides by removing firearms from a high-risk population,
though substitution effects may lead to changes in non-gun-related homicides. Therefore our
methodological goal also includes estimating effects on multiple outcomes simultaneously.

Unfortunately, relatively simple approaches are unlikely to perform well here. For ex-
ample, the workhorse “difference-in-differences” (DiD) regression model assumes parallel
trends: in the absence of the intervention, the differences between the murder rates in Cali-
fornia and the rest of the country are constant over time. This is clearly violated in Figure 1a,
with much wider differences in the mid 2000s than in the late 1990s.

An alternative to DiD for settings such as this where the parallel trends assumption is im-
plausible is the synthetic control method (SCM Abadie, Diamond and Hainmueller, 2010).
This procedure finds a weighted combination of other states, Synthetic California, that ap-
proximates the pre-APPS murder rate for California. Here, we use a variant of SCM that
first subtracts out the pre-APPS homicide rate in each state to isolate trends, then finds a syn-
thetic control that approximates the pre-APPS murder rate trends for California (Doudchenko
and Imbens, 2016; Ferman and Pinto, 2021; Ben-Michael, Feller and Rothstein, 2021). See
Appendix A.3 for further details on constructing the synthetic control.

Figure 1b shows the de-meaned California murder rate (the solid line) alongside the de-
meaned murder rate for our synthetic comparison group of states (the dashed line). The
synthetic control has excellent pre-treatment fit: the two series are very close for the pre-
treatment period of 1997 through 2006. Seven states have non-zero weight and contribute to
the synthetic control: Ohio is by far the most important donor state (weight = 0.65), followed
by Hawaii (0.1), Mississippi (0.09), Louisiana (0.06), Arkansas (0.06), Alaska (0.03) and
Idaho (0.01). After 2006, California’s murder rate is markedly lower than the rate for syn-
thetic California, with an average difference of -1.41 murders per 100,000. This difference
widens over the ten-year period following the implementation of APPS.

While a promising initial analysis, several open questions remain. First, we would like
to be able to estimate the effects on both gun related and non-gun related homicides in or-
der to evaluate our hypothesis that the APPS program should have a larger impact on gun
related homicides. Second, the methodology for panel data with multiple outcomes is under-
developed, and it is unclear how this SCM approach can be applied more generally. Relat-
edly, the number of homicides per state are inherently count outcomes, a fact ignored in
existing SCM analyses but one that we would like to incorporate explicitly. Finally, quantify-
ing uncertainty with synthetic controls is challenging. The two most common approaches of
placebo and conformal inference (Abadie, Diamond and Hainmueller, 2010; Chernozhukov,
Wüthrich and Zhu, 2021) rest on versions of exchangeability either over units or over time.
These assumptions are difficult to justify in our setting, and so it is unclear whether the large
differences in Figure 1b is driven by true effects or statistical noise. Moreover, the uncer-
tainty intervals from conformal inference approaches are constant over time even though,
intuitively, we anticipate far greater uncertainty for the counterfactual murder rate in 2017
than immediately after the implementation of APPS in 2007. This adds more difficulty in
understanding whether the effect is truly increasing over time as we see in Figure 1b. These
concerns motivate our alternative approach, which we turn to next.
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3. Setup and Background.

3.1. Problem setup. We now describe the standard panel data setting with i= 1, . . . ,N
units observed for t = 1, . . . , T time periods. In our application, we observe N = 50 states
for T = 20 years. Let Wi be an indicator that unit i is treated at time T0 < T where units with
Wi = 0 never receive the treatment. While our setup is more general, we restrict our attention
to the case where a single unit receives treatment, and follow the convention that this is
the first one, W1 = 1. The remaining N0 = N − 1 units are untreated. In our application,
the treatment of interest is the APPS program, treated at time T0 = 10; California is the
treated unit and the remaining states are possible controls. Note that while only California
implement a program like APPS, as we discuss above, other states have enacted various gun-
related policies. Thus, the un-treated conditionW1 = 0 corresponds to the policy environment
California would have experienced in the absence of APPS.

We describe our problem of interest in the potential outcomes framework. We assume no
interference between units and stable treatment, which allows us to write the potential out-
comes for unit i in time t under control and treatment as Yit(0) and Yit(1) respectively.6 Our
primary outcome of interest is the overall murder rate; we consider multiple outcomes in Sec-
tion 4.3.3. For ease of exposition, we initially ignore the presence of background covariates
from our analyses; we discuss extensions to incorporate them in Section 4.3.1.

Since the first unit is treated at time T0, the observed outcomes Yit are therefore:

Yit =

{
Yit(0) if Wi = 0 or t≤ T0
Yit(1) if Wi = 1 and t > T0

.

The goal is to estimate the causal effect for the treated unit at each post-treatment time t > T0,
τt = Y1t(1) − Y1t(0) = Y1t − Y1t(0), as well as the average treatment effect on the treated
unit after time T0,

τ =
1

T − T0

T∑
t=T0+1

τt.

Since we observe the treated outcome Y1t = Y1t(1) for the treated unit at t > T0, the challenge
is to impute the missing potential outcome for the treated unit at time t > T0. Note that we
adopt a finite sample causal inference framework here: our goal is to estimate the impact for
California, rather than for a hypothetical population (see Imbens and Rubin, 2015).

3.2. Bayesian causal inference. We adopt a Bayesian approach to estimating causal
quantities. There are many subtle issues that arise in Bayesian causal inference that are not
central to our discussion. For instance, identification in the Bayesian approach is conceptu-
ally distinct from identification in non-Bayesian causal inference: if the prior distribution is
proper then the posterior distribution will also be proper, regardless of whether the parame-
ters in the likelihood are fully or partially identified (see Gustafson, 2010; Imbens and Rubin,
2015). See Ding and Li (2018) and Oganisian and Roy (2020) for additional background.
Pang, Liu and Xu (2020) and Menchetti and Bojinov (2020) give overviews of Bayesian
causal inference for panel or time series data.

At a high level, Bayesian causal inference views missing potential outcomes as unobserved
random variables to be imputed (Rubin, 1978; Ding and Li, 2018). We therefore break the

6While this is not always the case, in our application, it is reasonable to assume that any state could launch an
APPS-style program at any point. Thus, both potential outcomes could reasonably exist for all units and all time
periods.
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problem into two parts: first, estimate a Bayesian model using the observed data; second, use
this model to obtain the posterior (predictive) distribution for the missing potential outcomes.
Specifically, let Ymis = {Yit(0)}i=1,t>T0

∈RT−T0 be the missing potential outcomes for the
treated unit after T0, and let Oobs = ({Yit(0)}i>1, {Yit(0)}i=1,t≤T0

, {Yit(1)}i=1,t>T0
, W)

be the set of observed data, including all control outcomes, the treated unit’s pre-treatment
outcomes, the treated unit’s observed outcomes post-treatment, and the set of treatment as-
signments. We introduce auxiliary covariates in Section 4.3.1.

The goal is to impute the missing potential outcomes, Ymis, by drawing from the poste-
rior predictive distribution, P(Ymis|θ,Oobs), governed by a model parameter θ. We can then
estimate τ̂t = Y1t−Y ∗1t(0) at post-treatment time t > T0, where Y ∗1t(0) is a draw from the pos-
terior predictive distribution for Y1t(0) for unit 1 at time t. To do so, we follow Richardson,
Evans and Robins (2011) and use the fact that:

P{Ymis, θ |Oobs}= P{θ |Oobs} · P{Ymis | θ,Oobs},

where P{Ymis, θ|Oobs} is the posterior distribution of our model parameters and the miss-
ing potential outcomes given observed data. Now, to obtain the target posterior predictive
distribution, we first specify a prior distribution P(θ) and use Bayes rule to obtain the poste-
rior distribution P(θ|Oobs). With this posterior over the model parameters, we can repeatedly
draw samples of Ymis, yielding the joint posterior on the left-hand side of the above expres-
sion. Obtaining the target posterior predictive distribution is then a matter of rearranging the
above expression to isolate P(Ymis|Oobs), marginalizing over θ. This approach rests entirely
on the form of the model and the estimated model parameters. See Pang, Liu and Xu (2020)
for an alternative framing that explicitly states sufficient conditions in the form of identifying
assumptions, and Miratrix (2020) for a discussion of model-based uncertainty in a similar
setting.

