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Abstract

The synthetic control method (SCM) is a popular approach for estimating the impact of a
treatment on a single unit in panel data settings. The “synthetic control” is a weighted average of
control units that balances the treated unit’s pre-treatment outcomes and other covariates as
closely as possible. A critical feature of the original proposal is to use SCM only when the fit on
pre-treatment outcomes is excellent. We propose Augmented SCM as an extension of SCM to
settings where such pre-treatment fit is infeasible. Analogous to bias correction for inexact
matching, Augmented SCM uses an outcome model to estimate the bias due to imperfect pre-
treatment fit and then de-biases the original SCM estimate. Our main proposal, which uses ridge
regression as the outcome model, directly controls pre-treatment fit while minimizing
extrapolation from the convex hull. This estimator can also be expressed as a solution to a
modified synthetic controls problem that allows negative weights on some donor units. We bound
the estimation error of this approach under di↵erent data generating processes, including a linear
factor model, and show how regularization helps to avoid over-fitting to noise. We demonstrate
gains from Augmented SCM with extensive simulation studies and apply this framework to
estimate the impact of the 2012 Kansas tax cuts on economic growth. We implement the proposed
method in the new augsynth R package.
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1 Introduction

The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment

on a single unit in panel data settings with a modest number of control units and with many

pre-treatment periods (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015). The idea is to

construct a weighted average of control units, known as a synthetic control, that matches the treated

unit’s pre-treatment outcomes. The estimated impact is then the di↵erence in post-treatment

outcomes between the treated unit and the synthetic control. SCM has been widely applied — the

main SCM papers have over 4,000 citations — and has been called “arguably the most important

innovation in the policy evaluation literature in the last 15 years” (Athey and Imbens, 2017).

A critical feature of the original proposal, not always followed in practice, is to use SCM only

when the synthetic control’s pre-treatment outcomes closely match the pre-treatment outcomes for

the treated unit (Abadie et al., 2015). When it is not possible to construct a synthetic control

that fits pre-treatment outcomes well, the original papers advise against using SCM. At that point,

researchers often fall back to linear regression. This allows better (often perfect) pre-treatment fit,

but does so by applying negative weights to some control units, extrapolating outside the support

of the data.

We propose the augmented synthetic control method (ASCM) as a middle ground in settings

where excellent pre-treatment fit using SCM alone is not feasible. Analogous to bias correction for

inexact matching (Abadie and Imbens, 2011), ASCM begins with the original SCM estimate, uses

an outcome model to estimate the bias due to imperfect pre-treatment fit, and then uses this to

de-bias the SCM estimate. If pre-treatment fit is good, the estimated bias will be small, and the

SCM and ASCM estimates will be similar. Otherwise, the estimates will diverge, and ASCM will

rely more heavily on extrapolation.

Our primary proposal is to augment SCM with a ridge regression model, which we call Ridge

ASCM. We show that, like SCM, the Ridge ASCM estimator can be written as a weighted average

of the control unit outcomes. We also show that Ridge ASCM weights can be written as the solution

to a modified synthetic controls problem, targeting the same imbalance metric as traditional SCM.

However, where SCM weights are always non-negative, Ridge ASCM admits negative weights, using

extrapolation to improve pre-treatment fit. The regularization parameter in Ridge ASCM directly

parameterizes the level of extrapolation by penalizing the distance from SCM weights. By contrast,
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(ridge) regression alone, which can also be written as a modified synthetic controls problem with

possibly negative weights, allows for arbitrary extrapolation and possibly unchecked extrapolation

bias.

We relate Ridge ASCM’s improved pre-treatment fit to a finite sample bound on estimation

error under several data generating processes, including an autoregressive model and the linear

factor model often invoked in this setting (Abadie et al., 2010). Under an autoregressive model,

improving pre-treatment fit directly reduces bias, and the Ridge ASCM penalty term negotiates

a bias-variance trade-o↵. Under a latent factor model, improving pre-treatment fit again reduces

bias, though there is now a risk of over-fitting, and the penalty term again directly parameterizes

this trade-o↵. Thus, choosing the hyperparameter will be important for practice; we propose a

cross-validation procedure in Section 5.3.

Finally, we describe how the Augmented SCM approach can be extended to incorporate auxiliary

covariates other than pre-treatment outcomes. We first propose to include the auxiliary covariates

in parallel to the lagged outcomes in both the SCM and outcome models. We also propose an

alternative when there are relatively few covariates, extending a suggestion from Doudchenko and

Imbens (2017): first residualize pre- and post-treatment outcomes against the auxiliary covariates,

then fit Ridge ASCM on the residualized outcome series. We show that this controls the estimation

error under a linear factor model with auxiliary covariates.

An important question in practice is when to prefer Augmented SCM to SCM alone. We

recommend making this decision based on the estimated bias, the computation of which is the first

step of implementing the ASCM estimator. If the estimated bias — the di↵erence between the

outcome model’s fitted values for the treated unit and the synthetic control — is large, then it is

worth trading o↵ bias reduction from ASCM for some extrapolation, which the researcher can also

assess directly. Since the estimated bias is in the same units as the estimand of interest, researchers

can assess what constitutes “large” bias based on context.

We demonstrate the properties of Augmented SCM both via calibrated simulation studies and

by using it to examine the e↵ect of an aggressive tax cut in Kansas in 2012 on economic output,

finding a substantial negative e↵ect. Overall, we see large gains from ASCM relative to alter-

native estimators, especially under model mis-specification, in terms of both bias and root mean

squared error. We implement the proposed methodology in the augsynth package for R, available
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at https://github.com/ebenmichael/augsynth.

The paper proceeds as follows. Section 1.1 briefly reviews related work. Section 2 introduces

notation, the underlying models and assumptions, and the SCM estimator. Section 3 gives an

overview of Augmented SCM. Section 4 gives key algorithmic results for Ridge ASCM. Section 5

bounds the Ridge ASCM estimation error under a linear model and under a linear factor model, the

standard setting for SCM, and also addresses inference. Section 6 extends the ASCM framework

to incorporate auxiliary covariates. Section 7 reports on extensive simulation studies as well as the

application to the Kansas tax cuts. Finally, Section 8 discusses some possible directions for further

research. The appendix includes all of the proofs, as well as additional derivations and technical

discussion.

1.1 Related work

SCM was introduced by Abadie and Gardeazabal (2003) and Abadie et al. (2010, 2015) and is the

subject of an extensive methodological literature; see Abadie (2019) and Samartsidis et al. (2019)

for recent reviews. We briefly highlight some relevant aspects of this literature.

A group of papers adapts the original SCM proposal to allow for more robust estimation while

retaining SCM’s simplex constraint on the weights. Robbins et al. (2017); Doudchenko and Imbens

(2017); Abadie and L’Hour (2018) incorporate a penalty on the weights into the SCM optimization

problem, building on a suggestion in Abadie et al. (2015). Gobillon and Magnac (2016) explore

dimension reduction strategies and other data transformations that can improve the performance

of the subsequent estimator.

A second set of papers relaxes constraints imposed in the original SCM problem, in particular

the restriction that control unit weights be non-negative. Doudchenko and Imbens (2017) argue

that there are many settings in which negative weights would be desirable. Amjad et al. (2018)

propose an interesting variant that combines negative weights with a pre-processing step. Powell

(2018) instead allows for extrapolation via a Frisch-Waugh-Lovell-style projection, which similarly

generalizes the typical SCM setting. Doudchenko and Imbens (2017) and Ferman and Pinto (2018)

both propose to incorporate an intercept into the SCM problem, which we discuss in Section 3.2.

There have also been several other proposals to reduce bias in SCM, developed independently

and contemporaneously with ours. Abadie and L’Hour (2018) also propose bias correcting SCM
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using regression. Kellogg et al. (2020) propose using a weighted average of SCM and matching,

trading o↵ interpolation and extrapolation bias. Arkhangelsky et al. (2019) propose the Synthetic

Di↵erence-in-Di↵erences estimator, which can be seen as a special case of our proposal with a

constrained outcome regression.

Finally, there have also been recent proposals to use outcome modeling rather than SCM-style

weighting in this setting. These include the matrix completion method in Athey et al. (2017), the

generalized synthetic control method in Xu (2017), and the combined approaches in Hsiao et al.

(2018). We explore the performance of select methods, both in isolation and within our ASCM

framework, in Section 7.1.

2 Overview of the Synthetic Control Method

2.1 Notation and setup

We consider the canonical SCM panel data setting with i = 1, . . . , N units observed for t = 1, . . . , T

time periods; for the theoretical discussion below, we will consider both N and T to be fixed. Let

Wi be an indicator that unit i is treated at time T0 < T where units with Wi = 0 never receive the

treatment. We restrict our attention to the case where a single unit receives treatment, and follow

the convention that this is the first one, W1 = 1; see Ben-Michael et al. (2019) for an extension to

multiple treated units. The remaining N0 = N � 1 units are possible controls, often referred to as

donor units in the SCM context. To simplify notation, we limit to one post-treatment observation,

T = T0 + 1, though our results are easily extended to larger T .

We adopt the potential outcomes framework (Neyman, 1923) and invoke SUTVA, which assumes

a well-defined treatment and excludes interference between units; the potential outcomes for unit

i in period t under control and treatment are Yit(0) and Yit(1), respectively. We define the treated

potential outcome as Yit(1) = Yit(0) + ⌧it, where the treatment e↵ects ⌧it are fixed parameters.

Since the first unit is treated, the key estimand of interest is ⌧ = ⌧1T = Y1T (1) � Y1T (0). Finally,

the observed outcomes are:

Yit =

8
><

>:

Yit(0) if Wi = 0 or t  T0

Yit(1) if Wi = 1 and t > T0.

(1)
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To emphasize that pre-treatment outcomes serve as covariates in SCM, we use Xit, for t  T0,

to represent pre-treatment outcomes; we use the terms pre-treatment fit and covariate balance

interchangeably. With some abuse of notation, we use X0· to represent the N0-by-T0 matrix of

control unit pre-treatment outcomes and Y0T for theN0-vector of control unit outcomes in period T .

With only one treated unit, Y1T is a scalar, and X1· is a T0-row vector of treated unit pre-treatment

outcomes. The data structure is then:

0

BBBBBB@

Y11 Y12 . . . Y1T0 Y1T

Y21 Y22 . . . Y2T0 Y2T

...
...

YN1 YN2 . . . YNT0 YNT

1

CCCCCCA
⌘

0

BBBBBB@

X11 X12 . . . X1T0 Y1T

X21 X22 . . . X2T0 Y2T

...
...

| {z }
pre-treatment outcomes

XN1 XN2 . . . XNT0 YNT

1

CCCCCCA
⌘

0

@ X1· Y1T

X0· Y0T

1

A (2)

2.2 Assumptions on the data generating process

We now give assumptions on the underlying data generating processes (DGPs) for the control

potential outcomes. We separate control potential outcomes (before and after T0) into a model

component mit plus an additive noise term "it ⇠ P (·):

Yit(0) = mit + "it. (3)

This setup encompasses many common panel data models; see Chernozhukov et al. (2019) for an

extended discussion. Here we consider two specific versions of Equation (3): (a) for post-treatment

time T , YiT (0) is linear in its lagged values; and (b) for all t = 1, . . . , T , Yit(0) is linear in a set

of latent factors. In the Appendix, we also consider the case where mit is a linear model with

Lipshitz deviations.

Assumption 1 (Model component). The control potential outcomes are generated according to

the following model and error components:

(a) For time period T , the model components miT are generated as
PT0

`=1 �`Yi(t�`)(0), so the
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control potential outcomes Yit(0) are:

Yit(0) =
T0X

`=1

�`Yi(t�`)(0) + "it. (4)

where {"iT } have zero mean for each unit:

E ["iT ] = 0 8i = 1, . . . , N. (5)

(b) There are J unknown, latent time-varying factors at time t = 1, . . . , T , µt = {µjt} 2 RJ ,

with maxjt |µjt|  M , and each unit has a vector of unknown factor loadings �i 2 RJ . We

collect the pre-intervention factors into a matrix µ 2 RT0⇥J , where the t
th row of µ contains

the factor values at time t, µ0
t and assume that 1

T0
µ0µ = IJ . The model components mit are

generated as mit = �i · µt, so the control potential outcomes Yit(0) are generated as:

Yit(0) = �i · µt + "it =
JX

j=1

�ijµjt + "it. (6)

where the noise terms for all units and all periods have zero mean:

E ["it] = 0 8i = 1, . . . , N and 8t = 1, . . . , T. (7)

We consider both the time-varying factors µt and the unit-varying factor loadings �i to be

non-random quantities, so the randomness in Yit(0) is only due to the noise term "it.

Assumptions 1(a) and (b) enable estimation of the missing counterfactual outcome. In Assumption

1(a), the mean-zero noise restrictions hold for the treated unit (i = 1), and rule out any unmeasured

variables that are correlated with the outcomes and that have di↵erent distributions for the treated

unit and comparison units. Treatment assignment can depend on the past outcomes, but cannot

depend on post-treatment outcomes; furthermore, there cannot be serial correlation between the

post-treatment and pre-treatment noise. This DGP includes the special case of an auto-regressive

process of order K < T0. Assumption 1(b) allows for the existence of unmeasured confounders, the

6
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factor loadings, that enter into the DGP in a structured way. Treatment assignment can depend

on the factor loadings, but cannot depend on the realized pre-treatment outcomes. We discuss this

in more detail in the context of our application in Section 7.

2.3 Synthetic Control Method

The Synthetic Control Method imputes the missing potential outcome for the treated unit, Y1T (0),

as a weighted average of the control outcomes, Y 0
0T� (Abadie and Gardeazabal, 2003; Abadie et al.,

2010, 2015). Weights are chosen to balance pre-treatment outcomes and possibly other covariates.

We consider a version of SCM that chooses weights � as a solution to the constrained optimization

problem:

min
�

kV 1/2
x (X1· �X 0

0·�)k22 + ⇣

X

Wi=0

f(�i)

subject to
X

Wi=0

�i = 1

�i � 0 i : Wi = 0

(8)

where the constraints limit � to the simplex �N0 = {� 2 RN0 | �i � 0 8i,
P

i �i = 1}, where Vx 2

RT0⇥T0 is a symmetric importance matrix and kV 1/2
x (X1·�X 0

0·�)k22 ⌘ (X1·�X 0
0·�)

0Vx(X1·�X 0
0·�)

is the 2-norm on RT0 after applying V 1/2
x as a linear transformation, and where f(�i) is a dispersion

penalty on the weights that we discuss below. To simplify the exposition and notation below, we

will generally take Vx to be the identity matrix. The simplex constraint in Equation (8) ensures

that the weights will be sparse and non-negative; Abadie et al. (2010, 2015) argue that enforcing

this constraint is important for preserving interpretability.

