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Abstract

Structural equation modeling (SEM) and path analysis using composite-scores are dis-

tinct classes of methods for modeling the relationship of theoretical constructs. The two

classes of methods are integrated in the partial-least-squares approach to structural equation

modeling (PLS-SEM), which systematically generates weighted composites and uses them

to conduct path analysis of the structural model via the least-squares method. However, the

goodness of PLS-SEM depends on the statistical properties of the composites, which are fur-

ther determined by the formulations of the weights. This article studies how the formulations

of PLS-SEM composites are affected by model specification, with focus on the sensitivity of

the weights to common specification errors. Results indicate that the weights under PLS-

SEM mode A are not affected by within-block error-covariances but those under mode B

are. While between-block error-covariances and cross-loadings only affect the weights of the

involved items under both PLS-SEM modes A and B, the weights under mode B are much

more sensitive than those under mode A. In contrast, the weights under a recently proposed

transformed mode (denoted as BA) are a compromise between those of modes A and B. The

findings not only advance the understanding of the PLS-SEM methodology but also facilitate

model diagnostics. Empirical applications of the results are illustrated via the analysis of a

real dataset.

Keywords: Structural equation model, path analysis, weighted composite, error-covariance,

cross-loading.



1. Introduction

Structural equation modeling (SEM) and path analysis using composite-scores are dis-

tinct classes of methods for modeling the relationship of theoretical constructs. The two

classes of methods are integrated in the partial-least-squares approach to structural equa-

tion modeling (PLS-SEM), which systematically generates weighted composites and uses

them to conduct path analysis of the structural model via the least-squares (LS) method.

To distinguish the conventional SEM method from PLS-SEM, the former is often called

covariance-based SEM (CB-SEM). The advantages of CB-SEM include directly yielding

consistent parameter estimates and fit indices for evaluating the goodness of the overall

model structure. The strength of PLS-SEM is in prediction and classification of individuals

(Deng & Yuan, 2022; Hair et al., 2017; Henseler, 2021; Rigdon, Sarstedt & Ringle, 2017). In

particular, path analysis with composite-scores possesses the property of yielding the least

mean-square-prediction errors (Fuller, 1987) and more powerful statistical test on the path

coefficients (Deng & Yuan, 2022; Yuan & Fang, 2022). However, not all weighted composites

are equivalent, and the goodness of path analysis closely depends on the statistical properties

of the composites, which are further determined by the formulations of the weights. This

article studies how the formulations of PLS-SEM composites are affected by model speci-

fication, with focus on the sensitivity of the weights to common specification errors. Our

aim is to advance the understanding of PLS-SEM so that the method can be better used in

practice.

The formulation of weights is fundamental to understanding the properties of PLS-SEM

and the corresponding results. The conventional PLS methodology has two ways of com-

puting weighted composites, termed as modes A and B, respectively (Wold, 1980, 1982).

For a correctly specified latent-variable model with reflective indicators, Dijkstra (1983, see

also Schneeweiss, 1993) showed that, the weight vector for each block1 of indicators under

PLS-SEM mode A is proportional to the vector of factor loadings of that block, and that

under PLS-SEM mode B is proportional to the vector of factor loadings multiplied by the

precision matrix in front. These results allow us to analytically study the goodness of PLS-

SEM against CB-SEM and other methods of path analysis with weighted composites. In

particular, composites under PLS-SEM mode A may not be as reliable as the simple averages

1The set of manifest variables measuring a single latent variable is referred to as a block of indicators.
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whereas the composites under PLS-SEM mode B (when applying to models with reflective

indicators) achieve the maximum reliability (Yuan & Deng, 2021). We would expect that

mode B performs better than mode A in practice. However, Dijkstra and Henseler (2015)

noted that mode A of PLS-SEM yields numerically more stable results, and a real data ex-

ample in Yuan and Deng (2021) showed that weights under mode B of PLS-SEM may have

opposite signs from the factor loadings estimated under CB-SEM. These results are closely

related to the sensitivity and stability of the weights to specification errors. To understand

the inconsistency between analytical property and empirical performance of the PLS-SEM

methodology, it is necessary to study how weights are affected when different parts of a

latent-variable model are misspecified.

