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ABSTRACT 

Previous research has shown that providing video 
recommendations to students in virtual learning environments 
implemented at scale positively affects student achievement. 
However, it is also critical to evaluate whether the treatment effects 
are heterogeneous, and whether they depend on contextual 
variables such as disadvantaged student status and characteristics 
of the school settings. The current study extends the evaluation of 
a novel video recommendation system by performing an 
exploratory search for sources of heterogeneity of treatment effects. 
This study’s design is a multi-site randomized controlled trial with 
an assignment at the student level across three large and diverse 
school districts in the southeast United States. The study occurred 
in Spring 2021, when some students were in regular classrooms and 
others in online classrooms. The results of the current study 
replicate positive effects found in a previous field experiment that 
occurred in Spring 2020, at the onset of the COVID-19 pandemic. 
Then, causal forests were used to investigate the heterogeneity of 
treatment effects. This study contributes to the literature on content 
sequencing systems and recommendation systems by showing how 
these systems can disproportionally benefit the groups of students 
who had higher levels of previous algebra ability, followed more 
recommendations, learned remotely, were Hispanic, and received 
free or reduced-price lunch, which has implications for the fairness 
of implementation of educational technology solutions. 

CCS CONCEPTS 
•Human-centered computing~Human computer interaction (HCI) 
~Interactive systems and tools 
•Computing methodologies~Machine learning~Learning settings 
~Online learning settings 
•Computing methodologies~Machine learning~Learning 
paradigms~Reinforcement learning 

 

KEYWORDS 
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1 INTRODUCTION 
The last two decades have witnessed one of the most 

dramatic developments in human education: the emergence of 
widespread technology-based instructional resources. Students and 
teachers now have access to unprecedented amounts of information 
that is available online, as well as unique learning opportunities 
afforded by intelligent tutoring systems, simulations, educational 
games, and MOOCs. The wealth of electronic data that 
accumulates as students use virtual learning environments offers 
tremendous opportunities to explore new approaches to instruction, 
including the use of students’ data to support decisions about the 
learning opportunities provided to them or to future students, and 
provide teachers with timely information about students’ learning 
progress. This approach can personalize instruction to an 
unprecedented degree including individualized based on learners’ 
individual needs, goals, aptitude, cultural background, motivation, 
and related characteristics [1, 2]. 
 Yet despite its promise, research on the effectiveness of 
technology-based personalized learning systems is only emerging, 
especially in the context of large-scale, multi-site, randomized-
controlled trials that aim to causally attribute improved education 
to a particular learning intervention compared to a control group 
[3]. Effectiveness research is similarly nascent even in the case of 
well-established personalized learning paradigms, such as the 
sequencing learning activities using reinforcement learning, where 
ongoing research dates back approximately 60 years [4]. When 
effectiveness studies do exist, they tend to focus on the average 
treatment effect (ATE) across a sample representative of a broad 
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population, which may hide differences in benefit of the systems 
across students of racial/ethnic groups, language majority/minority 
groups, and low ability/high ability groups. Therefore, it is also 
critical to evaluate whether the treatment effects are heterogeneous 
[5], and whether it depends on contextual variables that naturally 
vary in education, such as disadvantaged student status and 
characteristics of the school settings.   

Heterogeneity of treatment effects (HTE) is the variation 
of effects of an intervention across subgroups. It is a broader term 
than moderation of effects, because moderation implies a priori 
specification of moderator variables [6], while HTE allows for 
exploratory discovery of treatment modification. In medical 
research, the concept of precision medicine has led to much interest 
in HTE [7], because the treatment effect for a patient is likely to 
differ from the ATE identified in clinical trials if HTE is large. In 
educational technology research, moderation of effects of 
intelligent tutoring systems (ITS) have been studied in meta-
analyses  [8-10], but most have looked at variation in effects due to 
characteristics of the system or characteristics of the study 
implementation (i.e., methodology). However, because meta-
analyses are restricted to using subgroup information reported in 
published papers and do not have access to raw student data, these 
meta-analyses may have missed important sources of HTE related 
to disadvantaged groups and contexts.   
 The objective of the current study is to extend the 
evaluation of a novel video recommendation system for an online 
Algebra learning platform, Algebra Nation [11], by performing an 
exploratory search for sources of HTE using causal forests [12, 13]. 
Causal forests use regression forests to estimate the individual 
conditional average treatment effects (iCATEs) for student 
participants given a set of covariates, using the potential outcomes 
framework [14]. This study contributes to the literature on content 
sequencing systems and recommendation systems by showing how 
these systems may have varying effects for subgroups of students, 
which has implications for the fairness of implementation of 
educational technology solutions. This study’s design was a multi-
site randomized controlled trial with an assignment at the student 
level across three large and diverse school districts in the southeast 
United States. The study occurred in Spring 2021, when some 
students were in regular classrooms and others in online 
classrooms. The analysis first replicates the estimation of the effect 
of a previous study of the same video recommendation system that 
occurred in Spring 2020, at the onset of the COVID-19 pandemic 
[15], thereby contributing to the evidence on the effectiveness of 
personalized learning. Then, causal forests were used to investigate 
HTE of the video recommendation system, which is a new 
approach that has not yet been applied to studies of technology-
based personalized learning systems. The following questions are 
addressed: 1) What are the effects of the recommendation system 
on learning outcomes both within the platform and from 
standardized tests compared to a control group; 2) Is there 
substantial HTE of the video recommendation system? and 3) What 
student characteristics predict the HTE? 

2 BACKGROUND AND RELATED WORK 

2.1 Heterogeneity of treatment effects of intelligent 
tutoring systems 

HTE of ITS has been investigated in the literature, but 
most frequently focusing on moderation of effects by 
characteristics of the ITS or the research design, rather than 
characteristics of the students using the systems. For instance, 
VanLehn [16] examined moderation of the performance of ITS due 
to different types of tutoring (i.e., substep-based tutoring, step-
based tutoring, answer-based tutoring), but did not examine 
whether these effects vary across subgroups of students. Kulik and 
Fletcher’s [8] and Xu et al. [17] meta-analyses found that the 
amount of improvement attributed to ITSs depended to a great 
extent on whether the outcomes were measured on locally 
developed or standardized tests, but neither study looked at whether 
ITS effects varied according to the characteristics of the student 
samples. 