Equation (8) modifies the original SCM proposal in two ways. First, Equation (8) penalizes

the dispersion of the weights with hyperparameter ⇣ � 0, following a suggestion in Abadie et al.

(2015). The choice of penalty is less central when weights are constrained to be on the simplex,

but becomes more important below when we relax this constraint (Doudchenko and Imbens, 2017).

Second, Equation (8) excludes auxiliary covariates; we re-introduce them in Section 6.

When the treated unit’s vector of lagged outcomes, X1·, is inside the convex hull of the control

units’ lagged outcomes, X0·, the SCM weights in Equation (8) achieve perfect pre-treatment fit,

and the resulting estimator has many attractive properties. In this setting, Abadie et al. (2010)

show that SCM will be unbiased under the auto-regressive model in Assumption 1(a) and bound
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the bias under the linear factor model in Assumption 1(b).

Due to the curse of dimensionality, however, achieving perfect (or nearly perfect) pre-treatment

fit is not always feasible with weights constrained to be on the simplex (see Ferman and Pinto,

2018). When “the pre-treatment fit is poor or the number of pre-treatment periods is small,”

Abadie et al. (2015) recommend against using SCM. And even if the pre-treatment fit is excellent,

Abadie et al. (2010, 2015) propose extensive placebo checks to ensure that SCM weights do not

overfit to noise. Thus, the conditional nature of the analysis is critical to deploying SCM, excluding

many practical settings. Our proposal enables the use of (a modified) SCM approach in many of

the cases where SCM alone is infeasible.

3 Augmented SCM

3.1 Overview

We now show how to modify the SCM approach to adjust for poor pre-treatment fit. Let m̂iT be

an estimator for miT , the model component of the post-treatment control potential outcome. The

Augmented SCM (ASCM) estimator for Y1T (0) is:

Ŷ
aug
1T (0) =

X

Wi=0

�̂
scm
i YiT +

0

@m̂1T �
X

Wi=0

�̂
scm
i m̂iT

1

A (9)

= m̂1T +
X

Wi=0

�̂
scm
i (YiT � m̂iT ), (10)

where weights �̂scmi are the SCM weights defined above. Standard SCM is a special case, where m̂iT

is a constant. We will largely focus on estimators that are functions of pre-treatment outcomes,

m̂iT ⌘ m̂(Xi), where m̂ : RT0 ! R.

Equations (9) and (10), while equivalent, highlight two distinct motivations for ASCM. Equation

(9) directly corrects the SCM estimate,
P

�̂
scm
i YiT , by the imbalance in a particular function of

the pre-treatment outcomes m̂(·). Intuitively, since m̂ estimates the post-treatment outcome, we

can view this as an estimate of the bias due to imbalance, analogous to bias correction for inexact

matching (Abadie and Imbens, 2011). In this form, we can see that SCM and ASCM estimates will

be similar if the estimated bias is small, as measured by imbalance in m̂(·). If the estimated bias
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is large, the two estimators will diverge, and the conditions for appropriate use of SCM will not

apply. In independent work, Abadie and L’Hour (2018) also consider a bias-corrected estimator of

this form.

Equation (10), by contrast, is analogous to standard doubly robust estimation (Robins et al.,

1994), which begins with the outcome model but then re-weights to balance residuals. We discuss

connections to inverse propensity score weighting and survey calibration in Appendix E.

3.2 Choice of estimator

While this setup is general, the choice of estimator m̂ is important both for understanding the

procedure’s properties and for practical performance. We give a brief overview of two special cases:

(1) when m̂ is linear in pre-treatment outcomes; and (2) when m̂ is linear in the comparison units’

post-treatment outcomes. Ridge regression is an important example that is linear in both; we

explore this estimator further in Sections 4 and 5.

First, consider an estimator that is linear in pre-treatment outcomes, m̂(X) = ⌘̂0 + ⌘̂ ·X. The

augmented estimator (9) is then:

Ŷ
aug
1T (0) =

X

Wi=0

�̂
scm
i YiT +

T0X

t=1

⌘̂t

0

@X1t �
X

Wi=0

�̂
scm
i Xit

1

A . (11)

Pre-treatment periods that are more predictive of the post-treatment outcome will have larger

(absolute) regression coe�cients and so imbalance in these periods will lead to a larger adjustment.

Thus, even if we do not a priori prioritize balance in any particular pre-treatment time periods

(via the choice of Vx), the linear model augmentation will adjust for the time periods that are

empirically more predictive of the post-treatment outcome. As we show in Section 4, the ridge-

regularized linear model is an important special case in which the resulting augmented estimator

is itself a penalized synthetic control estimator. This allows for a more direct analysis of the role

of bias correction.

Second, consider an estimator that is a linear combination of comparison units’ post-treatment

outcomes, m̂(X) =
P

Wi=0 ↵̂i(X)YiT , for some weighting function ↵̂ : RT0 ! RN0 . Examples

include k-nearest neighbor matching and kernel weighting as well as other “vertical” regression

approaches (Athey et al., 2017). The augmented estimator (9) is itself a weighting estimator that
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adjusts the SCM weights:

Ŷ
aug
1T (0) =

X

Wi=0

⇣
�̂
scm
i + �̂

adj
i

⌘
YiT , where �̂

adj
i ⌘ ↵̂i(X1)�

X

Wj=0

�̂
scm
j ↵̂i(Xj). (12)

Here the adjustment term for unit i, �̂adji , is the imbalance in a unit i-specific transformation of

the lagged outcomes that depends on the weighting function ↵(·). While �̂
scm are constrained to

be on the simplex, the form of �̂adj makes clear that the overall weights can be negative.

There are many special cases to consider. One is the linear-in-lagged-outcomes model with

equal coe�cients, ⌘̂t = 1
T0
, which estimates a fixed-e↵ects outcome model as m̂(Xi) = X̄i. The

corresponding treatment e↵ect estimate adjusts for imbalance in all pre-treatment time periods

equally, and yields a weighted di↵erence-in-di↵erences estimator:

⌧̂
de =

�
Y1T � X̄1

�
�

0

@
X

Wi=0

�̂i(YiT � X̄i)

1

A =
1

T0

T0X

t=1

2

4(Y1T �X1t)�

0

@
X

Wi=0

�̂i(YiT �Xit)

1

A

3

5 . (13)

An augmented estimator of this form has appeared as the de-meaned or intercept shift SCM (Doud-

chenko and Imbens, 2017; Ferman and Pinto, 2018). As we discuss in Section 6, these proposals

balance the residual outcomes Xit � X̄i rather than the raw outcomes Xit. See also Arkhangelsky

et al. (2019), who extend this to weight across both units and time.

In Section 7.1 we conduct a simulation study to inspect the performance of a range of estimators

including: other penalized linear models, such as the LASSO; flexible machine learning models,

such as random forests; and panel data methods, such as fixed e↵ects models and low-rank matrix

completion methods (Xu, 2017; Athey et al., 2017).

4 Ridge ASCM

We now inspect the algorithmic properties for the special case where m̂(Xi) is estimated via a

ridge-regularized linear model, which we refer to as Ridge Augmented SCM (Ridge ASCM). With

Ridge ASCM, the estimator for the post-treatment outcome is m̂(Xi) = ⌘̂
ridge
0 + X 0

i⌘̂
ridge, where

⌘̂
ridge
0 and ⌘̂ridge are the coe�cients of a ridge regression of control post-treatment outcomes Y0T

10



on centered pre-treatment outcomes X0· with penalty hyper-parameter �ridge:

n
⌘̂
ridge
0 , ⌘̂ridge

o
= argmin

⌘0,⌘

1

2

X

Wi=0

(Yi � (⌘0 +X
0
i⌘))

2 + �
ridgek⌘k22. (14)

The Ridge Augmented SCM estimator is then:

Ŷ
aug
1T (0) =

X

Wi=0

�̂
scm
i YiT +

0

@X1 �
X

Wi=0

�̂
scm
i Xi·

1

A · ⌘̂ridge
. (15)

We first show that Ridge ASCM is a linear weighting estimator as in Equation (12). Unlike

augmenting with other linear weighting estimators, when augmenting with ridge regression the

implied weights are themselves the solution to a penalized synthetic control problem, as in Equation

(8). Using this representation, we show that when the treated unit lies outside the convex hull of

the control units, Ridge ASCM improves the pre-treatment fit relative to SCM alone by allowing for

negative weights and extrapolating away from the convex hull. We also show that ridge regression

alone has a representation as a weighting estimator that allows for negative weights.

Allowing for negative weights is an important departure from the original SCM proposal, which

constrains weights to be on the simplex. In particular, ridge regression alone allows for arbitrarily

negative weights and may have negative weights even when the treated unit is inside of the convex

hull. By contrast, Ridge ASCM directly penalizes distance from the sparse, non-negative SCM

weights, controlling the amount of extrapolation by the choice of �ridge, and only resorts to negative

weights if the treated unit is outside of the convex hull.

4.1 Ridge ASCM as a penalized SCM estimator

We now express both Ridge ASCM and ridge regression alone as special cases of the penalized

SCM problem in Equation (8). The Ridge ASCM estimate of the counterfactual is the solution to

Equation (8), replacing the simplex constraint with a penalty f(�i) = (�i � �̂
scm
i )2 that penalizes

deviations from the SCM weights.

Lemma 1. The ridge-augmented SCM estimator (11) is:

Ŷ
aug
1T (0) =

X

Wi=0

�̂
aug
i YiT , (16)

11
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where

�̂
aug
i = �̂

scm
i + (X1 �X 0

0·�̂
scm)0(X 0

0·X0· + �
ridgeIT0)

�1Xi·. (17)

Moreover, the Ridge ASCM weights �̂aug are the solution to

min
� s.t.

P
i �i=1

1

2�ridge
kX1· �X 0

0·�k22 +
1

2
k� � �̂scmk22 . (18)

When the treated unit is in the convex hull of the control units — so the SCM weights exactly bal-

ance the lagged outcomes — the Ridge ASCM and SCM weights are identical. When SCM weights

do not achieve exact balance, the Ridge ASCM solution will use negative weights to extrapolate

from the convex hull of the control units. The amount of extrapolation is determined both by the

amount of imbalance and by the hyperparameter �ridge. When SCM yields good pre-treatment fit

or when �
ridge is large, the adjustment term will be small and �̂aug will remain close to the SCM

weights.

We can similarly characterize ridge regression alone as a solution to a penalized SCM problem

where the penalty term, f(�i) =
⇣
�i � 1

N0

⌘2
, penalizes the variance of the weights. Other penalized

linear models, such as the LASSO or elastic net, do not have this same representation as a penalized

SCM estimator.

Lemma 2. The ridge regression estimator Ŷ
ridge
1T (0) ⌘ ⌘̂

ridge
0 + X1 · ⌘̂ridge can be written as

Ŷ
ridge
1T (0) =

P
Wi=0 �̂

ridge
i YiT , where the ridge weights �̂ridge are the solution to:

min
� |

P
i �i=1

1

2�ridge
kX1 �X 0

0·�k22 +
1

2

����� � 1

N0

����
2

2

. (19)

For ridge regression alone, the hyperparameter �ridge controls the variance of the weights rather than

the degree of extrapolation from the simplex. Thus, in order to reduce variance, ridge regression

weights might still be negative even if the treated unit is inside of the convex hull and SCM achieves

perfect fit.

Figure 1 visualizes this behavior in two dimensions. Figure 1a shows the treated unit outside

the convex hull of the control units, along with the weighted average of control units using ridge

regression and Ridge ASCM weights. For large �
ridge, ridge regression alone begins at the center

of the control units (i.e., uniform weights), while Ridge ASCM begins at the SCM solution; both

12



(a) Treated and control units with the convex hull
marked as a dashed line. Ridge and Ridge ASCM
estimates marked as solid lines.

(b) Distance of ridge and Ridge ASCM weights
from the simplex.

Figure 1: Ridge ASCM vs. ridge regression alone for a two-dimensional example with the treated
unit outside of the convex hull of the control units. Results shown varying �

ridge from 103 to 10�1.
Green denotes that the weights are inside the simplex, red that the weights are outside the simplex
but the weighted average is inside the convex hull, and blue that the weighted average is outside
the convex hull.

move smoothly towards an exact fit solution as �ridge is reduced. Figure 1b shows the distance from

the simplex of these ridge regression and Ridge ASCM weights. Together these figures highlight

that ridge regression weights can leave the simplex (i.e., have some negative weights) before the

corresponding weighted average is outside of the convex hull, marked in red in both figures. That

is, ridge regression weights use negative weights to minimize the variance although it is possible to

achieve the same level of balance with non-negative weights. By contrast, Ridge ASCM weights

begin at the SCM solution, which is on the boundary of the simplex, then extrapolate outside the

convex hull. Eventually, as �ridge ! 0, both ridge and Ridge ASCM use negative weights to achieve

perfect balance, improving the fit relative to SCM alone. The weight vectors di↵er, however, with

the Ridge ASCM weights closer to the simplex.

When achieving excellent pre-treatment fit with SCM is possible, Abadie et al. (2015) argue

that we should prefer SCM weights over possibly negative weights: a slight balance improvement is

not worth the extrapolation and the loss of interpretability. In this case, the Ridge ASCM weights

will be close to the simplex, while the ridge regression weights may be quite far away. When this is

not possible, however, and SCM has poor fit, some degree of extrapolation is critical; Ridge ASCM

13
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allows the researcher to directly penalize the amount of extrapolation in these cases. See King and

Zeng (2006) for a discussion of extrapolation in constructing counterfactuals.

4.2 Ridge ASCM improves pre-treatment fit relative to SCM alone

Just as the hyper-parameter �
ridge parameterizes the level of extrapolation, it also parameterizes

the level of improvement in pre-treatment fit over the SCM solution. Because we are removing

the non-negativity constraint and allowing for extrapolation outside of the convex hull, the pre-

treatment fit from Ridge ASCM will be at least as good as the pre-treatment fit from SCM alone,

i.e., kX1 � X 0
0·�̂

augk2  kX1 � X 0
0·�̂

scmk2. We can exactly characterize the pre-treatment fit of

Ridge ASCM using the singular value decomposition of the matrix of control outcomes, which will

be an important building block in the statistical results below.