While CB-SEM facilitates consistent parameter estimates, the values of the path coef-

ficients are for the relationship among the latent variables that represent the population

distribution, and all individuals are equivalent under such a relationship. In practice when

observed scores are used for prediction or diagnosis, individuals are no longer equivalent. A

person with greater test scores is expected to perform better on the criterion variable, and

such a relationship is directly characterized by the regression coefficients under PLS-SEM.

But the quality of the prediction under PLS-SEM still depends on how the composite-scores

are formulated. In particular, the reliabilities of the composites affect many aspects of path

analysis, e.g., bias, R2, prediction error, etc. (Cochran, 1970; Fuller, 1987). Although re-

sults of Dijkstra (1983) and Schneeweiss (1993) provide the guidance for choosing a proper

PLS-SEM mode in data analysis, they are based on correctly specified models that are not

obtainable in practice. While we expect that the weights under either mode A or B of

PLS-SEM to be affected by model misspecification, it is not clear how they are affected or

whether a particular misspecification will affect all the weights globally or only the weight

local to the location of misspecification is affected. Studies of the sensitivity and/or stability

of the weights of composites to model misspecification not only facilitate the proper use of

PLS-SEM but also advance our understanding of the particular results in real data analyses.

The purpose of this article is to systematically study how PLS-SEM weights are affected

when different parts of a latent-variable model are misspecified. We will have both analytical

and numerical results on the sensitivity of weights under both modes A and B as well as of

weights under a recently proposed mode by Yuan and Deng (2021). The obtained results
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will be used to analyze a real dataset for which PLS-SEM mode B yields negative weights for

some items. Section 2 contains an overview of PLS-SEM methodology and existing results

on weights to set up the context of the study. Analytical results on sensitivity of weights are

presented in section 3. Numerical illustrations of the sensitivity of weights are given in section

4. Section 5 contains the analysis of the real dataset. Conclusion and recommendation for

path analysis with weighted composites are provided at the end.

2. PLS-SEM and Weights

In this section we give a brief overview of the PLS-SEM methodology to set up the context

for the focused study. Readers who are interested in more systematic introductions of the

PLS method are referred to Hair et al. (2017), Henseler (2021), and Tenenhaus et al. (2005).

Throughout this article we will assume that all the indicators are reflective and contain

measurement errors. Readers who are interested in developments for correctly specified

models with formative indicators are referred to Dijkstra (2017), and Cho and Choi (2020).

Since our interest is the sensitivity of the weights of the composites under PLS-SEM, we will

highlight existing results on weights and spell out the issues to address. Because means of

the manifest variables or latent variables do not affect the weights under PLS-SEM, all the

variables are assumed mean centered in our presentation.

2.1 PLS-SEM

PLS-SEM consists of two stages. Weighted composites or weights are computed in the

first stage where the distinction between modes A, B, and BA is made. The second stage is

the same for the three modes where the structural model is estimated using the composites

obtained at stage 1. Both modes A and B are computed by least-squares (LS) regression

via the so-called environmental variables, while weights under mode BA are obtained by

transforming the weights under mode A using a LS method for factor analysis.

Under PLS-SEM, manifest variables are assumed unidimensional2, where each manifest

variable or indicator loads on a single latent variable without correlated errors. Let x =

(x1, x2, . . . , xpx)
′ be the vector of indicators for a latent variable ξ. Other latent variables in