Formally, we assume that units and time periods are exchangeable conditional on the
model parameters θ, which have a prior distribution p(θ). Following Ding and Li (2018),
we partition the parameter space into θm, which governs the marginal potential outcome dis-
tribution, and θa, which governs the association between Yit(0) and Yit(1). In principle, we
could treat θa as a sensitivity parameter; for the purposes of this paper, we assume that the
potential outcomes are conditionally independent given data and model parameters, allowing
us to ignore θa.7 The posterior for θm is then:

P{θm |Oobs} ∝ p(θm)
∏

(i,t)∈C

P(Yit(0) | θm,Wit),

where C denotes the “control” unit and time periods: t= 1, . . . , T0 for i= 1 and t= 1, . . . , T
for other units. Let Y ∗1t(0) denote the posterior predictive distribution over the missing poten-
tial outcomes, Y ∗1t(0) = P{Ymis | θ,Oobs}. The estimated treatment effect at time t is then the
observed treated potential outcome minus the predicted missing potential outcome at post-
treatment time t > T0, τ̂t = Y1t−Y ∗1t(0), where repeatedly drawing Y ∗1t(0) from the posterior
predictive distribution propagates the uncertainty.

A key consequence of this setup is that we never use post-treatment data from the treated
unit in our modeling (or, equivalently, we have an arbitrarily flexible model for the observed
treated data). Rather, our focus is on modeling the observed control potential outcomes. And
by imputing Y ∗it(0) from the posterior predictive distribution, our inference is inherently finite

7It is tempting to sidestep this issue entirely and view this framework as solely focusing on the control potential
outcomes. The challenge is that a (formal) Bayesian approach conditions on all data and parameters. Thus, this
additional restriction makes explicit the fact that we are not incorporating any information from the observed
Yit(1). See Ding and Li (2018) for further discussion.
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sample, allowing us to directly reason about the effect of APPS on California’s murder rate
(Imbens and Rubin, 2015).

Finally, while the setup here is quite general, in practice we restrict ourselves to a structure
where the control potential outcomes are a model component plus additive noise.

ASSUMPTION 1 (Additive, separable error structure). The control potential outcomes,
Yit(0), are generated as:

Yit(0) = modelit(θ) + εit E[εit] = 0

where modelit(θ) is the outcome model for unit i at time t, governed by parameters θ; and
εit is mean-zero noise.

This assumption, sometimes referred to strict exogeneity in the panel data setting (see,
e.g., Imai and Kim, 2019), places no restrictions on the model terms and θ. This allows for
non-parametric modelling of the outcomes where θ is potentially infinitely dimensional —
but does not allow treatment assignment to depend on the errors. In other words, given the
model and the possibly infinitely many parameters θ, the error distribution for the treated
unit’s (control) potential outcomes are exchangeable with other units’ errors. In our analysis
of the APPS program, one implication of Assumption 1 is that California’s decision to im-
plement APPS must not be in response to an idiosyncratic shock to the homicide rate. This is
consistent with the history of the program (see, e.g., California Department of Justice, 2015),
which largely came about due to changes in IT infrastructure and an entrepreneurial Cali-
fornia Attorney General. As we discuss in Section 7, we can relax Assumption 1 within the
fully Bayesian workflow, for instance, via sensitivity analysis (Franks, D’Amour and Feller,
2019).

3.3. Related methodological research. Our paper bridges several robust literatures. First,
we build on the many existing methods for estimating causal effects for a single treated unit
with panel data; see Samartsidis et al. (2019) for a recent review. Within this, there are several
important threads. Most directly relevant are recent papers on Bayesian implementations of
(or alternatives to) the synthetic control method, including Tuomaala (2019); Kim, Lee and
Gupta (2020); Pang, Liu and Xu (2020); Pinkney (2021). Of particular interest is Broder-
sen et al. (2015), who propose a Bayesian structural time series model for estimating causal
effects, focused on a single treated series; see Menchetti and Bojinov (2020) for a recent ex-
tension. We explore connecections between Brodersen et al. (2015) and our proposed method
in Appendix A.4. There are also several recent papers that directly estimate factor models for
causal effects (e.g., Xu, 2017; Athey et al., 2021), as well as approaches that directly address
multiple outcomes (Samartsidis et al., 2020). As we discuss below, we incorporate many of
the novel ideas in these papers, including many of the prior choices. However, our proposed
MTGP framework is typically more general, and, we believe, more conducive to estimating
causal effects with panel data.

Next, there is a small but growing set of papers on the use of Gaussian Processes for esti-
mating causal effects. To date, nearly all of these papers have focused on the cross-sectional
setting (Alaa and van der Schaar, 2017; Schulam and Saria, 2017; Ray and van der Vaart,
2018; Huang, Chen and Liu, 2019; Branson et al., 2019; Witty et al., 2020; Ren et al., 2021).
See Oganisian and Roy (2020) for a recent review.

We are aware of very few papers specifically using GPs to estimate causal effects in panel
data settings, although, as we discuss in Section 5, many existing estimators can be written
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as special cases of this approach.8 Two working papers are especially relevant for our work.
The first is recent work from Modi and Seljak (2019), who also propose a GP approach
for estimating causal effects in this setting. Their main proposal, however, is very different
than ours, with a focus on GP for the frequency domain. Thus, we view our model as a
useful complement to theirs. A second recent proposal is Carlson (2020), who also uses a
GP approach but does not exploit the multitask structure. In independent work, Chen et al.
(2022) also propose using a multitask GP for panel data. Unlike in our application, however,
they consider the setting with many units divided into a treatment and control group and
are focused on modeling so-called “parallel-ish” trends between these groups. In a different
direction, Antonelli and Beck (2021) propose estimating effects under staggered adoption
of treatment using a Bayesian vector autoregressive model that allows for spatial and time
dependence, which is in some ways analogous to the multitask structure we propose. Finally,
while not explicitly causal, of particular relevance to our approach is Flaxman et al. (2015),
who propose a hierarchical GP model that is similar to what we discuss here.

4. Multitask Gaussian Processes for Causal Inference. We now give a high-level de-
scription of Multitask Gaussian Processes for causal effects with panel data, beginning with
the simpler setting of single-task GPs. We discuss specific model implementation choices in
Appendix A. To fix terminology, we use tasks throughout to refer to units; thus, a single-task
GP is for a single unit while multi-task GPs are for multiple units. This is in contrast to the
original use (e.g., Bonilla, Chai and Williams, 2008) where tasks instead refers to outcomes.

4.1. Review: Single Task Gaussian Processes. We begin by reviewing the setup and
properties of a Single-Task GP, which focuses solely on the treated unit; see Williams and
Rasmussen (2006) for a textbook discussion. While the original GP setup is quite general,
to fix ideas we initially focus on applying GPs to the interrupted time series or horizontal
regression setting (Athey et al., 2021), in which we use the pre-treatment outcomes for Cal-
ifornia to forecast post-treatment outcomes in the absence of the intervention. Specifically,
we initially model the (control) murder rate for California at time t, Y1t(0), as the sum of a
model component f1t and a mean-zero, independent noise component (as in Assumption 1):9

Y1t(0) = f1t + ε1t

f1 ∼ GP (0, ktime)

ε1t
iid∼N(0, σ2)

where GP(·) is a Gaussian Process prior with corresponding time kernel ktime, f1 =
(f11, . . . , f1T ) is the vector of model components for the treated unit, and where we initially
consider homoskedastic noise σ2, which we relax below.

The key idea is that the GP prior over f1 incorporates smoothness over time via ktime(t, t
′),

where similar values of t imply larger covariances. Here we use the squared exponential
kernel:

ktime(t, t
′) = exp

(
−|t− t

′|2

2ρ

)
,

8See also Karch, Brandmaier and Voelkle (2018), who use GPs for latent growth curve modeling in psycho-
metrics, and Huang, Zhang and Schölkopf (2015), who instead focus on causal discovery.