Lemma 3. Let 1p
N0

X0· = UDV 0 be the singular value decomposition of the matrix of control

pre-intervention outcomes, where m is the rank of X0·, U 2 RN0⇥m
,V 2 RT0⇥m, and D =

diag(d1, . . . , dm) 2 Rm⇥m is the diagonal matrix of singular values, where d1 and dm are the largest

and smallest singular values, respectively. Furthermore, let X̃i = V 0Xi be the rotation of Xi

along the singular vectors of X0·. Then �̂aug, the Ridge ASCM weights with hyper-parameter

�
ridge = �N0 satisfy

kX1· �X 0
0·�̂

augk2 = �

���(D + �I)�1 (fX1 � fX 0
0·�̂

scm)
���
2
 �

d2m + �
kX1 �X 0

0·�̂
scmk2, (20)

and the weights from ridge regression alone �̂ridge satisfy

kX1 �X 0
0·�̂

ridgek2 = �

���(D + �I)�1 fX1

���
2
 �

d2m + �
kX1k2. (21)

From Equation (20), we see that the pre-treatment imbalance for Ridge ASCM weights is smaller

than that of SCM weights by at least a factor of �
d2m+� . Thus, Ridge ASCM will achieve strictly

better pre-treatment fit than SCM alone, except in corner cases where pre-treatment fit will be

equal, such as when the pre-treatment SCM residual X1 � X 0
0·�̂

scm is orthogonal to the lagged

outcomes of the control units X0·. Since ridge regression penalizes deviations from uniformity,

rather than deviations from SCM weights, the relationship for pre-treatment imbalance and fit

between SCM and ridge regression alone is less clear.

14



5 Estimation error for Ridge ASCM

We now relate Ridge ASCM’s improved pre-treatment fit to improved estimation error under the

data generating processes in Section 2.2. Under a linear model, improving pre-treatment fit directly

reduces bias, and the Ridge ASCM penalty term negotiates a bias-variance trade-o↵. Under a

latent factor model, improving pre-treatment fit again reduces bias, though there is now a risk

of over-fitting. The penalty term also directly parameterizes this trade-o↵. Thus, choosing the

hyper-parameter �
ridge is important in practice. We describe a cross-validation hyper-parameter

selection procedure in Section 5.3. Finally, we discuss inference in Section 5.4.

5.1 Error under linearity in pre-treatment outcomes

We first illustrate the key balancing idea in the simple case in our first DGP, where the post-

treatment outcome is a linear combination of lagged outcomes plus additive noise, as in Assumption

1(a). We consider a generic weighting estimator with weights �̂ that are independent of the post-

treatment outcomes Y1T , . . . , YNT ; both SCM and Ridge ASCM take this form. The di↵erence

between the counterfactual outcome Y1T (0) and the weighting estimator Ŷ1T (0) decomposes into:

(1) systemic error due to imbalance in the lagged outcomes X, and (2) idiosyncratic error due to

the noise in the post-treatment period:

Y1T (0)�
X

Wi=0

�̂iYiT = � ·

0

@X1 �
X

Wi=0

Xi

1

A

| {z }
imbalance in X

+ "1T �
X

Wi=0

�̂i"iT

| {z }
post-treatment noise

. (22)

With this setup, a weighting estimator that exactly balances the lagged outcomes X will eliminate

all systematic error. Furthermore, if the vector of autoregression coe�cients � is sparse, then

it su�ces to balance only the lagged outcomes with non-zero coe�cients; for example, under an

AR(K) process, (�1, . . . ,�T0�K�1) = 0, it is su�cient to balance only the first K lags.

If the weighting estimator does not perfectly balance the pre-treatment outcomes X, there will

be a systematic component of the error, with the magnitude depending on the imbalance. Below

we construct a finite sample error bound for Ridge ASCM (and for SCM, the special case with

�
ridge = 1), building on Lemma 3. This bound on the estimation error holds with high probability

over the noise in the post-treatment period "T .
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Proposition 1. Under the auto-regressive model in Assumption 1(a), for any � > 0 the Ridge

ASCM weights with hyperparameter �ridge = �N0 satisfy the bound

������
Y1T (0)�

X

Wi=0

�̂
aug
i YiT

������
 k�k2

�����diag
 

�

d
2
j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2| {z }

imbalance in X

+ �� (1 + k�̂augk2)| {z }
post-treatment noise

, (23)

with probability at least 1 � 2e�
�2

2 , where fXi = V 0Xi is the rotation of Xi along the singular

vectors of X0·, as above, and � is the sub-Gaussian scale parameter.

Proposition 1 shows the finite sample error of Ridge ASCM weights is controlled by the imbal-

ance in the lagged outcomes and the L
2 norm of the weights; Lemma A.3 in the Appendix gives a

deterministic bound for k�̂augk2. See Athey et al. (2018) for analogous results on balancing weights

in high dimensional cross-sectional settings.

In the special case that SCM weights have perfect pre-treatment fit, ASCM and SCM weights

will be equivalent, and the estimation error will only be due to the variance of the weights and post-

treatment noise. When SCM weights do not achieve perfect pre-treatment fit, Ridge ASCM with

finite � extrapolates outside the convex hull, improving pre-treatment fit and thus reducing bias.

This is subject to the usual bias-variance trade-o↵: The second term in (23) is increasing in the L2

norm of the weights, which will generally be larger for ASCM than for SCM. The hyperparameter

� directly negotiates this trade o↵.

5.2 Error under a latent factor model

Following Abadie et al. (2010), we now consider the case where control potential outcomes are

generated according to a linear factor model, as in Assumption 1(b): Yit(0) = �i · µt + "it. Under

this model, the finite-sample error of a weighting estimator depends on the imbalance in the latent

factors � and a noise term due to the noise at time T :

Y1T (0)� Ŷ1T (0) = Y1T (0)�
X

Wi=0

�̂iYiT =

0

@�1 �
X

Wi=0

�̂i�i

1

A · µT

| {z }
imbalance in �

+ "1T �
X

Wi=0

�̂i"it

| {z }
noise

. (24)
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Balancing the observed pre-treatment outcomes X will not necessarily balance the latent factor

loadings �. Following Abadie et al. (2010), we show in the appendix that, under Equation (6), we

can decompose the imbalance term as:

0

@�1 �
X

Wi=0

�i�i

1

A · µT =
1

T0
µ0

0

@X1 �
X

Wi=0

�iXi

1

A

| {z }
imbalance in X

·µT � 1

T0
µ0

0

@"1(1:T0) �
X

Wi=0

�i"i(1:T0)

1

A

| {z }
approximation error

·µT ,

(25)

where "i(1:T0) = ("i1, . . . , "iT0) is the vector of pre-treatment noise terms for unit i. The first term is

the imbalance of observed lagged outcomes and the second term is an approximation error arising

from the latent factor structure. In the noiseless case where � = 0 and all "it = 0 deterministically,

the approximation error is zero, and it is possible to express YiT (0) as a linear combination of the

pre-treatment outcomes, recovering the linear-in-lagged-outcomes case above. However, with � > 0

we cannot write the period-T outcome as a linear combination of earlier outcomes plus independent,

additive error.

With this setup, we can bound the finite-sample error in Equation (24) for Ridge ASCM weights

(and for SCM weights as a special case). This bound is with high probability over the noise in all

time periods "it, and accounts for the noise in the pre- and post-treatment outcomes separately.

Theorem 1. Under the linear factor model in Assumption 1(b), for any � > 0 the Ridge ASCM

weights with hyperparameter �ridge = �N0 satisfy the bound

������
Y1T (0)�

X

Wi=0

�̂
aug
i Y1T (0)

������
 JM

2

p
T0

 �����diag
 

�

d
2
j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2| {z }

imbalance in X

+

4(1 + �)

�����diag
 

dj�

d
2
j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2| {z }

excess approximation error

+

2�

✓p
log 2N0 +

�

2

◆

| {z }
SCM approximation error

!
+ �� (1 + k�̂augk2)

| {z }
post-treatment noise

(26)
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with probability at least 1�6e�
�2

2 �e
�2(log 2+N0 log 5)�2 , where � is the sub-Gaussian scale parameter.

Theorem 1 shows that, relative to the linear case in Proposition 1, there is an additional source

of error under a latent factor model: approximation error due to balancing lagged outcomes rather

than balancing underlying factors. In particular, it is now possible that a control unit only receives

a large weight because of idiosyncratic noise, rather than because of similarity in the underlying

factors. See Arkhangelsky et al. (2019) and Ferman (2019) for asymptotic analogues of this finite

sample bound. As we discuss below, each of the first three terms of the bound in Theorem 1 are

directly computable from the observed data, save for the unknown � parameter.

In the special case where SCM achieves perfect pre-treatment fit, considered by Abadie et al.

(2010), the ASCM and SCM weights are equivalent and the error is only due to post-treatment

noise and the approximation error. The bound in Theorem 1 accounts for the worst case scenario

where the control unit with the largest weight is only similar to the treated unit due to idiosyncratic

noise. The approximation error, and thus the bias, converges to zero in probability as T0 ! 1

under suitable conditions on the factor loadings µt (see also Ferman and Pinto, 2018). Intuitively,

as we observe more Xit — and can exactly balance each one — we are better able to match on the

index �i ·µt and, as a result, on the underlying factor loadings. Although we assume independent

errors here, in the supplementary material we show that with dependent errors the worst-case error

additionally scales with covariance of the error terms.

Without exact balance, Theorem 1 shows that a long pre-period may not be enough to control

the error due to imbalance. In this case, Ridge ASCM with � < 1 will extrapolate outside the

convex hull, reducing error due to imbalance in the lagged outcomes but possibly over-fitting to

noise. Thus, the optimal level of extrapolation will depend on the synthetic control fit and the

amount of noise.

Figure 2 illustrates this using SCM weights from the empirical example we discuss in Section

7, where pre-treatment fit is good but not perfect. For each value of �, the figure plots the sum

of the imbalance, SCM approximation error, and excess approximation error terms in the bound

in Theorem 1, all directly computable from the data for a given �. At each noise level, a small

amount of extrapolation leads to a smaller error bound, but as � shrinks there is a point where

further extrapolation leads to over-fitting and eventually to a worse error bound than without

extrapolation. The risk of overfitting is greater when the noise is large (e.g., � = 0.5), though even

18
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Figure 2: Sketch of the error due to imbalance and approximation error (26) for the linear factor
model; the standard deviation of the treated unit’s pre-treatment outcomes is normalized to one.
We fit SCM weights on the empirical example in Section 7 and compute the vector of pre-treatment
fit. Each line shows the sum of the error due to imbalance in X, excess approximation error, and
SCM approximation error in Theorem 1 (with � = 0) for di↵erent values of �. These are normalized
so that the SCM solution (with � large) equals 100%; values below 100% show improvement over
the unadjusted weights for a given �.

here a su�ciently regularized ASCM estimate has a lower error bound than SCM alone (represented

as the � ! 1 bound at the left boundary). When noise is less extreme, the benefits of augmentation

are larger and the optimal amount of regularization shrinks.

It is worth noting that Theorem 1 gives a worst-case bound. In Section 7.1 we inspect the

typical performance of the Ridge ASCM estimator via extensive simulation studies and find that

gains to pre-treatment fit through augmentation outweigh increased approximation error in a range

of practical settings, including when noise is very large.

Theorem 1 suggests two diagnostics to supplement the estimated bias from Equation (9), based

on the first two terms in the bound. For the first term, we can directly assess imbalance in X via

the pre-treatment RMSE, 1p
T0
kX1 � X 0

0·�̂
augk2. For the second term, the excess approximation

error depends on the unknown noise level, �. However, as we show in the Appendix, the excess

approximation error is a scaled version of the root mean square distance between the Ridge ASCM

weights and the SCM weights, 1p
N0

k�̂aug � �̂
scmk2, which is a measure of extrapolation. We report

these diagnostics for the empirical application in Section 7. As Figure 2 previews, they support the

use of ASCM in this instance, despite what visually appears to be good pre-treatment fit for SCM.
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5.3 Hyper-parameter selection

We propose a cross-validation approach for selecting � inspired by the in-time placebo check of

Abadie et al. (2015). Let Ŷ
(�k)
1t =

P
Wi=0 �̂

aug
i(�k)Yit be the estimate of Y1t where time period k is

excluded from fitting the estimator in (17). Abadie et al. (2015) propose to compare the di↵erence

Y1t�Ŷ
(�t)
1t for some t  T0 as a placebo check. We can extend this idea to compute the leave-one-out

cross validation MSE over time periods:

CV (�) =
T0X

t=1

⇣
Y1t � Ŷ

(�t)
1t

⌘2
. (27)

We can then choose � to minimize CV (�) or follow a more conservative approach such as the

“one-standard-error” rule (Hastie et al., 2009). This proposal is similar to the leave-one-out cross

validation proposed by Doudchenko and Imbens (2017), who select hyperparameters by holding out

control units and minimizing the MSE of the control units in the post-treatment time T . Finally,

only excluding time period t might be inappropriate for some outcome models, e.g. the linear model

in Section 5.1. In these settings we can extend the procedure to exclude all time periods � t when

estimating �̂
aug
(�t), as in Kellogg et al. (2020).

5.4 Inference

There is a growing literature on inference for the synthetic control method and variants, going

beyond the original proposal in Abadie and Gardeazabal (2003) and Abadie et al. (2010, 2015);

see, for example, Li (2019), Toulis and Shaikh (2018), Cattaneo et al. (2019), and Chernozhukov

et al. (2018).

We focus here on the conformal inference approach of Chernozhukov et al. (2019), which has

three key steps. First, for a given sharp null hypothesis, H0 : ⌧ = ⌧0, we create an adjusted post-

treatment outcome for the treated unit Ỹ1T = Y1T � ⌧0 and extend the original data set to include

the adjusted outcome Ỹ1T . Second, we apply the estimator (17) to the extended dataset to obtain

adjusted weights �̂(⌧0). Finally, we compute a p-value by assessing whether the adjusted residual
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Y1T � ⌧0 �
P

Wi=0 �̂i(⌧0)YiT “conforms” with the pre-treatment residuals:

p(⌧0) =
1

T

T0X

t=1

8
<

:

������
Y1T � ⌧0 �

X

Wi=0

�̂i(⌧0)YiT

������


������
Y1t �

X

Wi=0

�̂i(⌧0)Yit

������

9
=

;+
1

T
. (28)

Since the counterfactual outcome Y1T (0) is random, inverting this test to construct a confidence

interval for ⌧ is equivalent to constructing a conformal prediction set (Vovk et al., 2005) for Y1T (0)

by using the quantiles of pre-treatment residuals:

bCconf
Y =

8
<

:y 2 R

������

������
y �

X

Wi=0

�̂i(Y1T � y)YiT

������
 q

+
T,↵

0

@

������
Y1t �

X

Wi=0

�̂i(Y1T � y)Yit

������

1

A

9
=

; , (29)

where q
+
T,↵(xt) is the d(1� ↵)T eth order statistic of x1, . . . , xT .