2This terminology aligns with the discussion of Anderson and Gerbing (1988) who wrote “By contrast,
measurement models that contain correlated measurement errors or that have indicators that load on more
than one estimated construct do not represent unidimensional construct measurement” (p. 415). A reviewer
noted that, while an indicator may load on more than one latent variable, the indicators within each cluster
can still be regarded as unidimensional because they follow a one-factor model.
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the model might be (1) predicted by ξ, (2) predict ξ, (3) just correlate with ξ, (4) neither

correlate with ξ nor predict or being predicted by ξ. The latent variables in the first two

scenarios are regarded as being directly connected with ξ while correlations or covariances

among latent variables are not regarded as direct connections under PLS-SEM. Suppose ξ is

directly connected with m other latent variables ξ1, ξ2, . . ., ξm. The environmental variable

of ξ is formulated by a linear combination ξ̄ = r1ξ1 +r2ξ2 + . . .+rmξm, where rj is the sign of

the correlation between ξj and ξ or the value of the correlation itself (see e.g., Henseler 2021,

p. 91). For a model that contains two blocks of indicators, let x be the vector of indicators

for latent variable ξ, y be the vector of indicators for latent variable η, and η = γξ + ζ be

the structure model with γ > 0. Then ξ is the environmental variable of η, and η is the

environmental variable of ξ.

The weights under both modes A and B are computed iteratively (Tenenhaus et al.,

2005; Wold, 1980). The simple average of each block of indicators serves as a good start-

ing value for the corresponding composite, and the starting values for the corresponding

environmental variables automatically follow by substituting each latent variable with the

corresponding composite. Under mode A, the weight for xk (an element of x) is updated

by the slope parameter of LS regression of xk on the environmental variable ξ̄. That is,

ŵa = (ŵa1, ŵa2, . . . , ŵapx)
′ with ŵak = sxk ξ̄/sξ̄ξ̄, where s is the notation for sample variance-

covariance. Under mode B, weights of the indicators in x are updated by the coefficients of

multiple regression of the environmental variable ξ̄ on x. That is, ŵb = S−1
xx sxξ̄, where S is

the sample covariance matrix and s is the vector of sample covariances. The updated weights

generate updated composites and the corresponding updated environmental variables, which

permit the computation of new weights by LS regression. The iteration alternates across all

blocks of indicators until all the weights are stabilized. Because the regression coefficients

depend on the scales of the involved variables, it is a common practice to proportionally

scale the weight vectors so that each weighted composite has a sample variance of 1.0.

2.2 Weights

PLS-SEM can also be considered at the population level. Suppose we have two blocks of

indicators, x for ξ and y for η, and they are connected by the structural model η = γξ + ζ.

Let Σxx, Σxy = Σ′

yx and Σyy represent the population covariance matrices of x with x,

x with y, and y with y, respectively. Then, regardless of whether the measurement and
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structural models are correctly specified or not, the PLS-SEM algorithm described in the

previous subsection directly implies that the vectors of weights wx and wy under mode A

satisfy the equations (see also Dijkstra, 1983)

wax = cxΣxywy and way = cyΣyxwx, (1)

where cx and cy are scalars whose particular values are not material due to standardization.

That is, w′

xΣxxwx = 1 and w′

yΣyywy = 1 will cancel the effect of cx and cy. Under mode B,

the PLS-SEM algorithm implies that the weight vectors wx and wy satisfy

wbx = cxΣ
−1
xx Σxywy and wby = cyΣ

−1
yy Σyxwx. (2)

Wold (1980, 1982) recommended mode A for models with reflective indicators and mode B

for models with formative indicators. Such a recommendation is intuitive but is not justified

by statistical or psychometric theory (Yuan & Deng, 2021).

Suppose the vector x contains px indicators that measure a single factor ξ, and y contains

py indicators that measure a single factor η. Then the relationship among x and y can be

correctly represented by

x = λxξ + εx, y = λyη + εy, (3)

and

η = γξ + ζ, (4)

where λx and λy are vectors of factor loadings, and Ψxx = Cov(εx) and Ψyy = Cov(εy) are

diagonal matrices of error variances. The two equations in (3) are referred to as the measure-

ment model while the one in (4) is referred to as the structural model (Anderson & Gerbing,

1988). Note that both x and y in equation (3) are reflective indicators. When applying

mode A to the model in equations (3) and (4), the weights for x and y are respectively

wax = cxλx and way = cyλy. (5)

When applying mode B to the model in equations (3) and (4), the weights for x and y are

wbx = cxΣ
−1
xx λx and wby = cyΣ

−1
yy λy. (6)

The results in (5) and (6) were obtained by Dijkstra (1983) and also presented by Schneeweiss

(1993). They can also be directly derived from equations (1), (2), (3) and (4). For correctly
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specified models (i.e., unidimensional without correlated errors), these results also hold with

more than two blocks of indicators.