Two meta-analyses have examined HTE due to student 
characteristics. Ma et al. [9] performed a meta-analysis of the 
effects of ITS that included moderation by continent where the 
sample was taken, grade level, and level of prior knowledge of the 
students. Their results showed higher effects of ITS with samples 
from Asia, followed by Europe, and lower effects for samples from 
North America and Oceania. They also found that ITS used with 
middle-school and post-secondary students had higher effects than 
with elementary and high-school students. They found no 
statistically significant moderation of ITS effects by prior 
knowledge, but pointed out that there were only two studies with a 
high level of prior knowledge, and a large number of studies did 
not report prior knowledge of students. Therefore, their conclusion 
of no HTE due to prior knowledge should be taken as preliminary. 

Moderator analyses performed in the meta-analysis by 
Steenbergen-Hu and Cooper [18] showed that the effectiveness of 
ITS for helping students drawn from the general population was 
greater than for helping low achievers. However, there were only 
two studies that reported effect sizes for low achievers. They found 
no difference by grade level. In a later meta-analysis, Steenbergen-
Hu and Cooper [10] found that the effectiveness did not 
significantly differ by different ITS, subject domain, or the manner 
or degree of their involvement in instruction and learning, but the 
study did not examine whether there was HTE due to characteristics 
of the students. Given the results of these meta-analyses, it is 
evident that there is a need for studies of ITS to report moderation 
by subgroups of students. Out of the six meta-analyses reviewed, 
the only two that looked at HTE by student characteristics reported 
that the number of studies available with effects by subgroups was 
very small. The current study contributed to reducing this gap by 
providing an HTE analysis by student characteristics using an 
innovative machine learning method to detect HTE. 
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2.2. Detection of heterogeneity of treatment effects 
 Detecting treatment effect heterogeneity can be part of a 
pre-analysis plan where, in a design phase, researchers clearly state 
a set of covariates that are hypothesized to have different treatment 
effects, e.g., through moderation analysis along with an average 
treatment effect estimation [19, 20]. In experimental studies 
without any covariates to test treatment effect variation, one simple 
approach is to test whether the outcome distributions are the same 
for the treatment and control groups. The null hypothesis is that the 
distributions of the treatment and control groups are identical, 
differing with a constant shift by the average treatment effect. This 
null hypothesis can be tested through standard Kolmogorov–
Smirnov- (KS) type tests [21] when the average treatment effect is 
known. However, since the shift (i.e., the average treatment effect) 
is not known, it is a nuisance parameter that must be estimated from 
the data and the main focus here is any potential treatment effect 
variation across all observed and unobserved covariates. 
 Ding et al., [21] have shown that when the average 
treatment effect is unknown, the null hypothesis of no treatment 
effect variation is not sharp. The approach proposed by Ding et al. 
[21] is to first construct a confidence interval (CI) for the average 
treatment effect, then repeat the Fisher randomization test 
procedure pointwise over the interval and take the maximum p-
value. This approach guarantees a valid test for potential treatment 
effect variation across treatment and control groups and such a test 
can be generalized for testing treatment effects beyond a 
hypothesized model [21, 22]. 

It is also vital to explore and identify potential 
heterogeneity in treatment effects that go beyond a pre-analysis 
plan [23]. Here, we focus on methods for identifying HTE that are 
exploratory in nature [23]. There are conventional approaches to 
perform nonparametric estimation of HTE, such as matching, 
kernel methods, and series estimation [24]. In cases where a 
relatively large number of pertinent covariates are available, 
machine learning methods to detect HTE such as regression forests 
[25], causal forests [13], and Bayesian additive regression trees 
(BART) [26, 27] may be useful. However, as pointed out by Wager 
and Athey [13], these methods have “lacked formal statistical 
inference results” (p. 1229). The current study will focus on causal 
forests to detect HTE because this method can construct a valid 
confidence interval for the test of heterogeneity [23]. 

2.4. Causal Forests 
Athey and Imbens [23] proposed honest, causal trees for 

the test of heterogeneity, which does not have restrictions on model 
complexity and could handle many variables. This data-driven 
approach splits the training sample into two parts: one for 
constructing the tree and another one for estimating treatment 
effects within leaves of the tree. This approach differs from 
conventional classification and regression trees (CART) in two 
ways: First, it focuses on estimating conditional average treatment 
effects rather than predicting outcomes. Second, it uses separate 

samples for two tasks: constructing the partition and estimating the 
effects within leaves of the partition. More importantly, the method 
provides valid confidence intervals of average treatment effects 
estimated for the identified subpopulations (leaves). 

However, this approach requires the estimation of the 
true treatment effects (which is again the nuisance parameter). 
Wager and Athey [13] developed an approach to estimate 
heterogeneous treatment effects using a nonparametric causal 
forest, which is an extension of the random forest algorithm. 
Starting from the potential outcomes framework with the 
unconfoundedness assumption, this causal forest approach is 
pointwise consistent for the treatment effect and provides 
confidence intervals for the true treatment effect estimation. When 
adopting the random forest algorithm, causal trees and forests can 
be established [13]. Simulation studies showed promising results of 
the method in terms of estimating heterogeneous treatment effects. 

3. METHOD 

3.1.  Virtual Learning Environment 
We investigated a video recommendation system 

implemented in Algebra Nation [11], which is a virtual learning 
environment (VLE) for Algebra. It is used extensively in the state 
of Florida as integrated with the school districts’ system so that 
every student and teacher can log in with their school username and 
password. Algebra Nation has a series of instructional videos and 
formative assessments organized into ten domains (e.g., linear 
equations, quadratic equations, and exponential functions). These 
domains are aligned with the state’s Algebra standards. Within each 
domain, there are several topics (ranging from 6 to 12) with a total 
of 93 topics across all ten domains. Each topic is associated with a 
video of an Algebra 1 focal question, and there are five versions of 
each video taught by different tutors who are ethnically diverse and 
have different instructional approaches. Students can choose their 
tutor, which launches the corresponding video pertaining to the 
focal question. Students use Algebra Nation under the guidance of 
their teachers [28], and access it both in the classroom and at home. 
Teachers have access to a dashboard showing student actions and 
assessment results, and can assign individualized homework from 
the platform. There is a monitored discussion forum where students 
can ask questions, which are answered by other students and study 
experts. 