Chernozhukov et al. (2019) provide several conditions for approximate or exact finite-sample

validity of the p-values, and hence coverage of the prediction interval bCconf
Y . We briefly discuss two

of these conditions here, with a more complete technical treatment in Appendix A. First, Cher-

nozhukov et al. (2019) show exact validity when the residuals Y1t�
P

Wi=0 �̂i(⌧0)Yit are exchangeable

for all t = 1, . . . , T . One su�cient condition for this is that the outcome vectors (Y1t, . . . , YNt) are

themselves exchangeable for t = 1, . . . , T .

When the residuals are not exchangeable, Chernozhukov et al. (2019) provide a finite sample

bound that relates in-sample prediction error to the validity of p(⌧0). In Appendix A, we adapt their

SCM bounds to Ridge ASCM by showing that the ridge penalty controls the di↵erence between

SCM and Ridge ASCM weights. Under a variant of the basic model (3), the resulting p-value will

be valid as the number of pre-treatment periods T0 ! 1. Finally, in Section 7.1 we explore the

finite sample coverage probabilities of bCconf
Y under various data generating processes and find that

they are near their nominal levels.

6 Auxiliary covariates

Thus far, we have focused exclusively on lagged outcomes as predictors. We now consider the case

where there are also a small number of auxiliary covariates Zi 2 RK for unit i. These auxiliary

covariates may include summaries of lagged outcomes or time-varying covariates such as the pre-
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treatment mean X̄i. Let Z0· 2 RN0⇥K denote the matrix of donor units’ covariates, which we

assume are centered, Z̄0· = 0.

These auxiliary covariates can be incorporated into both the balance objective for SCM and the

outcome model used for augmentation in ASCM. For the former, we can extend SCM to choose

weights to solve

min
�2�N0

✓xkX1 �X 0
0·�k22 + ✓zkZ1 �Z0·�k22 + ⇣

X

Wi=0

f(�i), (30)

where �N0 is the N0-simplex. For the latter, we can augment the SCM weights with an outcome

model m̂(Xi,Zi) that is a function of both the lagged outcomes and auxiliary covariates. For

example, we can extend Ridge ASCM to choose m̂(X,Z) = ⌘̂0 + X 0⌘̂x + Z 0⌘̂z and fit via ridge

regression:

min
⌘0,⌘x,⌘z

1

2

X

Wi=0

(Yi � (⌘0 +X 0
i⌘x +Z 0

i⌘z))
2 + �xk⌘xk22 + �zk⌘zk22. (31)

Both this SCM criterion and augmentation estimator incorporate user-specified weights that deter-

mine the importance of balancing each set of covariates (Equation 30) or the amount of regulariza-

tion for each set of coe�cients (Equation 31). There are many potential choices for these weights.

We discuss two, appropriate to di↵erent settings depending on the number of auxiliary covariates.

A sensible default when the dimension of the auxiliary covariates is moderate is to incorporate

the lagged outcomes X and the auxiliary covariates Z equally in Equations (30) and (31), setting

✓x = ✓z = 1 and �x = �z = �
ridge (after standardizing auxiliary covariates and lagged outcomes to

have equal variance). With this setup the algorithmic results in Section 4 apply for the combined

vector of lagged outcomes and auxiliary covariates, (Xi,Zi) 2 RT0+K . In particular, Ridge ASCM is

again a penalized SCM estimator that adjusts the synthetic control weights that solve optimization

problem (30) to achieve better balance by extrapolating outside of the convex hull.

An alternative approach when the dimension of the auxiliary covariates is small relative to N

(i.e., K ⌧ N) is to fit a regression model that regularizes the lagged outcome coe�cients ⌘x but

does not regularize the auxiliary covariate coe�cients ⌘z (i.e., set �z = 0). Lemma 4 below writes

the resulting augmented estimator as its corresponding penalized SCM optimization problem, with

weights that perfectly balance the auxiliary covariates. This has two key implications. First, since

the auxiliary covariates Z are exactly balanced regardless of the balance that the SCM weights
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achieve alone, we can exclude them from the optimization problem (30). Second, as we show

below, the pre-treatment fit on the lagged outcomes depends on how well the SCM weights balance

the residualized lagged outcomes X̌, defined in Lemma 4. This suggests modifying Equation (30)

to balance X̌ rather than the lagged outcomes X, which leads to the two-step procedure: (1)

residualize the pre- and post-treatment outcomes on the auxiliary covariates Z; and (2) estimate

Ridge ASCM on the residualized outcomes. This two-step procedure follows from a related proposal

in Doudchenko and Imbens (2017).

Lemma 4. Let ⌘̂x and ⌘̂z be the solutions to (31) with �x = �
ridge and �z = 0. For any weight

vector �̂ that sums to one, the ASCM estimator from Equation (10) with m̂(Xi,Zi) = X 0
i⌘̂x+Z 0

i⌘̂z

is
X

Wi=0

�̂iYiT +

0

@X1 �
X

Wi=0

�̂iXi

1

A
0

⌘̂x +

0

@Z1 �
X

Wi=0

�̂iZi

1

A
0

⌘̂z =
X

Wi=0

�̂
cov
i YiT , (32)

where the weights �̂cov are

�̂
cov
i = �̂i + (X̌1 � X̌0·)(X̌

0
0·X̌0· + �

ridgeIT0)
�1X̌i + (Z1 �Z 0

0·�)
0(Z 0

0·Z0·)
�1Zi, (33)

and X̌i is the residual components of a regression of pre-treatment outcomes on the control auxiliary

covariates:

X̌i = Xi �Z 0
i(Z

0
0·Z0·)

�1Z 0
0·X0·. (34)

These weights exactly balance the auxiliary covariates, Z1 � Z 0
0·�̂

cov = 0; the imbalance in the

lagged outcomes is

��X1 �X 0
0·�̂

cov
��
2

✓

�
ridge

�ridge +N0ď
2
r

◆��X̌1 � X̌ 0
0·�̂
��
2
, (35)

where ďr is the minimal singular value of X̌0.

Comparing to the results in Section 4, Lemma 4 shows that the two-step approach penalizes

extrapolation from the convex hull in the residualized space X̌, rather than in the lagged outcomes

themselves. In essence, by residualizing out the auxiliary covariates Z, the two-step approach allows

for a possibly large amount of extrapolation in the auxiliary covariates, while carefully penalizing

extrapolation in the part of the lagged outcomes that is orthogonal to the covariates.
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In Appendix B.3, we consider the performance of this estimator when the outcomes follow a

linear factor model with either a linear or a non-linear dependence on auxiliary covariates, focusing

on the special case where �
ridge ! 1 and the weights �̂cov do not extrapolate from the convex

hull after residualization. When covariates enter linearly and when K is small relative to N0,

we show that exactly balancing a small number of auxiliary covariates and targeting imbalance

in the residuals X̌ decreases error due to pre-treatment fit. When covariates enter non-linearly,

however, there is additional approximation error due to the linear regression specification. Thus,

it is important to appropriately transforming the covariates in practice. Furthermore with larger

numbers of covariates, the approach that incorporates them in parallel to lagged outcomes will be

more appropriate.

7 Simulations and empirical illustrations

We first conduct extensive simulation studies to assess the performance of di↵erent methods, finding

substantial gains from ASCM. We then use our approach to examine the e↵ect of an aggressive tax

cut on economic output in Kansas in 2012.

7.1 Calibrated simulation studies

We now present simulation studies calibrated to our empirical illustration in Section 7.2. Specif-

ically, we use the Generalized Synthetic Control Method (Xu, 2017) to estimate a factor model

with three latent factors based on the series of log Gross State Product (GSP) per capita, N = 50,

T0 = 89. We then simulate outcomes using the distribution of estimated parameters and model

selection into treatment as a function of the latent factors; see Appendix C for additional details.

We also present results from three additional DGPs, each calibrated to estimates from the same

data: (1) the factor model with quadruple the standard deviation of the noise term, (2) a unit and

time fixed e↵ects model, and (3) an autoregressive model with 3 lags.

We explore the role of augmentation using di↵erent outcome estimators. For each DGP, we

consider five estimators: (1) SCM alone, (2) ridge regression alone, (3) Ridge ASCM, (4) fixed

e↵ects alone, and (5) De-meaned SCM (i.e., SCM augmented with fixed e↵ects) from Doudchenko

and Imbens (2017) and Ferman and Pinto (2018), as shown in Equation (13). See Appendix F for

simulations with additional outcome models for ASCM. Figure 3 shows the Monte Carlo estimate
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Figure 3: Overall absolute bias, normalized to SCM bias for (a) the factor model simulation, (b)
the factor model simulation with quadruple the standard deviation, (c) the fixed e↵ects simulation,
and (d) the AR simulation. The SCM estimates reported here are not restricted to simulation draws
with excellent pre-treatment fit; Abadie et al. (2015) advise against using SCM in such settings.

of the absolute bias as a percentage of the absolute bias for SCM, with one panel for each simulation

DGP. Appendix Figure F.1 shows the corresponding estimator root mean squared error (RMSE).

There are several takeaways. First, augmenting SCM with a ridge outcome regression reduces

bias relative to SCM alone — without conditioning on excellent pre-treatment fit — in all four

simulations. This underscores the importance of the recommendation in Abadie et al. (2010, 2015)

to use SCM only in settings with excellent pre-treatment fit. Under the baseline factor model and

the fixed e↵ect model, the ridge augmentation greatly reduces bias, by more than 75% in the factor

model simulation and over 90% in the fixed e↵ects simulation. In the AR(3) model and in the factor

model with greater noise, the gains to augmentation relative to SCM are more limited. Second,

Ridge ASCM has lower bias than ridge regression alone across all of the simulation settings. Third,

when the fixed e↵ects estimator is incorrectly specified, combining it with SCM has much lower

bias than either method alone. And even when the fixed e↵ects estimator is correctly specified, de-

meaned SCM has similar bias to the (correctly specified) fixed e↵ects approach. Finally, Appendix

Figure F.1 shows that in all simulations ASCM has lower RMSE than SCM, as the large decrease

in bias more than makes up for the slight increase in variance.
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Figure 4: Bias and RMSE of Ridge ASCM, as a percentage of SCM bias and RMSE, versus � under
a linear factor model. Results are divided by the quartile of the SCM fit across all simulations.

Complementing the worst-case analysis in Section 5, we now consider how the typical perfor-

mance of augmentation relates to the amount of extrapolation and the quality of the original SCM

fit. Figure 4 shows the bias and RMSE as a function of � for the primary factor model simulation,

conditional on the quartile of SCM fit. Larger values of � (and hence smaller adjustments) are to

the left, with the left-most points in the plots representing SCM. First, as expected, Augmented

SCM substantially reduces bias regardless of SCM pre-treatment fit. However, the gains are more

modest when the SCM fit is in the best quartile: in this case the bias is non-monotonic in � and

there is some optimal choice of � that minimizes the bias. Second, it is possible to under-regularize

with ASCM, as evident in the RMSE achieving a minimum for an intermediate value of �. When

pre-treatment fit is good, augmentation with too-small � leads to higher RMSE than SCM alone.

However, when SCM fit is relatively poor, even minimally regularized ASCM achieves much better

bias and RMSE than does SCM.

Finally, Table 1 shows the finite sample coverage of the conformal prediction intervals for

Y1T (0). For the four simulation settings we compute 95% prediction intervals for the post-treatment

counterfactual outcome Y1T (0) using the both the SCM and ridge ASCM estimators. We see that

the intervals for SCM alone can slightly undercover, due to finite sample bias from poor treatment

fit. In contrast, the intervals for ridge ASCM have close to nominal coverage for Y1T (0).
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Method AR(3) Factor Model: � = �̂ Factor Model: � = 4�̂ Fixed E↵ects

SCM 0.934 0.926 0.930 0.889

SCM + Ridge 0.932 0.950 0.936 0.939

Table 1: Coverage for 95% conformal prediction intervals (29) based on 1000 repetitions.

Overall we find that SCM augmented with a penalized regression model has consistently good

performance across data generating processes. Due to this performance and the method’s relative

simplicity, we therefore recommend augmenting SCM with penalized regression as a reasonable

default in settings where SCM alone has poor pre-treatment fit. In particular, we suggest using

ridge regression; among the other benefits, Ridge ASCM allows the practitioner to diagnose the

level of extrapolation due to the outcome model.

7.2 Illustration: 2012 Kansas tax cuts

In 2010, Sam Brownback was elected governor of Kansas, having run on a platform emphasizing

tax cuts and deficit reduction (see Rickman and Wang, 2018, for further discussion and analysis).

Upon taking o�ce, he implemented a substantial personal income tax cut, both lowering rates and

reducing credits and deductions. This is a valuable test of “supply side” models: Brownback argued

that the tax cuts would increase business activity in Kansas, generating economic growth and addi-

tional tax revenues that would make up for the static revenue losses. Kansas’ subsequent economic

performance has not been impressive relative to its neighbors; however, potentially confounding fac-

tors include a drought and declines in the locally important aerospace industry. Finding a credible

control for Kansas is thus challenging, and SCM-type approaches o↵er a potential solution.

We estimate the e↵ect of the tax cuts on log GSP per capita using the second quarter of 2012

— when Brownback signed the tax cut bill into law — as the intervention time. We use four

primary estimators: (1) SCM alone fit on the entire vector of lagged outcomes, (2) Ridge ASCM,

(3) Ridge ASCM including auxiliary covariates in parallel to lagged outcomes and (4) Ridge ASCM

on residualized outcomes, as proposed in Section 6. We select the hyperparameter � via the

cross-validation procedure in Section 5.3, following the “one-standard-error” rule with only lagged

outcomes, and selecting the minimal � when including auxiliary covariates. See Appendix Figure

F.6. The covariates we include are the pre-treatment averages of (1) log state and local revenue per
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capita, (2) log average weekly wages, (3) number of establishments per capita, (4) the employment

level, and (5) log GSP per capita.