9For simplicity, we consider a de-meaned outcome series for now, allowing for a global intercept in Section
4.3. Nonetheless, as we show in Equation (2), the posterior mean for a future data point can be nonzero even when
f1 has mean zero; see Rasmussen (2004).
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where ρ is the length scale.
The choice of kernel function plays an important role in defining the behavior of the model.

For the family of kernels we consider, the relation between the time difference |t− t′| and
the kernel value ktime(t, t

′) is central in determining how we expect the model to behave over
time. If ktime(t, t

′) is large even for far-apart time periods, then the model components f1t, f1t′
are assumed to be highly correlated; this corresponds to an assumption that the underlying
model is very smooth over time. Conversely, if ktime(t, t

′) is low even for close time periods,
then the model components are assumed to be close to independent, which corresponds to
assuming that the model varies strongly over time. The length scale hyper-parameter ρ ex-
plicitly controls the level of smoothness in the model components. Many other kernels are
possible and appropriate for other settings, such as periodic kernels; again see Williams and
Rasmussen (2006) for a textbook discussion.

This GP model implies that the control potential outcomes follow a multivariate Nor-
mal distribution, so the conditional distributions have a convenient form. Specifically, as
in Section 3.2, we can partition the vector of control potential outcomes for the treated
unit into the observed and missing components: Yobs

1 = (Y obs
11 , Y

obs
12 , . . . , Y

obs
1T0

), and Ymis =

(Y1T0+1(0), Y1T0+2(0), . . . , Y1T (0)). Next, we define Ktime ∈ RT×T as the time kernel ma-
trix, where Ktime,tt′ = ktime(t, t

′). Suppressing the superscript time to reduce clutter, we can
then partition this multivariate Normal model as:(

Ymis
1

Yobs
1

)
∼ MVN

[(
0
0

)
,

(
Kmis Kmis,obs

Kobs,mis Kobs

)
+ σ2I

]
,(1)

where Kobs ∈ RT0×T0 is the time kernel matrix for observed points, Kmis ∈ R(T−T0)×(T−T0)

is the time kernel matrix for unobserved points, and Kobs,mis ∈ RT0×(T−T0) is a rectangular
matrix of time kernel evaluations for pre- and post-treatment times, whose t, t′ element is the
kernel value ktime(t, T0 + t′).

We can then write the the posterior predictive distribution for California’s outcomes at
future time points, t > T0, as:

Ymis
1 |Yobs

1 ∼MVN(µ,Σ)

µ= Kmis,obs(Kobs + σ2I)−1Yobs
1(2)

Σ = (Kmis + σ2I)−Kmis,obs(Kobs + σ2I)−1Kobs,mis.(3)

As we discuss in Section 5, the posterior mean is a linear combination of the pre-treatment
observations, Yobs

1 .

4.2. Multitask Gaussian Processes. We now turn to modeling the murder rate for all
states jointly, rather than modeling California’s outcome series alone. The primary change is
that each observation is now a unit-time pair (i, t), so the kernel measuring similarity between
points is doubly-indexed: k( (i, t), (i′, t′) ). The multitask GP framework, originally devel-
oped for the setting with a single unit but many outcomes (Goovaerts et al., 1997; Bonilla,
Chai and Williams, 2008), is a natural approach for capturing similarity across multiple di-
mensions. As in the single-task GP setting and Assumption 1, we assume that the control
potential outcomes consist of a model component plus additive (Normal) noise:

Yit(0) = fit + εit

f ∼ GP(0, k)

εit
iid∼N(0, σ2),
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where f = (f11, . . . , fNT ) is the vector of model components for all units and time periods.
We again begin with the simplified setting in which the outcome series is de-meaned by a
global intercept; we incorporate a mean model in Section 4.3.

While this framework is quite general, we focus on two common simplifications: allow-
ing for separable unit and time covariances, and imposing a low-rank structure on the unit
covariance.

4.2.1. Separable unit and time kernels. The first key idea is to decompose the GP kernel
into separate kernels that capture similarity across time (the “time covariance”) and similarity
across units (the “unit covariance”):

(4) k( (i, t), (i′, t′) ) = kunit(i, i
′)× ktime(t, t

′),

where kunit defines similarity between the N units and ktime defines similarity between the T
time periods. This is a strong restriction that implies that the covariance across units, kunit,
is constant in time. (Conversely, this implies that the time covariance ktime is constant across
units.) We discuss some approaches for relaxing this restriction in Section 7.

4.2.2. Low-rank unit covariance. Even with the separable kernel restriction, the result-
ing model is overparameterized. In particular, the similarity between the T time points,
ktime(t, t

′), has a natural parameterization in terms of the difference in time, |t− t′|, which
is a scalar. By contrast, the similarity between the N units, kunit(i, i

′), involves N(N − 1)/2
comparisons. Following Goovaerts et al. (1997) and Bonilla, Chai and Williams (2008), we
simplify the problem by using the intrinsic coregionalization model (ICM), which imposes a
low-rank assumption on the unit covariance kunit (see also Flaxman et al., 2015, Section 4.2).

Specifically, we assume that the unit kernel matrix Kunit ∈ RN×N , where Kunit,i,i′ =
kunit(i, i

′), has the form Kunit = ββ′ for some matrix β ∈ RN×J , where J is the rank of
the unit kernel matrix, and where we place a hyperprior on β and infer it from the data.10

While initially proposed in terms of restrictions on the matrices, we can equivalently write
the ICM model as an assumption that the outcome model for each of the i= 1, . . . ,N units
is a unit-specific linear combination of J latent draws from a Gaussian process, i.e.,

(5) fit =

J∑
j=1

βijujt,

where each latent uj is itself a GP with kernel ktime, and where each unit has its own set
of unit-specific factor loadings βi = (βi1, . . . , βiJ). Thus, the underlying model components
u1, . . . ,uJ are shared across units and induce a dependence across them. The number of
shared latent functions J corresponds to the rank of the unit kernel matrix Kunit. This is a key
hyper-parameter governing the overall complexity of the model; a higher rank J will lead
to a more flexible model that potentially has the risk of overfitting. We discuss choosing the
rank J via Bayesian model criticism in Section 6.1.11 The resulting model is then:

Yit(0) = fit + εit

fit =

J∑
j=1

βijujt

10Equivalently, we can write this restriction as kunit(i, i
′) = 〈βi,βi′〉, i.e., a linear kernel between weights for

units i and j, inferred from the data.
11In principle, we could include a prior over the effective rank by shrinking columns of Kunit to zero, though

this is computationally demanding; see Cheng et al. (2020).
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uj ∼ GP(0, ktime)

βij
iid∼N (0,1)

εit
iid∼N (0, σ2).

We estimate this model using the probabilistic programming language, Stan (Stan Devel-
opment Team, 2021). See Appendix A for hyperprior distributions and additional implemen-
tation details; many other hyperprior distributions are possible.

As above, we can re-write this model in matrix notation and can represent the decomposi-
tion in Equation (4) as the Kronecker product between the two covariances:

K≡Kunit ⊗Ktime ∈RNT×NT ,
where any one entry of K can be written as the product of the unit and time covariance, as in
Equation (4).

We can similarly divide this (admittedly unwieldy) kernel matrix into a matrix for observed
unit-time pairs, Kobs ∈ R((n−1)T+T0)×((n−1)T+T0), a matrix for the unobserved counterfac-
tual post-treatment outcomes for the treated unit Kmis ∈ R(T−T0)×(T−T0), and a rectangular
matrix for the kernel between the outcomes for the observed unit-times and the post-treatment
outcomes for the treated unit Kobs,mis ∈R((n−1)T+T0)×(T−T0). With this setup, the joint distri-
bution of the missing post-treatment outcomes for the treated unit and the observed untreated
outcomes are multivariate Normal:(

Ymis

Yobs

)
∼ MVN

[(
0
0

)
,

(
Kmis Kmis,obs

Kobs,mis Kobs

)
+ σ2I

]
.