Algebra Nation includes formative assessments of 
students’ ability. In total, there are ten pre-test and post-test 
measures. For each domain, there is a pre-test assessment with five 
questions and a post-test assessment with ten questions. Students 
must complete these assessments in a single domain. The questions 
are selected for each student based on a student model (i.e., two-
parameter logistic item response theory [IRT] model) [29], which 
aims to maximize the amount of information about the ability 
estimate (i.e., reduce the standard error of measurement) given the 
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current estimate of the students’ ability  [30]. The questions’ 
formats are similar to the state’s high-stakes Algebra assessment. 
In addition to these assessments, each topic contains a short three-
item check-your understanding (CYU) quiz, which students can 
voluntarily access at any time. There were 93 CYU quizzes in total 
and these CYU quizzes were used as one of the inputs for the 
recommendation system.  

The video recommendation system (see Figure 1) 
integrated into Algebra Nation combines the video 
recommendation algorithm (presented later as Algorithm 1) and the 
implementation of a sensor-free measurement of engagement [31, 
32]. To measure engagement for interactions with digital learning 
technologies, we adopted D'Mello, Dieterle [33] advanced, 
analytic, automated (AAA) approach [21]. Specifically, the 
recommendation that a student receives is based on 1) his/her score 
on the three-item CYU quiz, and 2) his/her current engagement 
score (high or low). The engagement score was derived from the 
student's interactions with the VLE during the past five minutes 
before taking the CYU quiz [15].  

 

 
Figure 1. Video recommendation system 
 

Students must complete the CYU quiz before receiving a 
video recommendation. Once responses to the quiz are submitted, 
the recommendation appears as a small floating screen at the top of 
the main screen. Students can either accept or dismiss the 
recommendation. If dismissed, the recommendation window 
moves to the bottom right corner of the window, where it remains 
until the student takes another quiz. To avoid repetition, the system 
blacklists the last five recommended videos the students watched 
by assigning a zero probability to them. 
 

CYU quiz 
score1 

Engagement 
score2  

Probability of recommendation 
Category 

  C1 C2 C3 
0 low 0.9 0.1 0.0 
0 high 0.7 0.3 0.0 
1 low 0.7 0.3 0.0 
1 high 0.5 0.5 0.0 
2 low 0.5 0.5 0.0 
2 high 0.3 0.7 0.0 

3 low 0.3 0.0 0.7 
3 high 0.1 0.0 0.9 

Table 1. Video Recommendation System (Note: 1 CYU score 
ranges from 0 to 3; 2 The cutoff value of engagement score is 3, 
namely, 0 - 3 is low, and >= 3 is high.) 

 
The recommendation system provided three categories of 

recommendations: Category 1 - view new video as determined by 
the recommendation algorithm; Category 2 - review segment of 
current video that is most related to the questions that the student 
answered incorrectly (by expert review) from a new tutor (but they 
could keep the same tutor); and Category 3 - view next video in 
curriculum sequence. The specific category recommended was 
derived from a set of probabilistic rules developed in conjunction 
with subject matter experts and learning scientists (Table 1).  

The rationale for the rules is: the probability of showing 
students a recommended video based on the algorithm (i.e., 
category 1) should be higher for students who score lower in the 
CYU and have lower engagement. The video recommendation 
algorithm (Algorithm 1) is specifically used to provide the 
recommendation for Category 1. For highly engaged students, the 
system increased the probability of a review of the segment of the 
video directly related to the questions missed (i.e., category 2), 
under the assumption that highly engaged students are more likely 
to pursue reviewing their current work. For students who obtain a 
perfect score on the quiz, the system introduces a non-zero 
probability of moving to the next video of the curriculum sequence 
(i.e., category 3), under the assumption that this student is ready to 
proceed to new content. This video recommendation algorithm 
attempts to optimize learning based on student ability estimates 
from responses to short quizzes (i.e., formative assessments).  

 
Algorithm 1. New Video Recommendation Policy for Student 𝒊 

 
Inputs: initial ability estimates from item response theory model {𝑎௜௝(0)}, 

1 ൑ 𝑖 ൑ 𝑛, 1 ൑ 𝑗 ൑ 𝑟.  

Output: sequence of recommended videos 𝚥 ̂ሺ𝑡ሻ ∈ ሼ1, . . . , 𝑟ሽ, 𝑡 ൒ 0    

for 𝒕 ൌ 𝟎,𝟏, . ..do 

       Compute peer ability estimates (within cluster) 

𝑏௝ሺ𝑡ሻ  ൌ 𝑛ିଵ෍𝑎௜௝

௡

௜ୀଵ

ሺ𝑡ሻ.  

       Compute the probability distribution for videos  ሼ𝑝௝ሺ𝑡ሻሽ, 𝑗 ൌ 1,2, . . . , 𝑟,  

𝑝௝ሺ𝑡ሻ ൌ
௘௫௣ሾି ௪ೕ ሺ௔೔ೕሺ௧ሻି௕ೕሺ௧ሻሻሿ

∑ ௘௫௣ሾି ௪ೕ ሺ௔೔ೕሺ௧ሻି௕ೕሺ௧ሻሻሿ
ೝ
ೕసభ

. 

       Sample video  𝚥 ̂ሺ𝑡ሻ 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ሼ𝑝୨ሺ𝑡ሻሽ,ଵ ஸ ௝ ஸ௥ . 