These estimators assume that noise is mean zero (Assumption 1). Substantively, under the

auto-regressive model in Assumption 1(a) this assumes that post-treatment shocks for Kansas will

be the same as for other states in expectation; under the linear factor model in Assumption 1(b)

this rules out selection on pre-treatment shocks. This also rules out unobserved confounders that

a↵ect both post-treatment shocks and the decision to enact the Brownback tax cut bill.

Figure 5, known as a “gap plot”, shows the di↵erence between Kansas and its synthetic control

for all four estimators, along with 95% point-wise confidence intervals intervals computed via the

conformal inference procedure from Chernozhukov et al. (2019). Figure 6 shows the log GSP per

capita for both Kansas and its synthetic control using SCM and Ridge ASCM. Appendix F shows

additional results.

First, the pre-treatment fit for SCM alone is relatively good for most of the pre-period, with

an overall pre-treatment RMSE of about 0.9 log points. However, the fit for SCM alone worsens

for in 2004–2005, with imbalances of over 4 log points — a pre-treatment imbalance as large as the

estimated impact. Using ridge regression to assess the possible implications of this pre-treatment

imbalance, we estimate bias due to pre-treatment imbalance of around 1 log point, or roughly a

third of the magnitude of the estimated e↵ect. To better understand the estimated bias, we can

inspect the ridge regression coe�cients for lagged outcomes; see Appendix Figure F.9. While the

regression puts the most weight on the two most recent years, the estimated bias due to imbalance

in the mid-2000s is just as large as for 2010 and 2011. This suggests that there may be gains to

augmentation.

As anticipated, augmenting SCM with ridge regression indeed improves pre-treatment fit, with

a pre-treatment RMSE of 0.65 log points, 25% smaller than the RMSE for SCM alone. This

improvement is especially pronounced in the mid 2000s, where SCM imbalance is larger. In the

end, despite a large reduction in the pre-treatment RMSE, the change in the weights is quite small:

the root mean square di↵erence between SCM and Ridge ASCM weights is only 0.01.

Next we consider including the auxiliary covariates. Adding these auxiliary covariates and

augmenting further improves both pre-treatment fit and balance on the covariates; see Figure

7a. Finally, balancing the auxiliary covariates via residualization also improves pre-treatment fit.
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Overall, the estimated impact is consistently negative for all four approaches, with weaker evidence

that the e↵ect persists to the end of the observation period.

To check against over-fitting, Appendix Figures F.10, F.11, and F.12 show in-time placebo

estimates for SCM alone, Ridge ASCM, and Ridge ASCM with covariates, with placebo treatment

times in the second quarter of 2009, 2010, and 2011. We estimate placebo e↵ects that are near zero

with all three placebo treatment times with all three estimators.

Figure 7a shows the covariate balance for the four estimators. While SCM and Ridge ASCM

achieve excellent fit for the pre-treatment average log GSP per capita, neither estimator achieves

good balance on the other covariates, most notably the average employment level across the quarters

of the pre-period. In contrast, including the auxiliary covariates into both the SCM and ridge

optimization problems greatly improves the covariate balance, and — by design — residualizing on

the auxiliary covariates perfectly balances them. Moreover, Ridge ASCM on residualized outcomes

achieves very good pre-treatment fit on the lagged outcomes as shown in Figure 5.

Finally, Figure 7b shows the weights on donor units for SCM and Ridge ASCM as well as SCM

and Ridge ASCM weights when including covariates jointly with the lagged outcomes (see also

Appendix Figure F.14). Here we see the minimal extrapolation property of the ASCM weights.

The SCM weights are zero for all but six donor states. The Ridge ASCM weights are similar

but deviate slightly from the simplex. As a result, the Ridge ASCM weights retain some of the

interpretability of the SCM weights. For the donor units with positive SCM weight, Ridge ASCM

places close to the same weight. For the majority of those with zero SCM weight, Ridge ASCM

also places a close to zero weight. Only Louisiana receives a meaningful negative weight, with non-

negligible negative weights for only a few other donor units. By contrast, Appendix Figure F.13

shows the weights from ridge regression alone: many of the weights are negative and the weights are

far from sparse. Including auxiliary covariates changes the relative importance of di↵erent states

by adding new information, but the minimal extrapolation property remains.

8 Discussion

SCM is a popular approach for estimating policy impacts at the jurisdiction level, such as the city

or state. By design, however, the method is limited to settings where excellent pre-treatment fit

is possible. For settings when this is infeasible, we introduce Augmented SCM, which controls
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Figure 5: Point estimates along with point-wise 95% conformal confidence intervals for the e↵ect
of the tax cuts on log GSP per capita using SCM, Ridge ASCM, and Ridge ASCM with covariates.

Figure 6: Point estimates along with point-wise 95% conformal prediction intervals for counter-
factual log GSP per capita without the tax cuts using SCM, ridge ASCM, and ridge ASCM with
covariates, plotting with the observed log GSP per capita in black.
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Figure 7: (a) Covariate balance for SCM, Ridge ASCM, and ASCM with covariates. Each covariate
is standardized to have mean zero and standard deviation one; we plot the absolute di↵erence
between the treated unit’s covariate and the weighted control units’ covariates

��Z1k �
P

Wi=0 �̂Zik

��.
(b) Donor unit weights for (1) SCM alone and (2) Ridge ASCM; left facet uses lagged outcomes
only; right fact includes auxiliary covariates.
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pre-treatment fit while minimizing extrapolation. We show that this approach controls error under

a linear factor model and propose several extensions, including to incorporate auxiliary covariates.

There are several directions for future work. First, we could incorporate a sensitivity analysis

that directly parameterizes departures from, say, the linear factor model, as in recent approaches for

sensitivity analysis for balancing weights (Soriano et al., 2020). Second, we can adapt the ASCM

framework to settings with multiple treated units. For instance, there are di↵erent approaches in

settings when all treated units are treated at the same time: some papers propose to fit SCM sepa-

rately for each treated unit (e.g., Abadie and L’Hour, 2018), while others simply average the units

together (e.g., Robbins et al., 2017). The situation is more complicated with staggered adoption,

when units take up the treatment at di↵erent times; we explore this extension in Ben-Michael et al.

(2019). Finally, we can consider more complex data structures, such as applications with multiple

outcomes series for the same units (e.g., measures of both earnings and total employment in mini-

mum wage studies); hierarchical data structures with outcome information at both the individual

and aggregate level (e.g., students within schools); or discrete or count outcomes.
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Supplementary Materials for
“The Augmented Synthetic Control Method”

A Inference

We now give additional technical details for the validity of the conformal inference approach of
Chernozhukov et al. (2019) with Ridge ASCM, showing approximate validity (as T0 ! 1) under
a set of assumptions.

The approximate validity of the conformal inference procedure in Section 5.4 depends on the
predictive accuracy of Ŷ aug

it (0) when fit using all periods t = 1, . . . , T , including the post-treatment
period T . Denoting Y1· ⌘ (X1·, Y1) 2 RT to be the full vector of treated unit outcomes and Y0· ⌘
[X0·,Y0T ] 2 RN0⇥T be the matrix of comparison unit outcomes, the Ridge ASCM optimization
problem in this setting is

min
� s.t.

P
i �i=1

1

2�ridge
kY1· � Y 0

0·�k22 +
1

2
k� � �̂scmk22 . (A.1)

We will also consider the constrained form:

min
�

kY1· � Y 0
0·�k22

subject to
1

2
k� � �̂scmk2 

Cp
N0X

i

�i = 1

(A.2)

With these definitions we can characterize the in-sample prediction error of the counterfactual
model described by Chernozhukov et al. (2019), which is a version of Equation (3) in an asymp-
totic framework where T0 is growing while T is fixed. We state the model and assumptions for
asymptotically (in T0) valid inference below.

Assumption A.1. There exist weights �⇤ 2 �N0 such that the potential outcomes under control
for the treated unit (i = 1) satisfy

Y1t(0) =
X

Wi=1

�⇤i Yit + "1t,

where "1t are independent of the comparison unit outcomes, E["1tYit] = 0 for all Wi = 0 and
t = 1, . . . , T . Furthemore,

1. The data is �-mixing with exponential speed

1

----



2. There exist constants c1, c2 > 0 such that E[(Yit"1t)2] � c1 and E[|Yit"1t|3]  c2 for all i such
that Wi = 0 and t = 1, . . . , T

3. For all i such that Wi = 0, Xi1"11, . . . , XiT "1T is �-mixing with �-mixing coe�cient satisfying
�(t)  a1e�a2tk for constants a1, a2, k > 0

4. There exists a constant c3 > 0 such that maxWi=0
PT

t=1X
2
it"

2
1t  c23T with probability 1�o(1)

5. logN0 = o
⇣
T

4k
3k+4

⌘

6. There exists a sequence `T > 0 such that Y 0
0t(w � �⇤)  `T

1
T kY 0

0·(w � �⇤)k22 for all w 2
�N0 + B2(

Cp
N0

), for some constant C where Bp(a) = {x 2 R | kxkp  a}, with probability

1� o(1) for T0 + 1  t  T

7. The sequence `T satisfies `T (logmin{T,N0})
1+k
2k

p
T ! 0

This setup is nearly identical to the assumptions in Lemma 1 in Chernozhukov et al. (2018); the
only key change is for assumption 6 where the bound on the point-wise prediction error is assumed
to hold for all weights that are the sum of weights on the simplex �N0 and a vector in the L2 ball

B2

⇣
Cp
N0

⌘
.

Under the model in Assumption A.1, we can characterize the prediction error of the constrained
form of Ridge ASCM (A.2) by directly following the development in Chernozhukov et al. (2019), who
show asymptotic validity for the conformal procedure with the SCM estimator when it is correctly
specified and �⇤ 2 �N0 . Lemma A.1 below is equivalent to Lemma 1 in Chernozhukov et al. (2019),
and shows that under Assumption A.1 the in-sample prediction error for the constrained form of
Ridge ASCM (A.2) is the same as SCM, up to the level of extrapolation C allowed through the
constraint k�̂aug � �̂scmk2  Cp

N0
. Then, by Theorem 1 in Chernozhukov et al. (2019) we see that

the inference procedure will be valid asymptotically in T0.

Lemma A.1. Under Assumption A.1, the ridge ASCM weights solving the constrained problem
(A.2), �̂aug satisfy

1

T

TX

t=1

0

@
X

Wi=0

�̂⇤i Yit �
X

Wi=0

�̂augi Yit

1

A
2

 K0(2 + C)p
T

(logmin{T,N0})
1+k
2k (A.3)

and ������
µT · �1 �

X

Wi=0

�̂augi YiT

������
 K0(2 + C)p

T
`T (logmin{T,N0})

1+k
2k (A.4)

with probability 1� o(1), for some constant K0 depending on the constants in Assumption A.1.

Proof of Lemma A.1. This proof directly follows Lemma 1 in Chernozhukov et al. (2019). First,
notice that ��Y1· � Y 0

0·�̂
aug
��2
2

��Y1· � Y 0

0·�̂
scm
��2
2

��Y1· � Y 0

0·�
⇤��2

2
= k"1k22 ,

where "1 = ("11, . . . , "1T ) 2 RT is the vector of noise terms for the treated unit. Next,

Y1· � Y 0
0·�̂

aug = Y1· � Y 0
0·(�̂

aug � �⇤ + �⇤) = "1 � Y 0
0·(�̂

aug � �⇤)

2



Together, this implies that k"1 � Y 0
0·(�̂

aug � �⇤)k22  k"1k22 and so by expanding the left-hand side
we see that by Hölder’s inequality

��Y 0
0·(�̂

aug � �⇤)
��2
2
 2"01Y

0
0·(�̂

aug � �⇤)

 2 kY0·"1k1 k�̂aug � �⇤k1
 2 kY0·"1k1 (k�̂scm � �⇤k1 + k�̂aug � �̂scmk1)

Now, since both �̂scm 2 �N0 and �⇤ 2 �, k�̂scm � �⇤k1  2. From the constraint in Equation (A.2),
k�̂aug � �̂scmk1 

p
N0 k�̂aug � �̂scmk2  C. This implies that

��Y 0
0·(�̂

aug � �⇤)
��2
2
 2(2 + C) kY0·"1k1

Lemma 17 in Chernozhukov et al. (2019) shows that

P
⇣
kY0·"1k1 > K0 (logmin {T,N0})

1+k
2k

p
T
⌘
= o(1).

Combining the pieces gives Equation (A.3). Next, combining Equation (A.3) with Assumption
A.1(6) gives Equation (A.4).

3
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B Additional results

B.1 Specialization of Ridge ASCM results to SCM

This appendix section specializes select results from the main text for Ridge ASCM for the special
case of SCM, with � ! 1.

First we specialize Proposition 1 to SCM weights by taking � ! 1.

Corollary A.1. Under the linear model (4) with independent sub-Gaussian noise with scale pa-
rameter �, for any � > 0, for weights � 2 �N0 independent of the post-treatment outcomes
(Y1T , . . . , YNT ) and for any � > 0,

Y1T (0)�
X

Wi=0

�̂iYiT  k�k2

������
X1 �

X

Wi=0

�̂iXi

������
2| {z }

imbalance inX

+ �� (1 + k�̂k2)| {z }
post-treatment noise

, (A.5)

with probability at least 1� 2e�
�2

2 .

We can similarly specialize Theorem 1.

Corollary A.2. Under the linear factor model (6) with independent sub-Gaussian noise with scale
parameter �, for weights � 2 �N0 independent of the post-treatment outcomes (Y1T , . . . , YNT ) and
for any � > 0,

Y1T (0)�
X

Wi=0

�̂iYiT  JM2

p
T0

������
X1 �

X

Wi=0

�̂iXi

������
2| {z }

imbalance inX

+
2JM2�p

T0

⇣p
log 2N0 + �

⌘

| {z }
approximation error

+ �� (1 + k�̂k2)| {z }
post-treatment noise

,

(A.6)

with probability at least 1� 6e�
�2

2 .

B.2 Error under a partially linear model with Lipshitz deviations from linearity

We now bound the estimation error for SCM and Ridge ASCM under the basic model (3) when
the outcome is only partially linear, with Lipshitz deviations from linearity.