Using the results in equation (6), Yuan and Deng (2021) showed that, when applying

mode B to models with reflective indicators, the resulting composites are equivalent3 to the

Bartlett-factor-scores (under CB-SEM), which are known to enjoy the maximum reliability

among all weighted composites. Because mode A is numerically more stable than mode B,

Yuan and Deng (2021) proposed a procedure to transform mode A to mode B according to

the structure of a one-factor model for each block of indicators. For the transformed mode

BA, the weight vector for each block of indicators is obtained using the formula

wba = c∗Ψ
−1
∗

wa, (7)

where wa is the weight vector (for either the block x or y) under mode A, and Ψ∗ is a

diagonal matrix obtained by fitting the structural model

Σ(θ) = θ∗waw
′

a + Ψ∗ (8)

to the covariance matrix Σ of the block of indicators corresponding to the weight vector wa.

Note that only θ∗ and the diagonal elements of Ψ∗ in (8) are subject to estimation whereas

the vector wa is regarded as given. Yuan and Deng (2021) suggested using the LS method to

estimate θ∗ and Ψ∗, which enjoy analytical solutions. Also note that, for correctly specified

models, Ψ∗ = Ψ and wba = wb in the population.

2.3 Sensitivity analysis

The results in equations (5), (6) and (7) constitute the cornerstone for analytically study-

ing the properties of PLS-SEM methodology. However, they are for correctly specified mod-

els, which may not be obtainable in the real world. We are interested in how model mis-

specifications are going to affect the weight vectors in these equations. Sensitivity analysis

of the weights under modes A, B and BA will provide the information on why they are

empirically different from their expected values. The study will also provide the key for un-

derstanding why mode B results in negative item weights. Sensitivity analysis also allows us

to better understand the differences between PLS-SEM and path analysis with other types

of composite-scores.

3Yuan and Deng (2021) showed that Bartlett-factor-scores are also statistically equivalent to regression-
factor-scores in conducting path analysis.
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In developing a procedure for correcting the bias of parameter estimates under PLS-SEM

mode A, Rademaker, Schuberth and Dijkstra (2019) noted that weights under mode A are

not affected by within-block error-covariances. They did not study the effect of between-

block error-covariances or cross-loadings on weights following PLS-SEM mode A nor the

effect of any misspecification on weights under PLS-SEM modes B and BA. While our main

interest is to identify the causes for mode B to yield negative weights, we will also study the

effects of different types of model misspecification on modes A and BA, and compare their

sensitivities to model misspecification against that of mode B.

We only consider models with reflective indicators in this article. This is because forma-

tive indicators typically do not consider measurement errors and their correlations do not

need to be due to sharing a common construct. The results in (5), (6) and (7) are all for

models with reflective indicators. The property for composites under PLS-SEM mode B

and BA to enjoy maximum reliability is also for models with reflective indicators. Models

with reflective indicators are also called latent variable models, which typically include a

measurement model and a structural model. We will only consider misspecifications in the

measurement model, mostly because indicators under PLS-SEM are unidimensional. In par-

ticular, under PLS-SEM the indicators within each block share a single common factor and

there is no mechanism to account for cross-loadings or correlated errors (see e.g., Tenenhaus

et al., 2005). While the structural model under PLS-SEM can be misspecified as well, it also

enjoys the freedom of being specified as saturated. There are three types of specification

errors in the measurement model. They are (1) within-block error-covariances, (2) between-

block error-covariances, and (3) cross-loadings. Because standard PLS-SEM does not allow

the inclusion of these parameters, a model misspecification occurs when a parameter in one

of the three types is non-zero. Other specification errors are also possible, e.g., nonlinear

relationship or lack of additional latent variables. These are beyond the scope of this article.