The resulting conditional mean and variance have the same form as in Equations (2) and (3).
As we discuss in Section 5 below, there are two important special cases of this model,

which correspond to setting either the time or unit covariances to be the identity. Setting the
time covariance matrix to the identity, Ktime = IT , corresponds to a model with no smooth-
ness in the underlying latent factors, u, allowing the function value to change arbitrarily
between time points. The resulting approach is a (Bayesian) linear factor model (e.g., Xu,
2017; Athey et al., 2021; Samartsidis et al., 2020). In Section 5 below, we further connect
this to “vertical regression," which finds a set of weights over units that optimize some imbal-
ance criterion (Doudchenko and Imbens, 2016). On the other hand, setting the unit covariance
matrix to the identity, Kunit = IN , corresponds to a model in which there is no correlation in
the underlying process for each unit, and each model component is an independent GP. The
model therefore reduces back to the single-task GP discussed in Section 4.1 above. Finally,
while we focus on the ICM model with separate time and unit covariances, there is a large
literature on more elaborate generalizations, such as the semiparametric latent factor model
and the linear model of coregionalization; see Álvarez (2017) for a review.

4.2.3. Computational considerations. An important practical constraint in applying
multi-task Gaussian processes is the prohibitive computational burden incurred when naively
taking samples. Specifically, the Cholesky decomposition of the covariance matrix defined by
Ktime⊗Kunit has computational complexity cubic with respect to the product of the number
of units and time points, O((TN)3). Fortunately, we can take advantage of the structure of
the covariance matrix to dramatically reduce this complexity to O(T 3 +NJ) using proper-
ties of Kronecker products and low-rank approximations to each constituent matrix. LetCtime
and Cunit denote the decomposition of the time and unit matrices, Ktime and Kunit, such that
K =CC>, and let C⊗ be the decomposition of the Kronecker product of Ktime and Kunit.
From the mixed product property of Kronecker products, we have

C⊗C
>
⊗ = (Ctime ⊗Cunit) (Ctime ⊗Cunit)

> ,
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which allows for the separate decomposition of each covariance. This is O
(
T 3
)

for the time
covariance,12 and O (NJ) for the unit covariance, which uses our low-rank representation
Kunit = ββ>, β ∈RN×J .13

4.3. Extensions. Building on the broad GP literature, we can immediately extend the
MTGP model above to better match our application. We focus on three main extensions here:
incorporating a mean model; allowing for a non-Gaussian likelihood; and modeling multiple
outcomes simultaneously.

4.3.1. Incorporating a mean model. Thus far, we have considered mean-zero Gaussian
Processes for the structural component of the control potential outcomes. A natural extension
is to instead allow for the GP to have a non-zero mean, mit:14

Yit(0) = fit + εit

f ∼ GP(m, k)

εit ∼N(0, σ2),

where m = (m11, . . . ,mNT ) is a length N × T prior mean vector. Extending the formula in
Equation (2), the posterior mean for a new control potential outcome is therefore:

µ= m + Kmis,obs(Kobs + σ2I)−1
(
Yobs −m

)
.

We return to this representation in Section 5.1 below.
Explicitly incorporating a mean model is useful in a panel data setting because we can

more directly connect the MTGP framework to common estimators, such as Comparative In-
terrupted Time Series and so-called fixed effects models (for a recent review, see Samartsidis
et al., 2019). One natural model is to set mit to have unit- and time-specific intercepts:

mit = µ+ uniti + timet

uniti ∼N(0, σ2unit)

time∼ GP(0, kglobal)

where µ is a global intercept, uniti is a unit-specific intercept for unit i, and timet is a time-
specific intercept for time t. The unit-specific intercepts capture the fact that one state may
have a higher baseline rate of homicides than another, even if they have similar trends. The
time-specific intercepts capture the trend in the homicide rate across the United States. This
allows us to estimate and account for underlying trends in the homicide rate over time. Here
we place independent Normal priors on the unit-specific intercepts, and a global Gaussian
Process prior on the time-specific intercepts. We could similarly allow for a parametric trend

12In cases where T is large, a number of methods can be used to improve computational efficiency further by
reducing the complexity of taking the decomposition of Ktime (see Solin and Särkkä, 2020; Wilson, Dann and
Nickisch, 2015; Flaxman et al., 2015).

13We can further reduce the computational overhead incurred for sampling from this distribution. Let Z ∈
RT×J ,Zi,j ∼N (0,1). Sampling by taking z̃ =Ctime⊗Cunitvec(Z) is naively O(TJ). We can reduce this to

O
(
T 2 +NJ

)
by using the “vectorization trick,” (Ctime ⊗Cunit)vec (Z) = vec

(
CunitZC

>
time

)
.

14The distinction between the mean function and the covariance matrix in the MTGP is somewhat artificial,
and is typically chosen for clarity and to facilitate the choice of prior; see Rasmussen (2004, Ch. 2.7) and Kana-
gawa et al. (2018). In this application, making the mean function explicit allows us to more directly connect the
proposed approach to the panel data literature.
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over time, such as a baseline linear model common in Interrupted Time Series approaches
(see Miratrix, 2020).

Finally, we can extend the mean model to incorporate (time invariant) auxiliary covariates,
Xi ∈Rp:15

mit = µ+ uniti + timet + η′Xi,

where η is a vector of regression coefficients, that we can place a prior on. As with the unit-
specific intercepts, we could instead include this as part of the GP kernel, for example by
incorporating it into the unit covariance.

4.3.2. Non-Gaussian Likelihoods and heteroskedasticity. Another natural GP extension
is to allow for non-Gaussian observation models, which is essential for well-calibrated un-
certainty quantification. Analogous to using alternative link functions with generalized linear
models (Gelman et al., 2013, Ch. 21.3), we can model the control potential outcomes as:

Yit(0)∼ g−1(fit),

where g−1(·) is an appropriate link function and fit is the latent GP factor. As above, we could
also incorporate a mean model, Yit(0) ∼ g−1(mit + fit). See Naish-Guzman and Holden
(2008); Hensman, Matthews and Ghahramani (2015) for discussions of related computational
issues.

We highlight two link functions here. First, the outcome in our application is the number
of murders, which is more naturally modeled via a Poisson (or, perhaps, Negative Binomial)
link. A Poisson model also captures the restriction that the variance in the murder rate in-
creases with the mean murder rate. We use this as our primary model below. Alternatively,
we could allow for a “robust” Gaussian Process by allowing for t-distributed rather than Nor-
mal errors; see Jylänki, Vanhatalo and Vehtari (2011). In our application, the estimates using
t-distributed errors are nearly identical to those using Normal errors.

Finally, an important practical feature of our application is that populations vary consid-
erably across states. Thus, we expect that the underlying variability in the murder rate will
be much larger in, say Vermont or Wyoming than in California or Texas. With a Gaussian
likelihood, we can parametrize this as:

Yit(0)∼N
(
fit,

σ2

Nit

)
whereNit is the population for state i at time t. We can similarly allow for a population offset
in a Poisson model.16 Allowing for heteroskedasticity by size is an important departure from
many Frequentist panel data methods used in this setting; see Samartsidis et al. (2019).

4.3.3. Multiple outcomes. We can extend the MTGP approach to allow for multiple cor-
related outcomes, following the large literature on multi-output GPs (Álvarez, 2017); see
also Samartsidis et al. (2020) for a non-GP setting. This is particularly important for our
application because we are interested in assessing the impact of APPS on both gun- and
non-gun-related homicides.

To do so, we can write each data point as a unit-time-outcome triple, (i, t, `), with control
potential outcome, Yit`(0). While many models are possible, we focus on a simple version

15With additional restrictions (e.g., “exogeneity”), we can extend this to include time-varying covariates as
well. See Imai and Kim (2019) for discussion.