Assumption A.2. For the post-treatment outcome, miT are generated as � ·Xi + f(Xi), so the
post-treatment control potential outcome is

YiT (0) = � ·Xi + f(Xi) + "iT , (A.7)

where f : RT0 ! R is L-Lipshitz and where {"iT } are defined in Assumption 1(a).

Under this model, the L-Lipshitz function f(·) will induce an approximation error from deviating
away from the nearest neighbor match.

Theorem A.1. Let C = maxWi=0 kXik2. Under Assumption A.2, for any � > 0, the estimation
error for the ridge ASCM weights �̂aug (17) with hyperparameter �ridge = N0� is

4



������
Y1T (0)�

X

Wi=0

�̂aug
i Y1T

������
 k�k2

�����diag
 

�

d2j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2| {z }

imbalance in X

+

CL

�����diag
 

dj
d2j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2| {z }

excess approximation error

+

L
X

Wi=0

�̂scmi kX1 �Xik2
| {z }

SCM approximation error

+ �� (1 + k�̂augk2)
| {z }
post-treatment noise

(A.8)

with probability at least 1� 2e�
�2

2 .

We can again specialize this to the SCM weights alone by taking � ! 1.

Corollary A.3. Under Assumption A.2, for any � > 0, the estimation error for weights on the
simplex �̂ 2 �N0 independent of the post-treatment outcomes (Y1T , . . . , YNT ) is

Y1T (0)�
X

Wi=0

�̂iYi  k�k2

������
X1 �

X

Wi=0

�̂iXi

������
2| {z }

imbalance in X

+L
X

Wi=0

�̂ikX1 �Xik2
| {z }

approximation error

+ ��(1 + k�̂k2)| {z }
post-treatment noise

(A.9)

with probability at least 1� 2e�
�2

2 .

Inspecting Corollary A.3, we see that in order to control the estimation error, the weights must
ensure good pre-treatment fit while only weighting control units that are near to the treated unit.
The ratio L/k�k2 controlling the relative importance of both terms. Abadie and L’Hour (2018)
propose finding weights by solving the penalized SCM problem,

min
�2�N0

������
X1 �

X

Wi=0

�̂iXi

������

2

2

+ �
X

Wi=0

�̂ikX1 �Xik22. (A.10)

Comparing this to Corollary A.3, we see that under the partially linear model (A.7) where f(·) is
L-Lipshitz, finding weights that limit interpolation error by controling both the overall imbalance
in the lagged outcomes as well as the weighted sum of the distances is su�cient to control the error.
In the above optimization problem, the hyperparameter � takes the role of L/k�k2.

5



B.3 Error under a linear factor model with covariates

We can quantify the behavior of the two-step procedure from Lemma 4 in controlling the error
under a more general form of the linear factor model (6) with covariates (see Abadie et al., 2010;
Botosaru and Ferman, 2019, for additional discussion). We can also consider the error under a
linear model with auxiliary covariates, as a direct consequence of Lemma 4.

Assumption A.3. Themit are generated asmit =
PJ

j=1 �ijµjt+ft(Zi) for a time-varying function

ft : RK ! R, so the potential outcomes under control are

Yit(0) =
JX

j=1

�ijµjt + ft(Zi) + "it, (A.11)

where {"it} are defined in Assumption 1(b).

To characterize how well the covariates approximate the true function f(Zi), we will consider
the best linear approximation in our data, and define the residual for unit i and time t as eit =
ft(Zi)�Z 0

i(Z
0Z)�1Z 0ft(Z), where Z 2 RN⇥K is the matrix of all auxiliary covariates for all units.

For each time period we will characterize the additional approximation error incurred by only
balancing the covariates linearly with the residual sum of squares RSSt =

Pn
i=1 e

2
it. For ease of

exposition, we assume that the control covariates are standardized and rotated, which can always
be true after pre-processing, and present results for the simpler case in which we fit SCM on the
residualized pre-treatment outcomes rather than ridge ASCM (i.e., we let �ridge ! 1); the more
general version follows immediately by applying Theorem 1.

Theorem A.2. Under the linear factor model with covariates in Assumption A.3, with 1
N0

Z 0
0·Z0· =

IK , for any � > 0, �̂cov in Equation (33) with �ridge ! 1 satisfies the bound

������
Y1T (0)�

X

Wi=0

�̂covYiT

������
 JM2

p
T0

 
��X̌1 � X̌ 0

0·�̂
��
2| {z }

imbalance in X̌

+4�

r
K

N0
kZ1 �Z 0

0·�̂k2
| {z }
excess approximation error

!
+

2JM2�p
T0

✓p
logN0 +

�

2

◆

| {z }
SCM approximation error

+(JM2 + 1)e1max + (JM2 + 1)
p

RSSmaxk�̂covk2| {z }
covariate approximation error

+ ��(1 + k�̂covk2)| {z }
post-treatment noise

(A.12)

with probability at least 1 � 6e�
�2

2 � 2e�
KN0(2�

p
log 5)2

2 , where e1max = maxt |e1t| is the maximal
residual for the treated unit and RSSmax = maxtRSSt is the maximal residual sum of squares

We can also consider the special case of Theorem A.2 when ft(Zi) =
PK

k=1BtkZik is a linear
function of the covariates, and so

Yit(0) =
JX

j=1

�ijµjt +
KX

k=1

BtkZik + "it = �0
iµT +B0

tZi + "it. (A.13)
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In this case the residuals eit = 0 8i, t.

Corollary A.4. Under the linear factor model with covariates in Assumption A.3 with ft(Zi) =PK
k=1BtkZik as in Equation (A.13), for any � > 0, �̂cov in Equation (33) with �ridge ! 1 satisfies

the bound
������
Y1T (0)�

X

Wi=0

�̂covYiT

������
 JM2

p
T0

 
��X̌1 � X̌ 0

0·�̂
��
2| {z }

imbalance in X̌

+4�

r
K

N0
kZ1 �Z 0

0·�̂k2
| {z }
excess approximation error

!
+

2JM2�p
T0

✓p
logN0 +

�

2

◆

| {z }
SCM approximation error

+ ��(1 + k�̂covk2)| {z }
post-treatment noise

(A.14)

with probability at least 1� 6e�
�2

2 � 2e�
KN0(2�

p
log 5)2

2 .

Building on Lemma 4, Theorem A.2 and Corollary A.4 show that due to the additive, separable
structure of the auxiliary covariates in Equation (A.13), controlling the pre-treatment fit in the
residualized lagged outcomes X̌ partially controls the error. This justifies directly targeting fit in
the residualized lagged outcomes X̌ rather than targeting raw lagged outcomes X. Moreover, the
excess approximation error will be small since since the number of covariates K is small relative
to N0 and the auxiliary covariates are measured without noise. As in Section 4.2, we can achieve
better balance when we apply ridge ASCM to X̌ than when we apply SCM alone. Because X̌ are
orthogonal to Z by construction, this comes at no cost in terms of imbalance in Z. However, the
fundamental challenge of over-fitting to noise still remains, and, as in the case without auxiliary
covariates, selecting the tuning parameter remains important. We again propose to follow the cross
validation approach in Section 5.3, here using the residualized lagged outcomes X̌ rather than the
raw lagged outcomes X.
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C Simulation data generating process

We now describe the simulations in detail. We use the Generalized Synthetic Control Method
(Xu, 2017) to fit the following linear factor model to the observed series of log GSP per capita
(N = 50, T0 = 89, T = 105), setting J = 3:

Yit = ↵i + ⌫t +
JX

j=1

�ijµjt + "it. (A.15)

We then use these estimates as the basis for simulating data. Appendix Figure F.5 shows the
estimated factors µ̂. We use the estimated time fixed e↵ects ⌫̂ and factors µ̂ and then simulate
data using Equation (A.15), drawing:

↵i ⇠ N( ˆ̄↵, �̂↵)

� ⇠ N(0, ⌃̂�)

"it ⇠ N(0, �̂"),

where ˆ̄↵ and �̂↵ are the estimated mean and standard deviation of the unit-fixed e↵ects, ⌃̂� is
the sample covariance of the estimated factor loadings, and �̂" is the estimated residual standard
deviation. We also simulate outcomes with quadruple the standard deviation, sd("it) = 4�̂". We
assume a sharp null of zero treatment e↵ect in all DGPs and estimate the ATT at the final time
point.

To model selection, we compute the (marginal) propensity scores as

logit�1 {⇡i} = logit�1 {P(T = 1 | ↵i,�i)} = ✓

0

@↵i +
X

j

�ij

1

A ,

where we set ✓ = 1/2 and re-scale the factors and fixed e↵ects to have unit variance. Finally,
we restrict each simulation to have a single treated unit and therefore normalize the selection
probabilities as ⇡iP

j ⇡j
.

We also consider an alternative data generating process that specializes the linear factor model
to only include unit- and time-fixed e↵ects:

Yit(0) = ↵i + ⌫t + "it.

We calibrate this data generating process by fitting the fixed e↵ects with gsynth and drawing new
unit-fixed e↵ects from ↵i ⇠ N( ˆ̄↵, �̂↵). We then model selection proportional to the fixed e↵ect as
above with ✓ = 3

2 . Second, we generate data from an AR(3) model:

Yit(0) = �0 +
3X

j=1

�jYi(t�j) + "it,

where we fit �0,� to the observed series of log GSP per capita. We model selection as proportional

to the last 3 outcomes logit�1⇡i = ✓
⇣P4

j=1 Yi(T0�j+1)

⌘
and set ✓ = 5

2 . For this simulation we

8



estimate the ATT at time T0 + 1.
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D Proofs

D.1 Proofs for Section 4

Lemma A.2. With ⌘̂ridge0 and ⌘̂ridge, the solutions to (14), the ridge estimate can be written as a
weighting estimator:

Ŷ ridge
1T (0) = ⌘̂ridge0 + ⌘̂ridge0X1 =

X

Wi=0

�̂ridgei YiT , (A.16)

where

�̂ridgei =
1

N0
+ (X1 � X̄0)

0(X 0
0·X0· + �ridgeIT0)

�1Xi. (A.17)

Moreover, the ridge weights �̂ridge are the solution to

min
� |

P
i �i=1

1

2�ridge
kX1 �X 0

0·�k22 +
1

2

����� � 1

N0

����
2

2

. (A.18)

Proof of Lemmas 1 and A.2. Recall that the lagged outcomes are centered by the control averages.
Notice that

Ŷ aug
1T (0) = m̂(X1) +

X

Wi=0

�̂scmi (YiT � m̂(Xi))

= ⌘̂0 + ⌘̂0X1 +
X

Wi=0

�̂scmi (YiT � ⌘̂0 �X 0
i⌘̂)

=
X

Wi=0

(�̂scmi + (X1 �X 0
0·�̂

scm)(X 0
0·X0· + �IT0)

�1Xi)YiT

=
X

Wi=0

�̂augi YiT

(A.19)

The expression for Ŷ ridge
1T (0) follows.

We now prove that �̂ridge and �̂scm solve the weighting optimization problems (A.18) and (18).
First, the Lagrangian dual to (A.18) is

min
↵,�

1

2

X

Wi=0

✓
↵+ �0Xi +

1

N0

◆2

� (↵+ �0X1) +
�

2
k�k22, (A.20)

where we have used that the convex conjugate of 1
2

⇣
x� 1

N0

⌘2
is 1

2

⇣
y + 1

N0

⌘2
� 1

2N2
0
. Solving for ↵

we see that X

Wi=0

↵̂+ �̂0Xi + 1 = 1

Since the lagged outcomes are centered, this implies that

↵̂ = 0

Now solving for � we see that

X 0
0·

✓
1

1

N0
+X0·�̂

◆
+ ��̂ = X1

10



This implies that
�̂ = (X 0

0·X0· + �I)�1X1

Finally, the weights are the ridge weights

�̂i =
1

N0
+X 0

1(X
0
0·X0· + �I)�1Xi = �̂ridge

i

Similarly, the Lagrangian dual to (18) is

min
↵,�

1

2

X

Wi=0

�
↵+ �0Xi + �̂scmi

�2 � (↵+ �0X1) +
�

2
k�k22, (A.21)

where we have used that the convex conjugate of 1
2 (x� �̂scmi )2 is 1

2 (y + �̂scmi )2 � 1
2 �̂

scm2
i . Solving

for ↵ we see that ↵̂ = 0. Now solving for � we see that

�̂ = (X 0
0·X0· + �I)�1(X1 �X 0

0·�̂
scm)

Finally, the weights are the ridge ASCM weights

�̂i = �̂scmi + (X1 �X 0
0·�̂

scm)0(X 0
0·X0· + �I)�1Xi = �̂augi

Proof of Lemma 3. Notice that

X1 �X 0
0·�̂

aug = (I �X 0
0·X0·(X

0
0·X0· +N0�I)

�1)(X1 �X 0
0·�̂

scm)

= N0�(X
0
0·X0· +N0�I)

�1(X1 �X 0
0·�̂

scm)

= V diag

 
�

d2j + �

!
V 0(X1 �X 0

0·�̂
scm)

So since V is orthogonal,

kX1 �X 0
0·�̂

augk2 =

�����diag
 

�

d2j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2

Lemma A.3. The ridge augmented SCM weights with hyperparameter �N0, �̂aug, satisfy

k�̂augk2  k�̂scmk2 +
1p
N0

�����diag
 

dj
d2j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2

, (A.22)

with fXi = V 0Xi as defined in Lemma 3.

Proof of Lemma A.3. Notice that using the singular value decomposition and by the triangle in-
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equality,
k�̂augk2 =

���̂scm +X0·(X
0
0·X0· + �I)�1(X1 �X 0

0·�̂
scm)

��
2

=

������̂
scm +Udiag

 p
N0dj

N0d2j + �N0

!
V 0(X1 �X 0

0·�̂
scm)

�����
2

 k�̂scmk2 +

�����diag
 

dj
(d2j + �)

p
N0

!
(fX1 � fX 0

0·�̂
scm)

�����
2

.

D.2 Proofs for Sections 5, B.1, and B.2

For these proofs we will begin by considering a model where the post-treatment control potential
outcomes at time T are linear in the lagged outcomes and include a unit specific term ⇠i.

Assumption A.4. The post-treatment potential outcomes are generated as

YiT (0) = � ·Xi + ⇠i + "iT , (A.23)

where {"iT } are defined as in Assumption 1(a).

Below we will put structure on the unit-specific terms ⇠i, first we write a general finite-sample
bound.