       Read ሼ𝑎௜௝ሺ𝑡 ൅ 1ሻሽ ,1 ൑ 𝑖 ൑ 𝑛 ,1 ൑ 𝑗 ൑ 𝑟 from the database. 

end for 

 
 
The video recommendation algorithm in Algorithm 1 

attempts to optimize learning based on student ability estimates 
from responses to short quizzes (i.e., formative assessments). After 

Estimate ability of 
student  i for topic 

j at time t

Blacklist  of 5 
videos for 

student j at 
time t

Calculate peer 
mean ability 
for topic j at 

time t

Calculate 
probability of 

all topics 

covered so far 
for student i

Sample and return 
recommended 
topic video for 

student i

Start of Section During Section

End of Section

Replace 
probability 

of forbidden 

topics by 
zero

Student j
completes 
pre-test of 

section k

Time-invariant Topic Weights

Student ignores 
recommendation

Student i
completes CYU 

of topic j

Determine if tag 
or whole video is 
recommended or 

tutor change

Estimate 
student 

engagement at 
time t

number correct 
CYU items

Student j
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post-test of 
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Item response theory model

Sensor free measurement of engagement

Other system inputs
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a student responds to a quiz, the current ability estimate aij is 
updated with a 2-parameter IRT model [29]. The algorithm is 
anchored in Vygotsky’s theory of Zone of Proximal Development 
(ZPD) [34], because it attempts to approximate each student’s ZPD 
by calculating the distance between the students’ current ability 
estimate and the average estimate of the student’s peers bj(t). We 
determined the student peer groups by clustering students into 20 
clusters of equal size using quantiles of a Mahalanobis distance 
from the minimums of two measures of previous student 
achievement, teacher performance, and school performance (i.e., 
average student ability in previous  CYU, average ability in 10-
question quizzes, teacher value-added and school value-added [35] 
estimated by the state’s department of education and available 
publicly). The topic importance weights wj were estimated using 
the Orthogonal Greedy Algorithm (OGA) [36]. An extensive 
description of this application of OGA is presented in [15]. 

The algorithm is similar in objectives to content 
sequencing systems using partially observed Markov decision 
process (POMDP) [37] and multi-armed bandits (MAB) [38] for 
ITS. The algorithm’s advantage over POMDB and MAB is that in 
situations where each student takes a small number of quizzes from 
a large number of available quizzes on different topics, the 
algorithm is robust to large amounts of missing data [36, 39]. Also, 
when each student watches a small number of videos from a large 
set of available videos, the selected subset of videos is the most 
predictive of an increase in student ability among all possible 
subsets of videos of the same cardinality [36, 39]. 

3.2. Data 
Data for this study was obtained from a large-scale field 

experiment across 42 schools in three large school districts in 
Florida. This field experiment was conducted in the above-
mentioned VLE and lasted one semester (January to June 2021). 
Students in the sample were randomly assigned to receive two types 
of video recommendations. The treatment group received 
personalized video recommendations, and the control group 
received generic recommendations that followed the sequence of 
algebra topics in the state’s Algebra standards. Assignment of 
condition was blind to students and teachers. The structure of the 
data was naturally multilevel with students nested within 
classrooms, and classrooms nested within schools. The sample 
consisted of 2,995 students who enrolled in Algebra 1 or Algebra 1 
Honors courses in the 2020-2021 academic year. These students 
were taught by 54 teachers in 42 schools. On average, there were 
57 students per teacher (SD = 33, min = 4, max = 135) and 75 
students per school (SD = 62, min = 13, max = 332).  

3.3. Measures 
The data consists of three parts, namely, Algebra I 

standardized test score (EOC score), the VLE variables (See Table 
2), and students’ background information (Table 3). In total, there 

were 18 variables with a missing rate at 4.1% of the total number 
of cases across all variables. 

EOC scores. The Algebra I EOC assessment is a 
computer-based and criterion-referenced high-stakes assessment. 
The average EOC score in our sample was 513.22 (SD = 29.93, 
Min = 422, Max = 581).  

VLE variables. There were five VLE variables derived 
from logs of Algebra Nation and related to this randomized 
controlled experiment (Table 2). Pre-test ability and post-test 
ability were computed by using a 2-parameter logistic IRT model 
based on the students’ responses to all pre-/post-test items across 
the ten domains. The pre/post-test ability followed a standard 
normal distribution with a mean equal to zero and a standard 
deviation of one. In this study, pre-test and post-test abilities were 
standardized separately. Mean engagement was an aggregated 
variable. An engagement score was computed after students 
completed a single pre-test or a post-test. A higher value indicates 
that students were more engaged in interacting with the VLE before 
taking the test. For each student, multiple engagement scores (with 
a maximum of 20) were stored in the system which corresponded 
to different pre-/post-test in different domains. Therefore, we 
compute the average engagement scores across the ten domains for 
each student. Followed rate measured the rate that the students 
followed recommendations in all domains [15]. 

 
Variables   Mean Missing  Note   
Treatment 
indicator   

   0.51     0.00%   Binary (1 = treatment group, 0 = 
control group) 

Post-test 
ability  

   0.15  13.22%  Continuous (SD = 0.93, Min = -
2.54, Max = 3.27) 

Pre-test 
ability  

   0.24  14.76%  Continuous (SD = 0.55, Min = -
1.51, Max = 2.02) 

Mean 
engagement  

   2.99  48.30% Continuous (SD = 0.22, Min = 1, 
Max = 3.61)  

Followed 
rate  

   0.14    0.00%  Continuous (SD = 0.19, Min = 0, 
Max = 1) 

Table 2. Descriptive Statistics for VLE Variables 
 

Background (Demographics) variables. Twelve 
background variables were shown in Table 3. Two binary variables 
were generated to indicate the three school districts. The students 
from the third school district served as the reference group, with 0 
on both indicators. Likewise, four binary indicators were used to 
represent the ethnicities. White people served as the reference 
group, which were 0 on all four indicators.  

3.4 Missing-data Imputation 
 Missing data were imputed using multiple imputations by 
chained equations using the mice package [40] of the R statistical 
software. A total of 10 imputed datasets were created using 
predictive mean matching because of its robustness to distributional 
assumptions and ability to handle both continuous and discrete 
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variables [41]. In the univariate imputation model for each variable, 
the clustered structure of the data was accounted for by adding fixed 
effects of teachers and school districts.  

3.5 Analyses  

3.5.1 Intention to Treat Analysis 
To address the first research question, what are the 

effects of the recommendation system on learning outcomes, we 
estimated the average treatment effect of exposure to the 
personalized video recommendations. In this analysis, the 
independent variable was the treatment indicator, and the outcome 
variables were post-test abilities and EOC scores (analyzed the two 
outcome variables separately).  