16More broadly, we could incorporate much more complex noise models, such as an additional GP on the noise
term (e.g., Naish-Guzman and Holden, 2008; Hensman, Matthews and Ghahramani, 2015). This is a challenging
model to fit given our limited sample size.
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with a shared factor structure across outcomes, which we can write as a multivariate Normal
observation model with common covariance across units and time:

Yit(0)∼MVN(fit,Σ),

where fit = (fit1, . . . , fitL) and Yit(0) = (Yit1(0), . . . , YitL(0)) for outcomes ` = 1, . . . ,L.
Equivalently, we can write this as an MTGP where the resulting kernel decomposes into
separate unit, time, and outcome kernels:

k( (i, t, `), (i′, t′, `′) ) = kunit(i, i
′) × ktime(t, t

′) × koutcome(`, `
′).

Similarly, we can write this as a Kronecker structured overall kernel K = Kunit ⊗Ktime ⊗
Koutcome, as in Flaxman et al. (2015). Unlike the unit kernel kunit(·, ·), which we restrict to be
low-rank, the outcome kernel koutcome(·, ·) can be full rank because the number of outcomes
(2) is less than the number of units (50).

5. Guarantees and connections through a weighting representation. Our discussion
thus far has been entirely Bayesian. Gaussian Processes, however, are fundamentally linked
with (Frequentist) kernel ridge regression; a large literature exploits this connection to de-
scribe the Frequentist property of GPs; see Kanagawa et al. (2018) for a recent review. Here
we adapt those results to our panel data setting. We first represent the MTGP estimate as a
weighting estimator with separate unit and time weights, and give error bounds under fairly
general conditions on the latent (noiseless) outcomes. We then describe several special cases
to better illustrate this result.

5.1. Weighting representation. We now show that the MTGP estimate with separable
unit and time kernels has a corresponding representation as a weighting estimator with sepa-
rate unit and time weights. This setup differs from our fully Bayesian formulation above; to
make this connection with weighting, we instead consider a Frequentist setup that assumes a
known kernel. Specifically, conditional on hyperparameters, the MTGP posterior mean can be
written as the solution to a constrained optimization problem that minimizes the worst-case
mean-square error across the “noiseless” latent functions, f . This representation exploits the
connection between Gaussian Processes and kernel ridge regression (Kanagawa et al., 2018);
see Hazlett and Xu (2018) for additional discussion of kernel weighting methods for panel
data.

To set up the problem, we again assume that (control) potential outcomes are the sum of
structural and error components, Yit(0) = fit + εit, where εit is mean-zero noise. We assume
that f is “well behaved” in the sense of belonging to a Reproducing Kernel Hilbert Space
(RKHS); this setup is quite flexible and incorporates a wide range of function classes (see,
e.g., Wainwright, 2019). We focus on the ICM kernel, K = Ktime ⊗Kunit, where, as in other
Frequentist analyses, the kernel is assumed known.

We can then represent the MTGP as a weighting estimator. We consider two basic
forms, corresponding to the weight-space and function-space interpretations of Gaussian pro-
cesses (Williams and Rasmussen (2006), Ch. 2). We first show that the MTGP minimizes the
worst-case imbalance in the noiseless latent functions f . We then show the equivalent formu-
lation in terms of imbalance on the observed outcomes Y . We initially consider mean-zero
GPs, and incorporate a prior mean function below.

Let Yit(0) = fit + εit, where f is a fixed function. Let Hk be the RKHS for kernel k
with Hilbert-Schmidt norm, ‖f‖2Hk

= k(f, f). Then let f be contained in the unit ball of the
reproducing Hilbert space, ‖f‖Hk

≤ 1, where k( (i, t), (i′, t′) ) = kunit(i, i
′)× ktime(t, t

′), and
εit are iid mean-zero random variables with observed variance σ2 > 0. Further, model the
time covariance Ktime with a squared exponential kernel with length scale ρ, and model the
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unit covariance Kunit = ββ>. Finally, let γ(i) ∈RN and λ(t) ∈RT be the vectors of unit and
time weights for target unit i at time t, and let γ and λ, respectively, be the set of weights
across all targets. Then:

(a) The posterior (predictive) mean estimate for target observation (1, t∗) 6∈ C, for t∗ > T0 is:

µ̂1t∗ =
∑

(i,t)∈C

γ
(1)
i λ

(t∗)
t Yit.

The unit and time weights, γ and λ, have the following closed form:

γ(i) ⊗ λ(t) =
(
Ktime ⊗Kunit + σ2I

)−1
(ktime(t, ·)⊗ kunit(i, ·)) .(6)

(b) The unit and time weights also solve the following, equivalent optimization problems, in
terms of (1) the weight-space formulation:

min
γ,λ

sup
f∈Hk

∑
(i,t)∈C

fit − ∑
(i′,t′)∈C

γ
(i)
i′ λ

(t)
t′ fi′t′

2

+ σ2‖γ‖22‖λ‖22,(7)

and (2) the function-space formulation:

min
α,ξ

∑
(i,t)∈C

Yit − ∑
(i′,t′)∈C

α
(i)
i′ kunit(i, i

′)︸ ︷︷ ︸
γ
(i)

i′

· ξ(t)t′ ktime(t, t
′)︸ ︷︷ ︸

λ
(t)

t′

Yi′t′


2

+ σ2 (ξ⊗α)>K (ξ⊗α) ,

(8)

where K = Ktime ⊗Kunit and where α(i) ∈ RN and ξ(t) ∈ RT are the coefficient vectors
for target unit i at time t, with γ(i)i′ = α

(i)
i′ kunit(i, i

′) and λ(t)t′ = ξ
(t)
t′ ktime(t, t

′), and with
corresponding sets α and ξ.

(c) This estimate has the following out-of-training-sample estimation error for the structural
component of the missing potential outcome f1t∗ ,

|f1t∗ − µ̂1t∗ | ≤

(ktime(t
∗, ·)>λ(t∗) ⊗ kunit(1, ·)>γ(1)

)
︸ ︷︷ ︸

error for f1t∗

+ σ2
∥∥∥γ(1)∥∥∥2

2

∥∥∥λ(t∗)∥∥∥2
2︸ ︷︷ ︸

irreducible noise


1/2

.

(9)

Proposition 5.1 begins with the algebraic result that the posterior mean estimate of the
MTGP can be written as a weighting estimator, and that these overall weights separate into
unit- and time-weights. This separation does not hold in general, but, in our setting with an
ICM kernel, follows immediately from the restriction that the unit and time covariances are
separable (Bonilla, Chai and Williams, 2008). As a result, we can view our proposed MTGP
approach as a doubly-weighted panel data estimator, similar to recent proposals from e.g.
Ben-Michael, Feller and Rothstein (2021) and Arkhangelsky et al. (2019) that also impute the
counterfactual as a double weighted average.17 Importantly, the MTGP implicitly estimates
unit and time weights simultaneously, while previous proposals construct them separately.

17The weights we consider here can be negative, unlike some Frequentist weighting methods. Restricting the
weights to obey a simplex constraint can be achieved by using the graph Laplacian and considering the Gaussian
random field, an analogue of Gaussian processes (Zhu, 2005).
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Proposition 5.1 then leverages Frequentist results on GPs to provide additional intuition
for these weights (see Kanagawa et al., 2018). First, Equation (7) shows that the MTGP
weights minimize the error on the noiseless outcome functions, subject to regularization on
the weights. Importantly, this formulation does not rely on parametric assumptions, only that
the noiseless outcomes, fit, are relatively “well behaved” in the sense of belonging to an
RKHS. Equation (8) shows that the weights can be seen as the solution to an equivalent
optimization problem in terms of minimizing imbalance in the observed outcomes directly,
but subject to regularization on the “coefficients” α and ξ, rather than on the weights them-
selves. Finally, building off this, Equation (9) shows that the error bound depends directly on
the distance between the control observations, C, and the unobserved point, (1, t∗). Specifi-
cally, with a squared exponential kernel, ktime(t

∗, ·), the bound is increasing for t∗ > T0. See
Fiedler, Scherer and Trimpe (2021) for recent generalizations of such bounds under model
mis-specification.