Proposition A.1. Under model (A.23) with independent sub-Gaussian noise, for weights �̂ inde-
pendent of the post-treatment residuals ("1T , . . . , "NT ) and for any � > 0,

Y1T (0)�
X

Wi=0

�̂iYiT  k�k2

������
X1 �

X

Wi=0

�̂iXi

������
2| {z }

imbalance inX

+

������
⇠1 �

X

Wi=0

�̂i⇠i

������
| {z }
approximation error

+ ��(1 + k�̂k2)| {z }
post-treatment noise

, (A.24)

with probability at least 1� 2e�
�2

2 .

Proof. First, note that the estimation error is

Y1T (0)�
X

Wi=0

�̂iYiT = � ·

0

@X1 �
X

Wi=0

�̂iXi

1

A+

0

@⇢1 �
X

Wi=0

�̂i⇠i

1

A+

0

@"1T �
X

Wi=0

�̂i"iT

1

A (A.25)

Now since the weights are independent of "iT , by the mean-zero noise assumption in Assump-
tion 1(a) we see that "1T �

P
Wi=0 �̂i"iT is sub-Gaussian with scale parameter �

p
1 + k�̂k22 

� (1 + k�̂k2). Therefore we can bound the second term:

P

0

@

������
"1T �

X

Wi=0

�̂i"iT

������
� �� (1 + k�̂k2)

1

A  2 exp

✓
��2

2

◆

The result follows from the triangle inequality and the Cauchy-Schwartz inequality.
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Proof of Proposition 1. Note that under the linear model (4), ⇠i = 0 for all i. Now from Lemma 3
we have that

kX1 �X 0
0·�̂

augk2 =

�����diag
 

�

d2j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2

.

Plugging this in to Equation (A.24) completes the proof.

Proof of Corollary A.1. This is a direct consequence of Proposition A.1 noting that under the linear
model (4), ⇠i = 0 for all i.

Random approximation error We now consider the case where ⇠i are random. We can use
Proposition A.1 to further bound the approximation error. In particular, we make the following
assumption:

Assumption A.5. ⇠i are sub-Gaussian random variables with scale parameter $ and are mean-
zero, E[⇠i] = 0 for all i = 1, . . . , N .

Lemma A.4. Under Assumption A.5, for weights �̂ and any � > 0 the approximation error satisfies
������
⇠1 �

X

Wi=0

�̂i⇠i

������
 �$ + 2k�̂k1$

✓p
log 2N0 +

�

2

◆
, (A.26)

with probability at least 1� 4e�
�2

2 .

Proof of Lemma A.4. From the triangle inequality and Hölder’s inequality we see that
������
⇠1 �

X

Wi=0

�̂i⇠i

������
 |⇠1|+ k�̂k1 max

Wi=0
|⇠i|.

Now since the ⇠i are mean-zero sub-Gaussian with scale parameter $, we have that

P (|⇠1| � �$)  2e�
�2

2

Next, from the union bound, the maximum of the N0 sub-Gaussian variables ⇢2, . . . , ⇢N satisfies

P

✓
max
Wi=0

|⇠i| � 2$
p

log 2N0 + �

◆
 2e�

�2

2$2 .

Setting � = �$ and combining the two probabilities with the union bound gives the result.

Lemma A.5. Under Assumption A.5, for the ridge ASCM weights �̂aug with hyper-parameter
�ridge = �N0 and for any � > 0 the approximation error satisfies
������
⇠1 �

X

Wi=0

�̂i⇠i

������
 2$

✓p
log 2N0 +

�

2

◆
+ (1 + �)4$

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2| {z }
excess approximation error

, (A.27)
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with probability at least 1� 4e�
�2

2 � e�2(log 2+N0 log 5)�2 .

Proof of Lemma A.5. Again from Hölder’s inequality we see that
������
⇠1 �

X

Wi=0

�̂augi ⇠i

������
= |⇠1|+

������

X

Wi=0

(�̂scmi + �̂augi � �̂scmi )⇠i

������

 |⇠1|+ k�̂scmk1 max
Wi=0

|⇠i|+ k�̂aug � �̂scmk2
sX

Wi=0

⇠2i .

We have bounded the first two terms in Lemma A.4, now it su�cies to bound the third term.
First, from Lemma A.3 we see that

k�̂aug � �̂scmk2 =
1p
N0

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2

.

Second, via a standard discretization argument (Wainwright, 2018), we can bound the L2 norm of
the vector (⇠2, . . . , ⇠N ) as

P

0

@
sX

Wi=0

⇠2i � 2$
p
log 2 +N0 log 5 + �

1

A  2 exp

✓
� �2

2$2

◆
.

Setting � = 2�$
p
log 2 +N0 log 5, noting that log 2 +N0 log 5 < 4N0, we have that

k�̂aug � �̂scmk2
sX

Wi=0

⇠2i  (1 + �)$4

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2

with probability at least 1 � 2e�2(log 2+N0 log 5)�2 . Since k�̂scmk1 = 1, combining with Lemma A.4
via the union bound gives the result.

Theorem A.3. Under Assumptions A.4 and A.5 model (A.23), for �̂ independent of the post-
treatment outcomes (Y1T , . . . , YNT ) and for any � > 0,

Y1T (0)�
X

Wi=0

�̂iYiT  k�k2

������
X1 �

X

Wi=0

�̂iXi

������
2| {z }

imbalance in X

+ �$ + 2k�̂k1$
✓p

log 2N0 +
�

2

◆

| {z }
approximation error

+ �� (1 + k�̂k2)| {z }
post-treatment noise

,

(A.28)

with probability at least 1� 6e�
�2

2 .

Proof of Theorem A.3. The Theorem directly follows from Proposition A.1 and Lemma A.4, com-
bining the two probabilistic bounds via the union bound.
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Theorem A.4. Under Assumptions A.4 and A.5 model (A.23), for any � > 0, the ridge ASCM
weights with hyperparameter �ridge = �N0 satisfy the bound

Y1T (0)�
X

Wi=0

�̂iYiT  k�k2

������
diag

 
�

d2j + �

!0

@fX1 �
X

Wi=0

�̂scmi
fXi

1

A

������
2| {z }

imbalance in X

+2$

✓p
log 2N0 +

�

2

◆

| {z }
approximation error

(1 + �)4$

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2| {z }
excess approximation error

+ �� (1 + k�̂k2)| {z }
post-treatment noise

,

(A.29)

with probability at least 1� 6e�
�2

2 � e�2(log 2+N0 log 5)�2 .

Proof of Theorem A.4. First note that from Lemma 3 we have that

kX1 �X 0
0·�̂

augk2 =

�����diag
 

�

d2j + �

!
(fX1 � fX 0

0·�̂
scm)

�����
2

.

The Theorem directly follows from Proposition A.1 and Lemma A.5, combining the two probabilistic
bounds via the union bound.

Theorems A.3 and A.4 have several implications when the outcomes follow a linear factor model
(6). To see this, we need one more lemma:

Lemma A.6. The linear factor model is a special case of model (A.23) with � = 1
T0
µµT and

⇠i =
1
T0
µ0
Tµ"i(1:T0). k�k2  MJ2

p
T0

, and if "i(1:T0) are independent sub-Gaussian vectors with scale

parameter �T0 , then
1
T0
µ0
Tµ

0"i(1:T0) is sub-Gaussian with scale parameter
JM2�T0p

T0
.

Proof of Lemma A.6. Notice that under the linear factor model, the pre-treatment covariates for
unit i satisfy:

Xi = µ�i + "i(1:T0).

Multiplying both sides by (µ0µ)�1µ0 = 1
T0
µ0 and rearranging gives

1

T0
µ0Xi �

1

T0
µ0"i(1:T0) = �i.

Then we see that the post treatment outcomes are

YiT (0) =
1

T0
µ0
Tµ

0Xi +
1

T0
µ0
Tµ

0"i(1:T0).

Since "i(1:T0) is a sub-Gaussian vector v0"i(1:T0) is sub-Gaussian with scale parameter �T0 for any

v 2 RT0 such that kvk2 = 1. Now notice that kµ0
Tµ

0k2  kµT k2kµk2  MJ2
p
T0. This completes

the proof.

Proof of Corollary A.2. From Lemma A.6 we can apply Theorem A.3 with � = 1
T0
µ0
Tµ

0 and ⇠i =
1
T0
µ0
Tµ

0"i(1:T0). Since "it are independent sub-Gaussian random variables, "i(1:T0) is a sub-Gaussian
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vector with scale parameter �T0 = �. Noting that k�̂k1 =
P

Wi=0 |�̂i| = 1 and applying Lemma
A.6 gives the result.

Proof of Theorem 1. Again from Lemma A.6 we can apply Theorem A.4 with � = 1
T0
µ0
Tµ

0 and

⇠i =
1
T0
µ0
Tµ

0"i(1:T0), so $ = JM2�p
T0

. Plugging these values into Theorem A.3 gives the result.

Corollary A.5 (Approximation error for ridge ASCM with dependent errors). Under the linear

factor model (6) with time-dependent errors satisfying "i(1:T0)
iid⇠ N(0,�2⌦) the approximation error

satisfies
������
⇠1 �

X

Wi=0

�̂i⇠i

������
=

������
1

T0
µ0
Tµ

0

0

@"1(1:T0) �
X

Wi=0

�̂i"i(1:T0)

1

A

������

 2

s
k⌦k2
T0

JM2�

 
p
log 2N0 + � + (1 + �)2

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2

!
,

(A.30)

Proof of Corollary A.5. From Lemma A.6, we see that ⇠i =
1
T0
µ0
Tµ

0"i(1:T0) is sub-Guassian with

scale parameter JM2
q

k⌦k2
T0

. Plugging in to Lemma A.5 gives the result.

Lipshitz approximation error If ⇠i are Lipshitz functions, we can can also bound the approx-
imation error.

Assumption A.6. ⇠i = f(Xi) where f : RT0 ! R is an L-Lipshitz function.

Lemma A.7. Under Assumption A.6, for weights on the simplex �̂ 2 �N0 , the approximation
error satisfies ������

⇠1 �
X

Wi=0

�̂i⇠i

������
 L

X

Wi=0

�̂ikX1 �Xik2 (A.31)

Proof of Lemma A.7. Since the weights sum to one, we have that
������
⇠1 �

X

Wi=0

�̂i⇠i

������


������

X

Wi=0

�̂i(f(X1)� f(Xi))

������
.

Now from the Lipshitz property, |f(X1)� f(Xi)|  LkX1 �Xik2, and so by Jensen’s inequalty:

������

X

Wi=0

�̂i(f(X1)� f(Xi))

������
 L

X

Wi=0

�̂ikX1 �Xik2

Proof of Theorem A.3. The proof follows directly from Proposition A.1 and Lemma A.7.
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Lemma A.8. Let C = maxWi=0 kXik2. Under Assumption A.6, the ridge ASCM weights �̂aug

(17) with hyperparameter �ridge = N0� satisfy

������
⇠1 �

X

Wi=0

�̂augi ⇠i

������
 L

X

Wi=0

�̂scmi kX1 �Xik2 + CL

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2

(A.32)

Proof of Lemma A.8. From the triangle inequality we have that
������
⇠1 �

X

Wi=0

�̂augi ⇠i

������


������

X

Wi=0

�̂scmi (f(X1)� f(Xi))

������
+

������

X

Wi=0

Xi
�
X 0

0·X0· + �I
��1

(X1 �X 0
0·�̂

scm)f(Xi)

������
.

We have already bounded the first term in Lemma A.7, now we bound the second term. From the
Cauchy-Schwartz inequality and since kxk2 

p
N0kxk1 for all x 2 RN0 we see that

������

X

Wi=0

Xi
�
X 0

0·X0· + �I
��1

(X1 �X 0
0·�̂

scm)f(Xi)

������

p
N0

���X0·
�
X 0

0·X0· + �I
��1

(X1 �X 0
0·�̂

scm)
���
2
|f(Xi)|

=

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2

|f(Xi)|

 CL

�����diag
 

dj
d2j + �

!⇣
fX1 � fX 0

0·�̂
scm
⌘�����

2

,

where the second line comes from Lemma A.3 and the third line from the Lipshitz property.

Proof of Theorem A.1. The proof follows directly from Proposition A.1 and Lemma A.8.

D.3 Proofs for Sections 6 and B.3

Proof of Lemma 4. The regression parameters ⌘̂x and ⌘̂z in Equation (31) are:

⌘̂x = (X̌ 0
0·X̌0· + �ridgeI)�1X̌ 0

0·Y0T and ⌘̂z = (Z 0
0·Z0·)

�1Z 0
0·Y0T (A.33)

Now notice that

Ŷ cov
0T = ⌘̂0

xX1 + ⌘̂0
zZ1 +

X

Wi=0

(YiT � ⌘̂0
xXi � ⌘̂zZi)�̂i

= ⌘̂0
x(X1 �X 0

0·�̂) + ⌘̂z(Z1 �Z 0
0·�̂) + Y 0

0T �̂

= ⌘̂0
x(X1 �X 0

0·�̂)� ⌘̂0
xX0·(Z

0
0·Z0·)

�1(Z1 �Z 0
0·�̂) + Y 0

0TZ0·(Z
0
0·Z0·)

�1(Z1 �Z 0
0·�̂) + Y 0

0T �̂

= ⌘̂0
x(X̌1 � X̌ 0

0·�̂) + Y 0
0TZ0·(Z

0
0·Z0·)

�1(Z1 �Z 0
0·�̂) + Y 0

0T �̂

= Y 0
0T

⇣
�̂ + X̌0·(X̌

0
0·X̌0· + �ridgeIT0)

�1(X̌1 � X̌ 0
0·�̂) +Z0·(Z

0
0·Z0·)

�1(Z1 �Z 0
0·�̂)

⌘
.

(A.34)
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This gives the form of �̂cov. The imbalance in Z is

Z1 �Z 0
0·�̂

cov =
�
Z1 �Z 0

0·Z0·(Z
0
0·Z0·)

�1Z1
�
+
�
Z0· �Z 0

0·Z0·(Z
0
0·Z0·)

�1Z0·
�0
�̂

�Z 0
0·X̌0·(X̌

0
0·X̌0· + �ridgeI)�1(X̌1 � X̌ 0

0·�̂)

= 0.