3. Analytical Results on Sensitivity of Weights

In this section we examine how the weights in equation (5), (6) and (7) are affected by

model misspecification, including error-covariances and cross-loadings. For the purpose of

clean results, we mainly consider a model with two latent variables. The results also hold

with more latent variables as will be shown in a separate subsection.
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Insert Figure 1 about here

Consider the model in Figure 1, where the solid arrows represent a typical two-latent-

variable model corresponding to the one specified by equations (3) and (4). Our analysis

in subsections 3.1 to 3.7 is for this model. A misspecification occurs whenever any of the

coefficients for the dashed arrows in Figure 1 is non-zero. When the method is clear from

the context, we will use wx and wy to represent the vectors of weights corresponding to

the blocks x and y, respectively. When the block is clear from the context, we will use

wa, wb and wba to represent the vectors of weights corresponding to PLS-SEM modes A, B

and BA, respectively. Note that the scales of the weighted composites are arbitrary, so we

can focus on the relative change of the weights using their counterpart under the correctly

specified model as the reference. In particular, the words “greater” and “smaller” are also in

comparison with the counterparts under the correctly specified model (i.e., the coefficients

for all the dashed-arrows in Figure 1 are zero). Throughout this section, we will use the

letter “c” to represent a constant whose particular value is not material.

3.1 Weights under mode A by within-block error-covariances

Note that within-block error-covariances only affect the covariance matrix Σxx or Σyy,

not Σxy nor Σyx. In particular, Σxy = Σ′

yx = γλxλ
′

y for the model in Figure 1 regardless of

whether within-block error-covariances are zero or not. Also note that, for two vectors a and

b of the same dimension, regardless of their values, a′b is a scalar. It follows from equation

(1) that

wx = cxΣxywy = cxγ(λxλ
′

y)wy = cxγλx(λ
′

ywy) = cx∗λx

and

wy = cyΣyxwx = cyγ(λyλ
′

x)wx = cyγλy(λ
′

xwx) = cy∗λy.

Thus, a within-block error-covariance does not affect the weights under mode A, and they are

still proportional to the factor loadings of the block (Rademaker et al., 2019). But the size

of the absolute values of the elements of the weight vector changes, due to standardization

(i.e., w′

xΣxxwx = 1) under PLS-SEM. They become proportionally smaller when positive

within-block error-covariances exist, and the other way around when negative within-block

error-covariances exist.

3.2 Weights under mode A by between-block error-covariances
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Using the notation in equation (3), suppose the jth element of εx in Figure 1 is correlated

with the kth element of εy, with ψjk = Cov(εxj
, εyk

). Then we have

Σxy = Σ′

yx = γλxλ
′

y + ψjkeje
′

k, (9)

where ej is a vector of length px with the jth element being 1 and others being zero, and ek

is a vector of length py with the kth element being 1 and others being zero. It follows from

equations (1) and (9) that

wx = cxΣxywy = cx(γλxλ
′

y + ψjkeje
′

k)wy = cx∗λx + c∗ej.

Thus, except for the jth element of wx, the other elements of wx are still proportional to

those of λx. That is, only the weights for items that have non-zero between-block error-

covariances are affected by the misspecification. The weights for the items that have null

between-block error-covariances are still proportional to the factor loadings4. But their values

will proportionally change due to scaling via standardization.