 
Variables   Mean Missing  Note   

Sex    0.54    0.17%  Binary (1 = male, 0 = 
female) 

Course type 
indicator  

   0.19    0.00%  Binary (1 = Algebra 1, 0 = 
Algebra 1 Honors) 

Learning mode     0.35    3.54%  Binary (1 = on campus, 0 = 
distance learning) 

Percent distance 
learning 

 60.10  31.79% Continuous (SD = 44, Min 
= 0, Max = 100)  

Free or reduced-
price lunch  

   0.35  31.79%  Binary (1 = receive free or 
reduced-price lunch, 0 = not 
receive) 

Absent days     3.17    0.23%  Continuous (SD = 6.93, 
Min = 0, Max = 120)  

School district 1     0.20    0.00%  Binary (1 = in the first 
school district, 0 = not in)  

School district 2     0.04    0.00%  Binary (1 = in the second 
school district, 0 = not in) 

Ethnicity 
(Hispanic)  

   0.29    0.23%  Binary (1 = Hispanic, 0 = 
non-Hispanic) 

Ethnicity (Black)     0.26    0.23%  Binary (1 = Black, 0 = non-
Black) 

Ethnicity (Asian)     0.07    0.23%  Binary (1 = Asian, 0 = non-
Asian) 

Ethnicity (Other)     0.04    0.23%  Binary (1 = Other, 0 = non-
Other) 

Table 3. Descriptive Statistics for Background Variables 
 
We followed the intention to treat (ITT) analysis 

framework [21, 22] because it estimated the causal effect of 
students being randomly assigned to treatment or control conditions 
without considering the student compliance with 
recommendations. The ITT average treatment effect estimate is an 
unbiased causal effect of treatment, but it is conservative because 
it does not account for the compliance rate [21, 22].  

We used two-level multilevel models to estimate the 
treatment effects with students nested within teachers [42]. Notice 

that we did not additionally account for school-level nesting 
because there was only one teacher per school for most of the 
schools. We did not control for the district-level effect as most of 
the students were in the same school districts. The multilevel model 
shown in Equations 1 to 3 was fit with the imputed datasets using 
the lme4 package [43] in R (version 4.1.2 [44]).  

The final estimates and standard errors were obtained 
using Rubin’s rules [45]. Hedges g [46] was used to standardize the 
average treatment effect estimates. Specifically, the student-level 
model was: 

y௜௝ ൌ 𝛽଴௝ ൅ 𝛿௝𝑇௜௝ ൅ ε௜௝ , ε௜௝  ~ 𝑵ሺ𝟎,𝝈𝟏
𝟐ሻ       (1) 

where y௜௝is the outcome (EOC or posttest abilities) of 

student i with teacher j; 𝛽଴௝  is the average score/ability of students 

with teacher j; 𝑇௜௝ is the treatment indicator for student i with 

teacher j; 𝛿௝  is the treatment effect that potentially varies across 

teachers; and ε௜௝ is the student-level error term. 

The teacher-level model was: 
𝛽଴௝  ൌ  𝛾଴଴  ൅  𝜇଴௝  

  𝛿௝  ൌ  𝛿 ൅  𝜇ଵ௝                   (2) 

where 𝛾଴଴is the average scores/abilities across all 
students accounting for the treatment status; 𝜇଴௝is the random effect 

associated with teacher j; 𝛿 is the average treatment effect, and 
𝜇ଵ௝is the deviance of treatment effect with teacher j from the 

average treatment effect. 𝜇଴௝and 𝜇ଵ௝ are assumed to follow a 

multivariate normal distribution:  

ቂ
𝜇଴௝
𝜇ଵ௝  ቃ  ~ 𝑴𝑽𝑵 ቆቀ𝟎

𝟎
ቁ , ቀ

𝝉𝟎𝟎 𝝉𝟎𝟏
𝝉𝟎𝟏 𝝉𝟏𝟏

ቁ ቇ        (3) 

where 𝜏଴଴ is the variance of intercept; 𝜏ଵଵ is the variance 
of the treatment effect and it is called the treatment-by-site variance 
[42]; 𝜏଴ଵ is the covariance between the intercept and treatment 
effect.  

We also tested whether an alternative model that assumes 
zero treatment-by-site variance is true. When the model 
comparison (via ANOVA) results in a p-value greater than 0.05, we 
choose the more parsimonious model (which drops 𝛿௝  ൌ  𝛿 ൅  𝜇ଵ௝, 
such that𝛿௝  ൌ  𝛿, and the distributional assumption becomes 

𝜇଴௝  ~ 𝑁ሺ0, 𝜏଴଴ሻ). A simpler model for the ITT analysis, can be 

interpreted as no treatment effect variation across teachers. It does 
not preclude investigating treatment effect heterogeneity [21, 22]. 
It is still possible to have variables that cause treatment effect 
heterogeneity in different directions [21, 22].  

3.5.2 HTE: Causal Forest 

To address the second research question, is there 
substantial HTE of the video recommendation system, we used a 
two-stage cluster-robust causal forest [13] to estimate the 
individual conditional average treatment effect (iCATE). Causal 
forest analysis also allowed us to evaluate the importance of each 
variable as a predictor. Aligned with the ITT analysis, we computed 
the HTE on two outcome variables (post-test abilities and EOC 
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scores) separately. The following twelve VLE variables and 
background variables were predictors for this analysis: 1) pre-test 
ability, 2) mean engagement, 3) followed rate, 4) sex, 5) learning 
mode, 6) percent distance learning, 7) free or reduced-price lunch, 
8) absent days, and 9-12) ethnicity indicators.  

We adopted a two-stage cluster-robust causal forest for 
two reasons. Firstly, the cluster-robust causal forest takes the 
multilevel data structure, where the students were nested in teachers 
in uneven size, into consideration. Cluster-robust causal forest 
assumes that teachers have some effect on the student's algebra 
ability, but without assuming the distribution of the effect. 
Secondly, the two-stage strategy emphasized the splits with the 
most important features in low-signal situations [12]. Concretely, 
the entire data set S was randomly divided into two subsamples S1 
and S2. In the first stage, a pilot causal forest was trained on all 
variables with subsample S1 to identify which variables are the most 
important ones. In the second stage, another forest was trained on 
the subsample S2 to estimate iCATE, and only with those variables 
that were identified as important in the first stage. 