(A.35)

The pre-treatment fit is

X1 �X 0
0·�̂

cov =
�
X1 �X 0

0·Z0·(Z
0
0·Z0·)

�1Z1
�
+
�
X0· �X 0

0·Z0·(Z
0
0·Z0·)

�1Z0·
�0
�̂

�X 0
0·X̌0·(X̌

0
0·X̌0· + �ridgeIT0)

�1(X̌1 � X̌ 0
0·�̂)

=
⇣
IT0 �X 0

0·X̌0·(X̌
0
0·X̌0· + �ridgeIT0)

�1
⌘ �

X̌1 � X̌ 0
0·�̂
�

=
⇣
IT0 � X̌ 0

0·X̌0·(X̌
0
0·X̌0· + �ridgeIT0)

�1
⌘ �

X̌1 � X̌ 0
0·�̂
�
.

(A.36)

This gives the bound on the pre-treatment fit.

Proof of Theorem A.2. First, we will separate f(Z) into the projection onto Z and a residual.
Defining Bt = (Z 0Z)�1Z 0ft(Z) 2 RK as the regression coe�cient, the projection of ft(Zi) is Z 0

iBt

and the residual is eit = ft(Zi) � Z 0
iBt. We will denote the matrix of regression coe�cients over

t = 1, . . . , T0 as B = [B1, . . . ,BT0 ] 2 RK⇥T0 and denote the matrix of residuals as E 2 Rn⇥T0 ,
with E1· = (e11, . . . , e1T0) as the vector of residuals for the treated unit and E0· as the matrix of
residuals for the control units.

Then the error is
������
Y1T (0)�

X

Wi=0

�̂cov
i YiT

������


������
µT ·

0

@�1 �
X

Wi=0

�̂cov
i �i

1

A

������
+

������
Bt ·

0

@Z1 �
X

Wi=0

�̂cov
i Zi

1

A

������

+

������
e1T �

X

Wi=0

�̂coveiT

������
+

������
"1T �

X

Wi=0

�̂cov
i "iT

������

Since �̂cov
i exactly balances the covariates, the second term is equal to zero. We can bound the

third term with Hölder’s inequality:
������
e1T �

X

Wi=0

�̂coveiT

������
 |e1T |+

p
RSST k�̂covk2

In previous theorems we have bounded the last term with high probability. Only the error due to
imbalance remains.

Denote "0(1:T0) as the matrix of pre-treatment noise for the control units, where the rows
correspond to "2(1:T0), . . . , "N0(1:T0). Building on Lemma A.6, we can see that the error due to
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imbalance in � is equal to

µT ·

0

@�1 �
X

Wi=0

�̂cov
i �i

1

A =
1

T0
µ0
Tµ

0(X1 �X 0
0·�̂

cov)� 1

T0
µ0
Tµ

0("1(1:T0) � "00(1:T0)
�̂cov)

� 1

T0
µ0
Tµ

0B0(Z1 �Z 0
0·�̂

cov)� 1

T0
µ0
Tµ

0(E1· �E0
0·�̂

cov).

(A.37)

By construction, �̂cov perfectly balances the covariates, and combined with Lemma 4, the error due
to imbalance in � simplifies to

µT ·

0

@�1 �
X

Wi=0

�i�i

1

A =
1

T0
µ0
Tµ

0(X̌1�X̌ 0
0·�̂)�

1

T0
µ0
Tµ

0("1(1:T0)�"00(1:T0)
�̂cov)� 1

T0
µ0
Tµ

0(E1·�E0
0·�̂

cov).

We now turn to bounding the noise term and the error due to the projection of f(Z) on to Z.
First, notice that

1

T0
µ0
Tµ

0"00(1:T0)
�̂cov =

1

T0
µ0
Tµ

0"00(1:T0)
�̂scm +

1

T0
µ0
Tµ

0"00(1:T0)
Z0·(Z

0
0·Z0·)

�1(Z1 �Z 0
0·�̂

scm).

We have bounded the first term on the right hand side in Lemma A.4. To bound the second term,
notice that

P
Wi=0

PT0
t=1 µ

0
Tµt·Zik"it is sub-Gaussian with scale parameter �MJ2

p
T0kZ·kk2 =

MJ2�
p
T0N0. We can now bound the L2 norm of 1

T0
µ0
Tµ

0"00(1:T0)
Z0· 2 RK :

P

 
1

T0
kµ0

Tµ
0"00(1:T0)

Z0·k2 � 2JM2�

 r
N0K log 5

T0
+ �

!!
 2 exp

✓
�T0�2

2

◆

Replacing � with
q

KN0
T0

(2�
p
log 5) and with the Cauchy-Schwarz inequality we see that

1

T0

���µ0
Tµ

0"00(1:T0)
Z0·(Z

0
0·Z0·)

�1(Z1 �Z 0
0·�̂)

���  4JM2�

r
K

T0N0
kZ1 �Z 0

0·�̂
scmk2

with probability at least 1� 2 exp
⇣
�KN0(2�

p
log 5)2

2

⌘
.

Next we turn to the residual term. By Hölder’s inequality and using that for a matrix A, the
operator norm is bounded by kAk2 

p
trace(A0A) we see that

����
1

T0
µ0
Tµ

0(E1· �E0
0·�̂

cov)

���� 
JM2

p
T0

(kE1·k2 + k�̂covk2kE0·k2)

 JM2

0

@ max
t=1,...,T0

|e1t|+ k�̂covk2

vuut 1

T0

T0X

t=1

RSSt

1

A

 JM2

✓
max

t=1,...,T0

|e1t|+ k�̂covk2
q

max
t

RSSt

◆
,

where we have used that 1p
T0
kE1·k2  maxt=1,...,T0 |e1t| and trace(E0

0·E0·) =
PT0

t=1RSSt.
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Combining with Lemma 4 and putting together the pieces with the union bound gives the
result.
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E Connection to balancing weights and IPW

We have motivated Augmented SCM via bias correction. An alternative motivation comes from the
connection between SCM and inverse propensity score weighting (IPW). This is also comparable
in form to the generalized regression estimator in survey sampling (Cassel et al., 1976; Breidt and
Opsomer, 2017), which has been adapted to the causal inference setting by, among others, Athey
et al. (2018) and Hirshberg and Wager (2018).

First, notice that the SCM weights from the constrained optimization problem in Equation (8)
are a form of approximate balancing weights; see, for example, Zubizarreta (2015); Athey et al.
(2018); Tan (2017); Wang and Zubizarreta (2018); Zhao (2018). Unlike traditional inverse propen-
sity score weights, which indirectly minimize covariate imbalance by estimating a propensity score
model, balancing weights seek to directly minimize covariate imbalance, in this case L2 imbalance.
Balancing weights have a Lagrangian dual formulation as inverse propensity score weights (see, for
example Zhao and Percival, 2017; Zhao, 2018; Chattopadhyay et al., 2020). Extending these results
to the SCM setting, the Lagrangian dual of the SCM optimization problem in Equation (8) has the
form of a propensity score model. Importantly, as we discuss below, it is not always appropriate to
interpret this model as a propensity score.

We first derive the Lagrangian dual for a general class of balancing weights problems, then
specialize to the penalized SCM estimator (8).

min
�

h⇣(X1 �X 0
0·�)| {z }

balance criterion

+
X

Wi=0

f(�i)| {z }
dispersion

subject to
X

Wi=0

�i = 1.
(A.38)

This formulation generalizes Equation (8) in two ways: first, we remove the non-negativity con-
straint and note that this can be included by restricting the domain of the strongly convex dispersion
penalty f . Examples include the re-centered L2 dispersion penalties for ridge regression and ridge
ASCM, an entropy penalty (Robbins et al., 2017), and an elastic net penalty (Doudchenko and
Imbens, 2017). Second, we generalize from the squared L2 norm to a general balance criterion h⇣ ;
another promiment example is an L1 constraint (see e.g. Zubizarreta, 2015; Athey et al., 2018).

Proposition A.2. The Lagrangian dual to Equation (A.38) is

min
↵,�

X

Wi=0

f⇤(↵+ �0Xi·)� (↵+ �0X1)

| {z }
loss function

+ h⇤⇣(�)

| {z }
regularization

, (A.39)

where a convex, di↵erentiable function g has convex conjugate g⇤(y) ⌘ supx2dom(g){y0x � g(x)}.
The solutions to the primal problem (A.38) are �̂i = f⇤0(↵̂+�̂0Xi), where f⇤0(·) is the first derivative
of the convex conjugate, f⇤(·).

There is a large literature relating balancing weights to propensity score weights. This literature
shows that the loss function in Equation (A.39) is an M-estimator for the propensity score and thus
will be consistent for the propensity score parameters under large N asymptotics. The dispersion
measure f(·) determines the link function of the propensity score model, where the odds of treatment
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are ⇡(x)
1�⇡(x) = f⇤0(↵ + �0x). Note that un-penalized SCM, which can yield multiple solutions,

does not have a well-defined link function. We extend the duality to a general set of balance
criteria so that Equation (A.39) is a regularized M-estimator of the propensity score parameters
where the balance criterion h⇣(·) determines the type of regularization through its conjugate h⇤⇣(·).
This formulation recovers the duality between entropy balancing and a logistic link (Zhao and
Percival, 2017), Oaxaca-Blinder weights and a log-logistic link (Kline, 2011), and L1 balance and
L1 regularization (Wang and Zubizarreta, 2018). This more general formulation also suggests
natural extensions of both SCM and ASCM beyond the L2 setting to other forms, especially L1

regularization.
Specializing proposition A.2 to a squared L2 balance criterion h⇣(x) =

1
2⇣ kxk

2
2 as in the penalized

SCM problems yields that the dual propensity score coe�cients � are regularized by a ridge penalty.
In the case of an entropy dispersion penalty as Robbins et al. (2017) consider, the donor weights �̂
have the form of IPW weights with a logistic link function, where the propensity score is ⇡(Xi) =

logit�1(↵+ �0Xi), the odds of treatment are ⇡(Xi)
1�⇡(Xi)

= exp(↵+ �0Xi) = �i.
We emphasize that while Proposition A.2 shows that the the estimated weights have the IPW

form, in SCM settings it may not always be appropriate to interpret the dual problem as a propen-
sity score reflecting stochastic selection into treatment. For example, this interpretation would not
be appropriate in some canonical SCM examples, such as the analysis of German reunification in
Abadie et al. (2015).

Proof of Proposition A.2. We can augment the optimization problem (A.38) with auxiliary vari-
ables ✏, yielding:

min
�,✏

h⇣(✏) +
X

Wi=0

f(�i).

subject to ✏ = X1 �X 0
0·�X

Wi=0

�i = 1

(A.40)

The Lagrangian is

L(�, ✏,↵,�) =
X

i|Wi=0

f(�i) + ↵(1� �i) + h⇣(✏) + �0(X1 �X 0
0·� � ✏). (A.41)

The dual maximizes the objective

q(↵,�) = min
�,✏

L(�, ✏,↵,�)

=
X

Wi=0

min
�i

{f(�i)� (↵+ �0Xi)�i}+min
✏

{h⇣(✏)� �0✏}+ ↵+ �0X1

= �
X

Wi=0

f⇤(↵+ �0Xi) + ↵+ �0X 0
1 � h⇤⇣(�),

(A.42)

By strong duality the general dual problem (A.39), which minimizes �q(↵,�), is equivalent to the
primal balancing weights problem. Given the ↵̂ and �̂ that minimize the Lagrangian dual objective,
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�q(↵,�), we recover the donor weights solution to (A.38) as

�̂i = f⇤0(↵̂+ �̂0Xi). (A.43)
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F Additional figures

Figure F.1: RMSE for di↵erent augmented and non-augmented estimators across outcome models.
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Figure F.2: Absolute bias (as a percentage of SCM bias) for ridge, fixed e↵ects, and several ma-
chine learning and panel data outcome models, and their augmented versions using the same data
generating processes as Figure 3.
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Figure F.3: Bias for di↵erent augmented and non-augmented estimators across outcome models
conditioned on SCM fit in the top quintile.

26

Factor Model: a= & Factor Model: a= 4& 

Ridge· • 0 •o I 

Fixed Effects I • ::: • 0 
Lasso • Q • 0 

RF • ::: •• 0 
Causal Impact • 0 • 0 

MCPanel • 0 a) 

GSynth • I 0 • I 
I I 

50% 100% 150% 200%70% 80% 90% 100% 110% 120% 

Fixed Effects AR(3) 

Ridge· •c • 0 
I 

Fixed Effects • 10 • Lasso • • 0 
RF 0 • C 

Causal Impact I • 0 
MCPanel • p • 0 

GSynth • :o • 0 I 
I 

50% 100% 150% 25% 50% 75% 100% 125% 

Absolute bias (relative to SCM) 

Augmented 0 N • y 



Figure F.4: RMSE for di↵erent augmented and non-augmented estimators across outcome models
conditioned on SCM fit in the top quntile.
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Figure F.5: Latent factors for calibrated simulation studies.

Figure F.6: Cross validation MSE and one standard error computed according to Equation (27).
The minimal point, and the maximum � within one standard error of the minimum are highlighted.
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Figure F.7: Point estimates along with point-wise 95% conformal confidence intervals for the e↵ect
of the tax cuts on GSP per capita using SCM, ridge ASCM, and ridge ASCM with covariates.

Figure F.8: Point estimates along with point-wise 95% conformal confidence intervals for the e↵ect
of the tax cuts on log GSP per capita using de-meaned SCM, ridge regression alone, ridge ASCM
with � chosen to minimize the cross validated MSE, the original SCM proposal with covariates
(Abadie et al., 2010), and a two-way fixed e↵ects di↵erences in di↵erences estimate.
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Figure F.9: Ridge regression coe�cients for each pre-treatment quarter, averaged across post-
treatment quarters.

Figure F.10: Placebo point estimates along with 95% conformal confidence intervals for SCM with
placebo treatment times in Q2 2009, 2010, and 2011. Scale begins in 2005 to highlight placebo
estimates.
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Figure F.11: Placebo point estimates along with 95% conformal confidence intervals for ridge ASCM
with placebo treatment times in Q2 2009, 2010, and 2011. Scale begins in 2005 to highlight placebo
estimates.

Figure F.12: Placebo point estimates along with 95% conformal confidence intervals for Ridge
ASCM with covariates with placebo treatment times in Q2 2009, 2010, and 2011. The time period
begins in 2005 and ends in Q1 2012 to highlight placebo estimates.
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Figure F.13: Donor unit weights for SCM, ridge regression, and ridge ASCM balancing lagged
outcomes.

Figure F.14: Donor unit weights for SCM and ridge ASCM fit on lagged outcomes after residualizing
out auxiliary covariates.
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