3.3 Weights under mode A by cross-loadings

Suppose some items in x also load on the latent variable η in Figure 1. Then the

measurement model in equation (3) does not correctly represent the relationship between x

and the latent variables. We need to write the measurement model as

(

x

y

)

=

(

λx λh

0 λy

) (

ξ
η

)

+

(

εx

εy

)

, (10)

where λh is the vector of cross-loadings of x on η. Thus, the covariance matrix of the

(px + py)-vector (x′,y′)′ is given by

(

Σxx Σxy

Σyx Σyy

)

=

(

λx λh

0 λy

) (

φξξ φξη

φηξ φηη

) (

λ
′

x 0

λ
′

h λ
′

y

)

+

(

Ψxx 0

0 Ψyy

)

,

where the φs are for the variances-covariance of ξ and η. Direct matrix multiplication yields

Σxx = λxφξξλ
′

x + λhφηξλ
′

x + λxφξηλ
′

h + λhφηηλ
′

h + Ψxx,

Σxy = Σ′

yx = λxφξηλ
′

y + λhφηηλ
′

y, and Σyy = λyφηηλ
′

y + Ψyy.
(11)

With the Σxy in equation (11), it follows from equation (1) that

wx = cx(λxφξηλ
′

y + λhφηηλ
′

y)wy = cx∗λx + c∗λh.

4The factor loadings are defined as the population values when the SEM model is correctly specified by
including the non-zero error-covariances as free parameters.
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Suppose only the jth element of x loads on η, then λh becomes λhej. Thus, the cross-loading

of xj on η in Figure 1 only affects the value of the jth element of wx. The other elements

of wx are still proportional to those of λx. But the size of all the elements of wx will be

adjusted proportionally after standardization (i.e., w′

xΣxxwx = 1).

For the weight vector wy , we have, according to equations (1) and (11),

wy = cyΣyxwx = cy(λyφηξλ
′

x + λyφηηλ
′

h)wx = cy∗λy.

Thus, cross-loadings of items in x on η do not affect the weights for the block y under mode

A, and wy is still proportional to λy.

In parallel, cross-loadings of items in y on ξ in Figure 1 do not affect the weights of wx

under mode A. They are still proportional to λx. The elements of wy corresponding to items

that do not cross-load on ξ are also proportional to those of λy. But weights for items in y

that have loadings on ξ will be affected, they might become greater or smaller according to

the sign and size of the cross-loadings. We will illustrate such a relationship numerically in

the next section.

3.4 Weights under mode B by within-block error-covariances

When errors within the block x = (x1, x2, . . . , xpx)
′ in Figure 1 are correlated, we can

write the covariance matrix of x as

Σxx = λxφξξλ
′

x + Ψxx,

where the matrix Ψxx = Cov(εx) has some non-zero off-diagonal elements corresponding to

the error covariances. Let φξξ = Var(ξ) = 1 for model identification. Then the inverse of the

matrix Σxx is given by

Σ−1
xx = Ψ−1

xx −
Ψ−1

xxλxλ
′

xΨ
−1
xx

1 + λ
′

xΨ
−1
xxλx

. (12)

Thus,

Σ−1
xx λx = Ψ−1

xx λx −
Ψ−1

xx λxλ
′

xΨ
−1
xx λx

1 + λ
′

xΨ
−1
xxλx

= cΨ−1
xx λx, (13)

where c is a constant. Because within-block error-covariances do not affect the between-block

covariances, we continue to have Σxy = Σ′

yx = γλxλ
′

y. It follows from equation (2) that

wx = cxΣ
−1
xxΣxywy = cxγΣ

−1
xx (λxλ

′

y)wy = cxγ(λ
′

ywy)Σ
−1
xx λx = cx∗Ψ

−1
xx λx,
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where equation (13) is used for the last equal sign. Without loss of generality, suppose the

first two errors in εx are correlated, then

Ψxx =

(

Ψx11 0

0 Ψx22

)

and Ψ−1
xx =

(

Ψ−1
x11 0

0 Ψ−1
x22

)

,

where Ψx11 is a 2 × 2 matrix corresponding to the first two correlated errors and Ψx22 is

a diagonal matrix corresponding to the last (px − 2) elements of εx. Thus, under mode B,

weights of items having non-zero within-block error-covariances are affected by the covari-

ances. Weights of items whose errors do not correlate with those of the other items are still

proportional to those of the correctly specified model (i.e., λj/ψjj). However, because the

values of the weights for items that have non-zero error-covariances are changed, the absolute

values of the weights of items that have zero error-covariances will be proportionally changed

due to scaling via standardization.