In the first stage of the causal forest, variable importance 
was computed and averaged across the imputed data sets. First of 
all, a depth-weighted average of the number of splits on the twelve 
variables were calculated in each imputed data set. Next, we 
averaged the variable importance for each variable across the ten 
imputed data sets. Then, we found the median value of the average 
variable importance for all twelve variables. Last, a variable was 
considered important if its averaged variable importance value 
exceeded the median of the averaged variable importance for all 
variables. The variables which were labeled as important will be 
used in the second stage of the causal forest, and in the linear 
mixed-effects multilevel model (Equation 4). In the second stage of 
the causal forest, the iCATE for each student was computed with 
each imputed data set and then averaged across the ten imputed data 
sets. We computed two separated iCATE for each student. One was 
based on their EOC scores and the other based on their post-test 
abilities.  

Regarding the tuning parameters in the causal forests, we 
set 1) the number of trees for a single forest at 10000, 2) the 
minimum size of the leaf node for individual trees at 5, and 3) the 
number of variables tried for each split at 5. We did not choose 
those tuning parameters by a cross-validation technique because we 
need to keep the tuning parameters consistent across the ten 
imputed data sets. Choosing based on cross-validation may lead to 
the situation that incomparable forests were built on different 
imputed data sets. The causal forest was fit with the grf  package 
[47] in R (version 4.1.2 [44]).  

3.5.3 HTE: Mixed-Effects Multilevel Models 
To address the third research question, what student 

characteristics predict the HTE, we built two linear mixed-effects 
multilevel models predicting iCATE using the important features. 
The linear mixed-effects multilevel models were built for 
interpretability. The outcome variable for the first model was 
iCATE estimated from the causal forest based on post-test scores. 

Similarly, the outcome for the second model was iCATE estimated 
from the causal forest based on EOC scores. The predictors for each 
model were selected separately based on the corresponding causal 
forest (see the first stage of the causal forest). The selected variables 
were the independent variables for the model. The linear mixed-
effects multilevel model fits with the lme4 package [43] in R. 
Concretely, the student-level model was: 
𝑦௜௝  ൌ  𝛽଴௝  ൅  ∑ 𝛿௝௞

ௗ
௞ ୀ ଵ 𝑋௜௝௞  ൅ 𝜀௜௝  ,    𝜀௜௝  ~ 𝑵ሺ𝟎,𝝈𝟐ሻ       (4) 

where 𝑦௜௝  is the iCATE of student i with teacher j; 𝛽଴௝  is 

the average iCATE of all students with teacher j; k is the index of 
the predictors; 𝑋௜௝௞ is student i with teacher j on the kth predictor 

(notice that predictors are generated by the causal forest); 𝛿௝௞is the 

effect of kth predictor with teacher j; and 𝜀௜௝  is the student-level 

error term.  
The teacher-level model was: 

𝛽଴௝  ൌ  𝛾଴଴  ൅  𝜇଴௝  
        𝛿௝௞  ൌ    𝛿௞  ൅  𝜇ଵ௝                   (5) 

where 𝛾଴଴is the average iCATE across all students 
regarding all predictors; 𝜇଴௝  is the random effect associated with 
teacher j; 𝛿௞ is the average effect of kth predictor; and 𝜇ଵ௝  is the 
deviance of the effect of kth predictor with teacher j from the 
average effect of kth predictor.  

4. RESULTS  

4.1 ITT Results 
Regarding the model with post-test abilities as the 

outcome, the standardized ITT average treatment effect was 
statistically significant (Hedges g = 0.330, p <.0001), indicating 
that students who were presented with video recommendations 
from the system obtained post-test abilities that were on average 
0.330 standard deviations higher than students exposed to the 
control recommendations. The intraclass correlation (ICC) was 
0.341, indicating that 34% of the variance of the post-test was due 
to teachers, thus justifying the use of multilevel models. Moreover, 
the ANOVA model comparison results show that a zero treatment-
by-teacher variance model (𝛿௝  ൌ  𝛿 in Equation 2) was chosen 

across nine out of ten imputed data sets. It indicates no treatment 
effect heterogeneity due to teachers.  

Regarding the model with EOC scores as the outcome, 
the standardized ITT average treatment effect of the 
recommendation system was also statistically significant (Hedges 
g = 0.170, p <.0001), showing that students in the treatment group 
obtained Algebra 1 EOC scores that were higher than the control 
group by 0.170 standard deviations on average. It was expected that 
the average treatment effect on the Algebra 1 EOC would be 
smaller than on the post-test ability, because the former is a distal 
outcome measured close to the completion of the semester, while 
the latter is a proximal outcome measured at the end of each section. 
The ICCs was 0.582 indicating substantial clustering at the teacher 
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level, which justified the use of multilevel modeling. Moreover, the 
ANOVA model comparison results show that the model without 
treatment-by-teacher variance (𝛿௝  ൌ  𝛿 in Equation 2) was chosen 

across all ten imputed data sets, again showing that the treatment 
effect did not vary across teachers.  

4.2 HTE Result 
Substantial HTE of the video recommendation system 

was found based on the causal forest analyses. We tested the 
calibration of the casual forest via two regressors: the forest 
prediction and the mean forest prediction [12]. We first computed 
the best linear fit of post-test abilities based on these two regressors. 
Then, we computed the best linear fit of EOC scores with these two 
regressors. All four tests (two forest prediction tests and two mean 
forest prediction tests) rejected the null that there is no 
heterogeneity. Therefore, we conclude that there was substantial 
HTE of the video recommendation system. 

We investigated the relative importance of the twelve 
VLE variables and background variables based on the first stage of 
the causal forest. For these two casual forest models, importance 
values were normalized such that the sum of the variable 
importance values across all variables is one, and higher values 
indicate the corresponding variable was more important in 
discovering the HTE. Worth noticing that the importance values 
were scaled separately for the two causal forest models. The results 
for variable importance from the causal forest were presented in 
Table 4, and the variables were ordered by importance. It suggested 
that the most important variables were pre-test, and the followed 
rate was the second important variable to examine the HTE. It 
suggested that a large number of trees located the split with pre-test 
abilities or followed rate. Specifically, seven variables were 
selected for both models. These variables had a variable importance 
value higher than the median of the average variable importance for 
all variables in both causal forests. They were 1) pre-test ability, 2) 
followed rate, 3) sex, 4) percent distance learning, 5) absent days, 
6) free or reduced-price lunch, 7) ethnicity (Hispanic). Moreover, 
the variable importance result for the EOC scores causal forest 
model and the post-test abilities causal forest model was almost 
identical after normalizing the importance values. 