5.1.1. Using a prior mean model. The results above are for the MTGP where the prior
mean model mit is zero. We can extend these results to include the prior mean model mit

from Section 4.3.1, recognizing that the distinction between modeling the mean and mod-
eling the covariance can often be arbitrary (Williams and Rasmussen, 2006). The resulting
posterior (predictive) mean estimate is

µ̂aug
1t∗ =

∑
(i,t)∈C

γ
(1)
i λ

(t∗)
t Yit +

(
m1t∗ −

∑
(i,t)∈C

γ
(1)
i λ

(t∗)
t mit

)
︸ ︷︷ ︸

estimated bias

(10)

= m1t∗ +
∑

(i,t)∈C

γ
(1)
i λ

(t∗)
t (Yit −mit)︸ ︷︷ ︸

re-weighted residuals

.(11)

Equation (10) has a form similar to bias correction for matching (Rubin, 1973), which cor-
rects the doubly-weighted average by an estimate of the difference in the outcome modelmit.
Equation (11) instead has the form of augmented inverse propensity score weighting (Robins,
Rotnitzky and Zhao, 1994), which re-weights the outcome model residuals. This echos sev-
eral recent proposals that combine outcome modeling and weighting in the panel data setting
(see, e.g. Ben-Michael, Feller and Rothstein, 2021; Ferman and Pinto, 2021; Arkhangelsky
and Imbens, 2021), where here the “outcome model” is our prior for the control potential out-
come and can include, e.g. fixed effects and time invariant auxiliary covariates as in Section
4.3.1.

5.2. Special cases. To help build intuition for the weighting representation, we consider
two special cases: (1) the unit kernel Kunit is the identity; and (2) the time kernel Ktime is
the identity matrix. For simplicity, we take the prior mean model to be zero here, but could
extend accordingly.

5.2.1. Identity unit covariance. First, let the unit covariance Kunit be the identity matrix.
We can view this as the setting where there is no correlation between the underlying processes
for each unit, so each model component is an independent GP. In this setting, there is nothing
to be learned from the comparison units, and the MTGP estimate only compares to the pre-
treatment outcomes of the treated unit. In particular, following the setup in Proposition 5.1, if
we set the unit covariance matrix Kunit to be the identity, then the weights for post-treatment
time period t∗ > T0 are

λ(t
∗) = (Ktime + σIT0

)−1ktime(t
∗, ·),
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with posterior mean estimate:

µ̂horiz
1t∗ =

T0∑
t=1

λ
(t∗)
t Y1t.

This is a horizontal regression formulation (see Athey et al., 2021). As these weights
ignore the outcomes for the comparison units, we can view this case as fitting N separate
single-task GP models, one for each unit. Thus, when the unit covariance is the identity
matrix, this problem ignores the outcomes for comparison units and reduces to the single-
task GP for the treated unit discussed in Section 4.1.

5.2.2. Identity time kernel. Next, let the time kernel Ktime be the identity matrix. This
corresponds to the setting where there is no smoothness at all in the underlying latent func-
tions, so the function value can change wildly between time periods. In this case, it is im-
possible to use outcomes from different time periods to inform our estimates, and so only
the unit weights remain. Again following the setup in Proposition 5.1, if the time covariance
matrix Ktime is the identity, then the weights for the treated unit are:

γ(1) = (Kunit + σIN )−1kunit(1, ·),

with posterior mean estimate:

µ̂vert
1t∗ =

N∑
i=2

γ
(1)
i Yit∗ .

This is a vertical regression setup (see Doudchenko and Imbens, 2016), and corresponds
to the implicit weights of a linear factor model or interactive fixed effects model (Gobillon
and Magnac, 2016; Xu, 2017; Athey et al., 2021). The estimator only uses the learned unit
covariance to implicitly construct weights over comparison units.

6. Model diagnostics and estimated impact for APPS. We now use the MTGP frame-
work to estimate the impact of APPS on homicides. We begin by using posterior predictive
checks to guide the choice of model. We then estimate the impacts both on overall homicides
and separately on gun- and non-gun-related homicides.

6.1. Posterior Predictive Checks and other model diagnostics. Diagnostics and other
forms of model criticism are important components of the Bayesian workflow, helping re-
searchers diagnose and compare the fit of the proposed models (Gelman et al., 2013). We
begin with posterior predictive checks (PPCs). First, we choose a test statistic, T (data, θ),
which reflects a relevant aspect of model fit and is a function of both data and model param-
eters. We then compare the posterior predictive distribution of this statistic, T (datarep, θ), to
the value of the test statistic for the observed data, T (dataobs, θ), over draws of θ.

PPCs play an especially important role in panel data settings like ours, where it is of-
ten difficult to decide between modeling approaches given limited data.18 We focus on two
common measures of model fit: the overall pre-treatment fit and the pre-treatment imbalance
at each time point. First, we evaluate the pre-treatment fit for California by comparing the
posterior predictive distribution of the root mean squared error (RMSE),

T (Y∗, θ) =
1

T0

√√√√ T0∑
t=1

(Y ∗1t − f1t)2,

18See Liu, Wang and Xu (2020) for a review of Frequentist approaches to model checks for panel data.
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Fig 2: Posterior Predictive Checks (PPCs) for the pre-treatment RMSE for Califor-
nia. Numbers indicate posterior predictive p-value associated with each rank, i.e.,
P (T (datarep, θ)> T (dataobs, θ) | data).

to the observed RMSE, T (Yobs, θ) = 1
T0

√∑T0

t=1(Y1t − f1t)2, where Y ∗1t is a posterior predic-
tive draw of the overall murder rate for California at (pre-treatment) time t. Figure 2 shows
the distributions for both Gaussian and Poisson observation models with unit kernel ranks
J = 0, . . . ,7. For each combination, we also compute the posterior predictive p-value, the
fraction of posterior predictive test statistics that are larger than the observed test statistic.
For both Gaussian and Poisson models, the observed RMSE is larger than we would expect
for ranks 0 through 3, with minimal discrepancies by rank 5 for both models. The Poisson
model has slightly lower RMSE, suggesting that Poisson with rank 5 is a reasonable initial
choice here.

Figure 3 shows the imbalance at each pre-treatment time point for the Poisson MTGP
model with rank 5. The upper pane shows the observed data (in red) as well as poste-
rior predictive draws from the model on the scale of the original outcome (homicides per
100,000). The lower pane instead shows the “gap” between the outcome and the posterior
mean, T (data, θ) = Y1t − µ̂1t.19 Both plots show little difference between the observed data
and the posterior predictive distribution, suggesting reasonable model fit along the dimen-
sions we investigate here.

Finally, the Appendix includes several additional model diagnostics. Appendix Figure C.3
shows the coverage of the 50% and 95% posterior predictive intervals for pre-treatment out-
comes across all 50 states, computed as 1

NT

∑
i,t I(Lqit < Yit < U qit) where Lqit and U qit are

the lower and upper endpoints of the credible region with probability q for unit i at time
t. The Poisson intervals have close to nominal coverage for ranks 4 and 5, but under-cover
for lower ranks and over-cover for higher ranks. By contrast, the corresponding Gaussian
intervals over-cover across all ranks, with especially poor coverage for the 50% intervals for
higher ranks, leading further credence to the Poisson model over the Gaussian model. This
difference is likely due to the fact that the sampling variance increases with the mean in the
Poisson model but is constant in the mean and across units for the Gaussian model.

19This is the Bayesian analog to estimates of placebo impacts that are standard in Frequentist panel data
studies, although we compare the observed estimates to the posterior predictive distribution rather than to zero.

B B 
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Fig 3: Posterior predictive checks for pre-treatment imbalance with the Poisson model with
Rank 5. Observed data is in red. The upper panel shows the posterior predictive distribution
and original data on the scale of the raw imbalance. The lower panel shows the corresponding
“gap” estimates for each year, comparing the distribution of Y1t − µ̂1t to the distribution of
Y ?
1t − µ̂1t for times t = 1, . . . , T0. These placebo estimates are overlapping, giving further

support to good model fit.