Under model B, when only x contains within-block error-covariances in Figure 1, the

weight vector wy satisfies (see equation 2)

wy = cyΣ
−1
yy Σyxwx = γΣ−1

yy λy(λ
′

xwx) = cy∗Σ
−1
yy λy,

which is also proportional to Ψ−1
yy λy. Thus, weights for the block y under mode B are not

affected by the error-covariances within the block x, and they remain the same as those when

the whole model is correctly specified.

3.5 Weights under mode B by between-block error-covariances

Suppose the jth item in x and the kth item in y of Figure 1 have a non-zero error-

covariance, it follows from equations (2) and (9) that the weight vector wx under mode B is

given by

wx = cΣ−1
xxΣxywy = cxΣ

−1
xx (γλxλ

′

y + ψjkeje
′

k)wy = cx1Σ
−1
xx λx + cx2Σ

−1
xx ej.

Note that between-block error-covariances do not affect the within-block covariance matrix

of the observed variables. Replacing the Σ−1
xx in the above equation by the expression in (12)

yields

wx = cx∗Ψ
−1
xxλx + c∗Ψ

−1
xxej = cx∗Ψ

−1
xx λx + c1∗ej,

where the 2nd equal sign used the assumption that the errors within the block x are still

uncorrelated so that Ψxx is a diagonal matrix. Thus, under mode B, only the weights of
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items that have non-zero between-block error-covariances are affected. Weights for items that

do not have between-block error-covariances are still proportional to those of the correctly

specified model, i.e, wj = cλj/ψjj .

3.6 Weights under mode B by cross-loadings

Suppose x has cross-loadings on η according to equation (10). It follows from equations

(2) and (11) that

wy = cyΣ
−1
yy Σyxwx = cyΣ

−1
yy (λyφyxλ

′

x + λyφyyλ
′

h)wx = cy∗Σ
−1
yy λy.

Consequently, under mode B cross-loadings of x on η do not affect the weight vector wy.

They are still proportional to Σ−1
yy λy = cΨ−1

yy λy.

To find out how the weight vector wx is affected when elements of x load on η in Figure

1, we will directly solve for wx according to equations (2) and (11). Multiplying both sides

of the first equation in (2) by Σxx in front yields

Σxxwx = cxΣxywy.

Using equation (11), we can rewrite the above equation as

(λxφξξλ
′

x + λhφηξλ
′

x + λxφξηλ
′

h + λhφηηλ
′

h + Ψxx)wx = cx(λxφξηλ
′

y + λhφηηλ
′

y)wy.

Since (a′b) is a scalar regardless of the values of the elements of a and b, except for the term

Ψxxwx, all the other terms in the above equation (after the operation of the multiplication

on both sides) are either a scalar times λx or a scalar times λh. Move the first four terms

on the left of the equal sign to the right side in the above equation, we have

Ψxxwx = cx1λx + cx2λh.

Consequently,

wx = cx∗Ψ
−1
xx λx + c∗Ψ

−1
xxλh.

Thus, under mode B the weights of items in x that do not cross-load on η are still proportional

to λj/ψjj . Only the weights of items that have non-zero cross-loadings on η are affected.

In parallel, cross-loadings by items of y on ξ in Figure 1 do not affect wx under mode

B, which is still proportional to Ψ−1
xx λx. The elements of wy corresponding to items that do

not load on ξ are also proportional to λj/ψjj . But weights for items in y that have non-zero
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loadings on ξ will be affected, they might become greater or smaller according to the sign and

size of the cross-loadings. We will illustrate such a pattern numerically in the next section.

3.7 Weights under PLS-SEM mode BA

We have noted that the weight vector under PLS-SEM mode BA is given by wba =

c∗Ψ
−1
∗

wa, where Ψ−1
∗

is a diagonal matrix obtained by fitting a one-factor model to each

block of indicators. Thus, the sensitivity of wba to model misspecification closely depends on

the sensitivity of wa. The following properties of wba are directly derived from the analytical

results on wa presented in subsections 3.1-3.3.