 
Variables Average Variable 

Importance 

(Post-test) 

Average Variable 
Importance 

(EOC) 

Pre-test ability  0.241 0.241 

Followed rate 0.228 0.229 

Absent days 0.116 0.115 

Ethnicity 
(Hispanic) 

0.081 0.081 

Percent distance 
learning 

0.075 0.079 

Free or reduced-
price lunch   

0.068 0.068 

Sex 0.045 0.045 

Table 4. Variable Importance Result 
 
Five student characteristics were found as statistically 

significant predictors of the heterogeneity in iCATE (See Table 5) 
based on both linear mixed-effects multilevel models. The results 
indicate that the conditional mean of the treatment effect was 
different within the subpopulations for the significant predictors. 
 

Variables Post-test      EOC score 
Pre-test ability  0.077*** (0.013)  0.071***  (0.009) 
Followed rate  0.152*** (0.038)  0.455*** (0.027) 
Sex indicator -0.006 (0.013) -0.033    (0.009) 
Absent days -0.003 (0.001)  0.002**   (0.001) 
Free or reduced-price 
lunch indicator 

 0.144*** (0.014) -0.004 (0.011) 

Percent distance learning  0.001*** (0.001)  0.001***  (0.001) 
Ethnicity indicator 
(Hispanic) 

 0.040** (0.015)  0.107*** (0.010) 

Table 4. Summary for predicting estimated iCATE with post-
test ability and EOC score (Note. Standard errors are in 
parentheses, * indicates p < .05, ** indicates p < .01, *** indicates 
p < .001) 

 
The differences in estimated iCATE with respect to each 

significant predictor were presented in Figure 2. The results show 
that students who had one standard deviation unit higher in pre-test 
abilities tended to have about 0.07 standard deviation units higher 
in the conditional mean of treatment effect (estimated from both the 
EOC score and post-test abilities models). Likewise, students who 
followed more recommendations tended to have a higher 
conditional mean of treatment effect. Specifically, one standard 
deviation unit higher in followed rate was associated with 0.152 
standard deviation units higher in iCATE with the post-test ability 
model and 0.455 standard deviation units higher in iCATE with the 
EOC scores model. There was small but significant heterogeneity 
in iCATE regarding learning remotely during Spring 2021. For 
students who attended school remotely, one standard deviation unit 
higher in percent distance learning was associated with 0.001 
standard deviation units higher in iCATE from both EOC scores 
and post-test models. Hispanic students were found to have higher 
iCATE than non-Hispanic students. Receiving free or reduced-
price lunch was only significant in predicting iCATE with the post-
test abilities model. Receiving free or reduced-price lunch was 
associated with 0.144 standard deviation units higher in iCATE 
based on post-test ability. Absent days were only significant in 
predicting iCATE with the EOC score model. One standard 
deviation unit higher in absent days was associated with 0.002 
standard deviation units higher in iCATE. Sex was not a significant 
predictor of the heterogeneity in iCATE from both models. There 
was no iCATE difference between male and female students.  
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 Figure 2. Difference in iCATE by Each Predictor.  
 

Figure 2 shows violin plots of the distributions of iCATE 
across variables that are related to HTE. The iCATE with the post-
test ability and EOC scores had a very similar distribution by each 
predictor, therefore, only the set of plots based on iCATE with EOC 
scores is presented. Likewise, the estimated iCATE had a very 
similar distribution by each predictor among the 10 imputed data 
sets, therefore, only the set of plots based on the first imputed data 
set is presented. 

5. DISCUSSION 
Many ITS have been used extensively prior to the 

COVID-19 pandemic to improve student achievement, but the 
pandemic brought new challenges for educational technology in 
teaching and learning that are just starting to be addressed in the 
literature [48, 49]. The current study examines a VLE used by 
students with substantial teacher involvement (e.g., [50, 51]), 
which shows promise for helping students overcome achievement 
gaps due to the pandemic as well as other social and economic 
factors that disadvantage certain subgroups of students.  

The previous large-scale field experimental study of this 
recommendation system [52] was implemented in Spring 2020 
during the start of the COVID-19 pandemic. The study lasted for 
17 weeks, but was divided into a 6-week period of normal school 
operations and 11 weeks where schools were closed and instruction 
was delivered online. The analysis results showed that there was a 
significant average treatment effect of the recommendation system 

on the post-test before schools closed, but the effect disappeared 
during the period of school closure. The authors attributed the 
disappearance of the effect to the disruption of teachers’ teaching 
strategies and students’ learning routines caused by the onset of the 
pandemic. The sudden transition from physical classrooms to 
online learning could influence instructors’ preparedness and 
confidence in teaching, which could compromise teachers’ role as 
facilitators to support students’ use of technologies for learning [53, 
54]. Meanwhile, the sense of disconnection and discordance from 
such an abrupt transition could negatively influence students’ self-
regulated learning (SRL) behaviors and strategies in technology-
enhanced learning environments [55]. 

In contrast, the current study was implemented in Spring 
2021 during a period when the pandemic was still present, but 
schools had been re-opened by order of the state government since 
Fall 2020. However, as shown in the measures section of this paper, 
only 35.1% of students were attending school campuses in person. 
Interestingly, the results of Spring 2021 study show significant ITT 
average treatment effects on both the post-test ability estimates and 
the Algebra 1 EOC scores. One possible explanation is that teachers 
and students in the Spring 2021 had more experience with their 
current learning model (either in-person or online) than in Spring 
2020, which facilitated students’ SRL [56] with respect to using the 
recommendation system, and teacher orchestration [57-59] of 
instruction with the VLE. It is particularly important that the 
recommendation system had a significant effect on the Algebra 1 
EOC scores, because this is a high-stakes test required for high 
school graduation. 