In Appendix Figures C.4 and C.5 we show the inferred Gaussian Process for the time-
specific intercept and the estimated factors from the rank 5 Poisson model next to the factor
loadings for California. In Appendix Figures C.6 and C.7, we show the inferred time and unit
weights for California in the first post-treatment period using a rank 5 Gaussian multitask
Gaussian process without the global time series trend GP. Each of the time and unit weights
are obtained by marginalizing over the non-relevant component (unit, or time, respectively)
for each sample from the MCMC sampler.

6.2. Impact of APPS on homicides. We now turn to estimating the impact of APPS on
homicides in California. We begin with the overall impact and then disaggregate by gun and
non-gun-related homicides.

6.2.1. Overall impact of APPS. Based on our model diagnostics above, we focus on the
MTGP estimated with rank J = 5, Poisson observation model, and unit- and time-specific
intercepts. Figure 4 shows the estimated impact of APPS on homicide rates in California
over time.20 The upper pane shows the posterior predictive distribution from the MTGP, with

20Appendix Figure C.11 shows the corresponding estimates after adjusting for auxiliary covariates and several
measures of crime, all for 2005. The auxiliary covariates are: the prison incarceration rate, the age distribution
(percent 0-17, 18-24, 25-44, 45-64, 65 and older), the percent Black, the unemployment rate, the poverty rate,
and log median income. The crime measures, normalized by population, are: overall violent crime, rape, robbery,
assault, property crime, burglary, larceny, and motor/vehicular crime. As the results are largely unchanged, we
focus on the unadjusted estimate here.
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Fig 4: Impact of APPS on homicides per 100,000 in California by year. The observed data
is show in red. The black line is the posterior mean estimate; the dark and light gray regions
are, respectively, the 50% and 95% posterior predictive intervals.

the posterior mean as well as 50% and 95% posterior predictive intervals. The red line shows
the observed murder rate for California. The estimates pre-treatment repeat the pre-treatment
imbalance checks in Figure 3; the counterfactual estimates post-treatment are consistently
higher than the observed murder rate. The lower pane shows this difference explicitly, where
zero is no impact. These estimates suggest that APPS reduced murders in the state, with both
impacts and uncertainty growing over time.

Figure 5 shows the posterior estimates for the average annual impact. The posterior mean
estimate is roughly 1.5 murders avoided per 100,000 people per year, with a 95% credible
interval of (0.32,2.9) murders per 100,000 people; the posterior probability that the impact is
negative is 99.6%. To contextualize these estimates, California’s annual murder rate in 2004
and 2005 was 6.8 per 100,000. Focusing on the smaller end of the 95% credible interval sug-
gests a decline of at least 5 percent from baseline. We can also compare the annual number
of murders prevented by this system to expenditures for APPS investigative teams in a single
year, 2018, when California’s population was 39.6 million. A decrease in the murder rate of
0.32 corresponds to nearly 127 murders avoided per year, while the total funding for APPS
investigation teams in fiscal year 2017-2018 was $11.3 million (Petek, 2019). Dividing this
cost of $11.3 million by the estimated 127 avoided murders gives a (conservative) estimate
of roughly $89,000 per murder prevented. This is dramatically lower than the estimated ben-
efit from the avoided crime, which is typically on the order of $10 million (Heaton, 2010;
Domínguez and Raphael, 2015). We include the posterior distribution of expenditures per
average number of murders avoided in Figure 5.

One way to assess whether these estimates are potentially spurious is to conduct an “in-
time” placebo check, where we set the APPS adoption year to be earlier than 2006 (Abadie,
Diamond and Hainmueller, 2010). We can then compare the difference between the observed
homicide rate and its posterior in the years between the placebo APPS year and 2006. Be-
cause we do not expect an effect in these held-out years, the difference should be near zero.
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Fig 5: (left) Posterior distribution of the average impact of APPS on homicides per 100,000
in California for 2007 to 2016; (right) Posterior distribution of the cost per murder avoided,
with a state population of 39.6 million and annual budget expenditure of $11.3 million. The
solid line denotes the posterior mean; the dashed lines denote 95% credible intervals.

Figure 6 shows these placebo estimates for placebo APPS over four years (2002-2005). We
see that the posterior distribution is indeed near zero for all four placebo estimates, indicating
that our preferred MTGP model finds no treatment effects when we expect there to be none.
Note, however, that the relatively small number of pre-intervention years leads to several
limitations to this placebo check. First, with the earlier placebo years there is a great deal of
uncertainty due to the limited number of pre-intervention years. Second, we only evaluate
placebo effects up to four years after the placebo APPS year. Settings with more time periods
would have less uncertainty in the placebo check and would allow us to evaluate placebo
effects for more years, which would enable us to assess the gradual increase in the magnitude
of the treatment effect we discuss below.

Our preferred estimates for the impact of APPS are similar to the preliminary SCM esti-
mates in Section 2.3. Both estimate that the counterfactual California would have seen the
homicide rate drop more slowly and plateau at a higher level, before seeing a larger rise be-
tween 2014-2016. Both procedures estimate similar average impacts (a posterior mean of -1.5
vs. -1.41 for SCM), but the MTGP approach allows us to coherently quantify the uncertainty
in the impacts, incorporating the fact that we are measuring impacts on homicide counts.
Here we see that there is substantial uncertainty in the impact, but that there is a very high
probability the impact is negative. In Appendix Figure C.12, we compare these estimates to
those from various alternative estimators: (i) SCM without an intercept shift; (ii) Ridge Aug-
mented SCM (Ben-Michael, Feller and Rothstein, 2021); (iii) fitting a low-rank factor model
via gsynth (Xu, 2017); and (iv) low-rank matrix completion (Athey et al., 2021). These
estimators broadly agree with our MTGP approach, with point estimates mostly within the
50% posterior predictive intervals and all well within the 95% posterior predictive intervals.
Finally, we consider the relative impact of the other 49 comparison states on our estimates
via a “leave one out” approach that removes each comparison state from the panel, finding
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Fig 6: In-time placebo estimates for the rank 5 Poisson MTGP model, setting the placebo
APPS year to be 2002-2005.

the posterior without conditioning on that state’s homicide rate series. We show the results
in Appendix Figure C.13. Overall we find that removing each state has little effect on the
posterior distribution; the largest differences come from removing Illinois, New Jersey, and
Texas, but these estimates still broadly comport with our main estimates.

Our findings are also suggestive of larger effects in later years relative to earlier years.
While these results may be due to an increase in murder rates in the comparison states, there
are aspects of the APPS program that could lead to larger effects over time. First, there might
be a lag in the effect of removing a firearm on violent incidents. Since the program reduces
the stock of firearms over time, the effects may similarly increase along with the stock of
firearms removed. Moreover, since people usually enter the APPS database upon purchasing
a new gun, the proportion of guns and gun owners covered by the system is likely increasing
over time as well.

California has also implemented further restrictions on firearms since 2006, including:
banning the carrying of an unloaded handgun in public (2012); requiring new semi-automatic
hand guns to have microstamping technology (2013); requiring tougher safety tests for first
time buyers (2014); requiring background checks for ammunition and limiing ammunition
sales to individuals with a registered firearm in the APPS system (passed in 2016 but imple-
mented in June 2019); and most recently imposing a 21 year age limit for firearm purchases
and a lifetime ban for prior convictions for a violent misdemeanor (Christopher, 2019). While
some of these reforms occur after the end of our study period, it is clear the state has increased
the regulation of firearms above and beyond what has occurred in other states. To the extent
that some of these other policies have reduced murder rates, our estimates will reflect the
joint effect of the APPS intervention along with these other policies. This also potentially
contributes to the effect estimates increasing over time. That being said, many of these policy
changes were only possible due to the underlying information and infrastructure that support
the APPS enforcement effort.