The results of the HTE analysis showed some interesting 
predictors of the iCATE of students. The relationship between the 
iCATE and pre-test ability indicates that students with higher 
previous achievement benefit more from the recommendation 
system. This could be due to students with higher previous 
achievement having better SRL skills, an important factor to 
influence students’ learning in VLE [60], which allowed them to 
use the recommendation system better. In the meantime, students 
with higher prior achievements might have higher self-efficacy, 
which could help them better adapt to and engage in VLE supported 
by learning analytics [61]. However, future research including 
measures of SRL skills and self-efficacy of students would be 
needed to investigate this hypothesis. Unsurprisingly, individuals 
with a higher followed rate of videos of the recommendation 
system were associated with higher iCATE, because the followed 
rate is a proxy for the dosage of intervention, and previous meta-
analyses of ITS have shown that the duration of exposure to an ITS 
explains the size of the effect [9, 18]. 

The results showed an association between iCATE on the 
post-test and free-and-reduced lunch eligibility of the students, 
indicating that economically disadvantaged students benefited 
more from the recommendation system. This suggests that the 
recommendation system could contribute to narrowing knowledge 
gaps between disadvantaged and advantaged students, implying a 
possibility of improving equity in educational intelligent systems. 
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However, this result was not replicated for the iCATE on the EOC. 
The results also show that Hispanic students had higher iCATEs on 
both post-test and the EOC than non-Hispanic students, which may 
be associated with cross-cultural differences, differences in teacher 
orchestration of technology in classrooms, or school-level 
contextual differences. In the study of Olaussen and Bråten [62], 
the researchers discussed how SRL strategies could differ from a 
cross-cultural perspective (e.g., ethnicity, East vs. West). In an 
empirical study, Wan et al. [63] found differences in SRL strategies 
could have various impacts on students’ learning, with students 
having higher social and goal orientation skills achieving better 
declarative knowledge acquisition. Additional research is needed 
to understand how disadvantaged students and Hispanic students 
may have benefited more from the video recommendation system. 

We also found that the percent distance learning measure 
was positively associated with iCATE. This is interesting because 
the VLE where the recommendation system was implemented was 
not specifically designed for distance learning. In fact, previous 
studies [52] have shown strategies such as showing videos to the 
entire class, and creating centers to watch specific videos and work 
on quizzes are common strategies with this VLE. Therefore, the 
increase in iCATE for students with a higher percent of distance 
learning may be related either to teachers changing their 
orchestration strategies for the VLE, or students acquiring a higher 
level of independence on the use of the VLE than they would have 
in an in-person classroom. It was unexpected that the number of 
absent days was positively associated with the iCATE of the EOC. 
In a previous survey of the same population of teachers during the 
pandemic [64], teachers reported that they found it difficult to 
reliably control attendance for students in distance learning, which 
may be related to the finding in the current study.  

In terms of absent days, which was a significant predictor 
for iCATE with the EOC score model. This finding echoed the 
previous research that teachers assigned the learning content in this 
VLE as make-up for students who were unable to present in the 
classroom learning [65]. It seemed that the more days those 
students were absent from school, the more heavily they relied on 
this VLE to prepare for Algebra 1 EOC assessment during Spring 
2021. 

5.1 Limitations   
The HTE analysis shows a nuanced picture of the effects 

of the recommendation system, but it does not allow an explanation 
of the effects.  It is important to understand the specific mechanisms 
by which some subgroups of students (e.g. Hispanic students and 
free-reduced lunch eligible students) benefited more from the 
recommendation system. Qualitative studies may be used to probe 
the specific mechanisms.  

Because the recommendation system studied here is used 
within a VLE whose use by students is orchestrated directly by 
teachers, it is possible that teachers may encourage or discourage 
watching recommended videos differently in in-person versus 

distance instruction. The current study is limited in that it did not 
include teacher variables in the prediction of HTE, such as survey 
variables indicating when and how teachers used the VLE with 
their students. Although a previous survey study of teacher use of 
this VLE exists [28], the study only addressed pre-pandemic 
teacher use of the VLE. Also, the HTE analysis did not include 
school contextual variables such as the percentage of minority 
students, expenditures per pupil, and the percentage of students in 
poverty. 

The current study serves as the first investigation of HTE 
with one recently developed method (i.e. causal forests). However, 
a competition of HTE identification methods [65], including causal 
forests, demonstrated that there can be substantial differences 
across methods. For future research, the current data will be 
evaluated with a few HTE methods to understand the stability of 
the results. Future research will also address the complier average 
causal effect (CACE) [66] of students watching recommended 
videos when offered. The CACE is higher than the ITT estimate 
because it accounts for the frequency that videos are watched. 

6. CONCLUSION 
The majority of studies about personalized learning 

technologies such as ITS and other content sequencing systems 
have focused on supplements to regular classroom instruction, and 
studies that evaluate personalized learning in VLE used as part of 
regular classroom instruction are rare [67]. The current study 
demonstrated that a video recommendation system for a VLE 
whose use is primarily for classroom instruction had significant 
positive effects on student learning, adding to evidence obtained by 
a previous large-scale evaluation of the same system [52]. It also 
showed substantial HTE, which had significant relationships to 
previous ability, mode of learning, the rate that students following 
recommendations, ethnicity, and poverty. These relationships 
deserve examination in future research to understand their nature 
and allow proper targeting of subgroups given the context of the 
classroom and school. This is critical because, when 
personalization is used in schools without considering the 
economic and political context, it may face resistance from students 
and teachers [68], and actually disadvantage certain groups of 
students and increase inequality [69].   

Finally, it is important to distinguish between 
personalized learning that is customizable by the learner and 
customized by the system, the teacher, or school administrations 
[69]. The VLE examined in the current study is an example of this 
distinction, as it is adopted by the school districts as the main 
curriculum, but teachers have considerable flexibility in how and 
when to use it in the classroom, and students have the flexibility of 
how much to engage with it outside of the classroom. It is critical 
to consider the distribution of agency between students, teachers, 
and school administrators, as systems that over-prescribe learning 
experiences using extensive student data may violate students’ 
rights to privacy and have adverse ethical implications [69]. For 
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example, content sequencing systems based on the previous 
achievement may provide more educational content to high 
achieving students than low achieving students [15]. As research 
on personalized learning technologies progresses, it is important to 
create standards for personalization that address both validity, 
fairness, and ethics. Standard exists for educational testing [69] that 
can serve as inspiration for technology-mediated personalized 
learning standards. 
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