6.2.2. Separate impacts on gun- and non-gun-related homicides. As we discuss in Sec-
tion 2.3, one falsification check involves disaggregating homicides by whether a firearm was
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Fig 7: Impact of APPS on gun- and non-gun-related homicides per 100,000 in California by
year. The observed data is show in red. The black line is the posterior mean estimate; the dark
and light gray regions are, respectively, the 50% and 95% posterior predictive intervals.

used. Specifically, we do not expect that the APPS system would have reduced non-gun homi-
cides. In fact, to the extent that there is substitution across weapons we might even expect
that APPS may have increased homicide rates where firearms are not used.

To explore this, we use the Kaplan (2019) concatenation of the UCR Supplementary Homi-
cide Files, restricted to our study period (1997 through 2016) and use the incident level data
to calculate totals by state and year of the number of murders involving a firearm and the
number of murders where a gun is not used.21 We then use these totals in conjunction with
state level population counts to tabulate rates per 100,000.22 In general, gun murder rates are
two to three times that of non-gun murder rates.

Figure 7 shows estimates for gun- and non-gun-related homicides, estimated via a joint
multitask GP. Fitting both outcomes jointly is advantageous since these two outcomes are
positively correlated due to shared latent factors. (See Appendix Figure C.14, for the posterior
predictive correlation between gun and non-gun related homicides for California). While
estimates are derived from a different data source than used above, the impacts for gun-
related homicides are very similar to the estimated overall impacts in Figure 5. In contrast,
the estimated impact of APPS on non-gun-related homicides is essentially zero.

7. Discussion. This paper uses a multitask Gaussian Processes framework in a panel
data setting to estimate the causal effect of an innovative gun control program in Califor-
nia. MTGPs find a natural middle ground between pure “horizontal” time series forecasting
models, based on extrapolating the treated unit’s outcomes series alone, and pure “vertical”

21We identify gun homicides as any incidents where the weapon used by any of the offenders in the incident
are flagged as “firearm, type not stated,” “handgun,” “other gun,” “rifle,” or “shotgun.” Note, for a small percent of
cases the weapon used is unknown (roughly 5 percent). We allot these observations to non-gun homicides, which
should bias us towards finding an effect of APPS on non-gun homicides.

22For these models, we restrict the donor pool to states where we observe homicide reports for all years from
1997 through 2016; inclusive of California, 43 states report data for all years. Murder victims in the SHR data
by year and state often do not add to the officially reported titles in summary tables provided in the official UCR
panel data. For some state-years, the ratio of the murder rate tabulated from SHR data to that tabulated from the
UCR summary data is less than one while for others the value is above one. The median of this ratio is 1.02 and
the mean is 1.005.
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regression models, based on a weighted average of control units’ outcomes. Further, MT-
GPs automatically quantify the relevant sources of uncertainty, providing a unified Bayesian
framework in a setting where uncertainty quantification is notoriously challenging. They also
allow for extensive model diagnostics via posterior predictive checks. Building on a robust
GP literature, there are also many immediate extensions to the standard MTGP setup, in-
cluding allowing for multiple outcomes and incorporating a mean model. Using this flexible
approach, we find large effects of APPS on homicides in California, with program benefits
far exceeding costs under typical assumptions.

There has been a flurry of policy activity since 2006 in the criminal justice domain, which
could change crime rate patterns and the interpretation of our findings. First, since 2011
the state has cut back on using state prison for parole violations and for less serious felony
offenses. Second, various state ballot initiatives have scaled back the severity of sentencing
(Lofstrom, Bird and Martin, 2016). These reforms have reduced the overall incarcerated pop-
ulation (prisons and jails combined) of the state by roughly one-quarter, and may have led to
higher crime rates through reverse incapacitation effects. However, several studies of these
reforms fail to find any evidence of an impact of these changes on violent offenses (Lofstrom
and Raphael, 2016; Bartos and Kubrin, 2018), and so we do not believe that our results are
biased by these policy changes.

Methodologically, there are several promising directions for future research. First, there
are many existing results for Gaussian Processes that would apply immediately in other set-
tings but are not as relevant in our application. For instance, standard panel data models face
a range of practical challenges when the data structure deviates from a so-called “balanced
panel,” either due to irregularly sampled observations over time, missing data, or comparison
states enacting policies similar enough to the policy of interest to warrant exclusion from
the sample (see Imai and Kim, 2019). The MTGP framework naturally accommodates both
irregularly sampled time points and missing values, and, unlike most Frequentist approaches,
will automatically propagate the corresponding uncertainty.

Additionally, while California and the APPS program is uniquely comprehensive, several
states have enacted forms of firearm surrender or removal policies for, e.g., those subject to
a domestic violence restraining order. Therefore, an important extension of this approach is
to allow for multiple treated units that adopt treatment over time, also known as staggered
adoption (e.g., Ben-Michael, Feller and Rothstein, 2022). First, we can extend to the case
where multiple treated units adopt treatment at the same time (i.e., simultaneous adoption)
by changing the target to the average of the treated units. However, the extension to the
case when units adopt over time (i.e., staggered adoption) is slightly more complicated. For
instance, we could adapt the model to have a separate kernel for each treatment time, possibly
including a hierarchical structure on the kernels (Flaxman et al., 2015).

Next, we can develop a framework for assessing sensitivity to departures from key mod-
eling assumptions for the MTGP approach, especially the restriction that the time and unit
kernels are separable. While there are many possible generalizations (see, for example Ál-
varez, 2017), these are inherently under-specified in settings like ours with relatively few
units and time periods. Thus, a sensitivity analysis approach in the spirit of Franks, D’Amour
and Feller (2019) is a natural avenue for appropriately quantifying uncertainty in this case.

Finally, our proposed MTGP approach implicitly puts the same weight on the error for
California as on other states, even though California is the target unit. We can explore alter-
native approaches for parameterizing similarity across units and time, such as by imposing
an “arrowhead” structure on the overall covariance, or by learning a richer dependence struc-
ture across units; see, for example, Li and Kontar (2020). Moreover, our approach focuses on
modeling the control potential outcomes for California, in the spirit of finite sample causal
inference — but allowing for potentially arbitrary treatment effects. We could also directly
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model the treatment effect, including by incorporating a prior, as part of the MTGP frame-
work.

Beyond the methodological contributions of the paper, the findings presented here sug-
gest that California’s approach to targeted firearm retrieval offers a potential policy option
for other states to control gun violence. To be sure, the system is complex and undergirded
by an elaborate information infrastructure and dedicated cadre of state workers including the
database of gun owners and their firearms, the criminal justice databases that record trigger-
ing incidents, and the personnel needed to conduct the daily investigations and to retrieve
firearms from prohibited persons. While few states currently have such an infrastructure in
place, California’s system draws upon databases of transactions involving licensed dealers
that record gun sales throughout the country. Hence, other states could follow suit. Our re-
sults suggest that additional enforcement expenditures generate large benefits in terms of
reduced murder rates.

We should note subsequent extensions of California’s background checks system and the
likely interaction with the APPS program. In 2019, California began to require point-of-sales
background checks for the purchase of ammunition. Any current gun owners who are flagged
by APPS as prohibited and still in possession of a firearm would be prevented from legally
purchasing ammunition, as would any non-gun owner who is legally prohibited from owning
a gun. As we discussed above, there are many gun owners in the state who are deemed pro-
hibited but from whom state authorities are unable to retrieve all firearms. These additional
restrictions likely further restrain the access of these individuals to lethal means. Future re-
search should investigate the impact of this policy change.

A further development that may erode the effectiveness of APPS concerns the possibil-
ity that prohibited persons may be subverting the law by purchasing “ghost guns,” illegal
firearms often assembled from kits that one can legally purchase and that are not serialized
and recorded by state authorities. California’s Attorney General recently filed a motion for
an injunction against companies that manufacture ghost-gun kits, in light of recent concerns
regarding the use of these illegal firearms in crimes throughout the state (California Depart-
ment of Justice, 2022). A potential adaptation of APPS to address this particular development
might be to extend restrictions on ammunition sales to legal gun owners, with the further re-
striction that ammunition caliber at sale match the caliber of the firearms legally owned by
the buyer.
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