Within-block error-covariances

When the x in Figure 1 contains within-block error-covariances, then the one-factor

model structure in (8) is misspecified. The value of θ∗ will deviate from the population

value corresponding to a correctly specified model, which will cause all the diagonal values

of Ψ∗ deviate from the population value corresponding to a correctly specified model. Con-

sequently, all the elements of wba are affected even when only a single pair of errors within

the block x are correlated. However, the weight vector wba for the block y will be identical

to those corresponding to the correctly specified model, that is, wba = wb = cΨ−1
yy λy.

Between-block error-covariances

When between-block error-covariances exist, then the one-factor model in equation (8)

is misspecified for each of the involved blocks. This is because the vector wa is fixed at the

values obtained under PLS-SEM mode A, although the covariance matrices Σxx and Σyy

are not affected by the between-block error-covariances. The diagonal elements of the Ψ∗

in equation (8) need to adjust their values due to the misspecification. Consequently, the

weight vectors wba for both x and y in Figure 1 will deviate from those corresponding to

the correctly specified model. In particular, even the weights of items in x and y that have

null between-block error-covariances will be affected.

Cross-loadings

When items of x load on η in Figure 1, the weight vector wba for the block x will deviate

from that corresponding to the correctly specified model, due to the model in (8) being

misspecified. But for the block y, the weight vector wba remains proportional to Ψ−1
yy λy.

3.8 Weights for models with more than two blocks of indicators

With more than two blocks of indicators, the weights under PLS-SEM are computed
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via the environmental variables. Consider the model in Figure 2 that contains three latent

variables ξ1, ξ2 and η. The environmental variable of η is given by η̄ = c(r1ξ1 + r2ξ2), where5

rj = sgn(ρηξj
) or ρηξj

and c is a constant so that Var(η̄) = 1. The environmental variables of

both ξ1 and ξ2 are η because they each has a single direct connection. That is, ξ̄1 = η and

ξ̄2 = η. With more than two blocks of indicators, the weight vectors under modes A and B

in equations (1) and (2) are replaced by

wa = caσzt and wb = cbΣ
−1
zz σzt, (14)

respectively, where z is the block of indicators for latent variable ξ1, ξ2 or η in Figure 2, and

σzt is the vector of covariances between z (= x1, x2, or y) and the environmental variable t

(= η or η̄). The results stated below can be obtained analytically via equation (14), parallel

to the analysis presented in the previous subsections.

Insert Figure 2 about here

Within-block error-covariances

Within-block error-covariances do not affect the weights of any blocks under PLS-SEM

mode A. But they will affect the weights of the involved items under PLS-SEM mode B. All

the elements of the weight vector in the same block under PLS-SEM mode BA are affected by

within-block error-covariances. For each of the three modes, within-block error-covariances

do not affect the weights for the other blocks that have null within-block error-covariances.

Between-block error-covariances

Between-block error-covariances only affect the weights of the involved items under PLS-

SEM modes A and B. They affect the weights of all the items of the involved blocks under

PLS-SEM mode BA. For the blocks whose items do not have between-block error-covariances,

the weight vectors are not affected under any of the three modes.

If two constructs are just correlated, as the ξ1 and ξ2 in Figure 2, error-covariances

between the two blocks do not affect the weights of any of the blocks under PLS-SEM

modes A, B and BA, because neither σzt nor Σzz in equation (14) is affected by such error-

covariances. For the same reason, weights under the three modes are not affected by error-

covariances between the blocks that are not directly connected.

5The choice of the coefficient rj does not change the conclusion stated in this subsection.
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Cross-loadings

A cross-loading of an item zj only affects the weight of this individual item under PLS-

SEM modes A and B. A cross-loading of zj will affect the weights of all the items that share

the same block with zj for PLS-SEM mode BA. But weights of the items that do not share

the block with zj are not affected under any of the three modes.

4. Numerical Illustration

This section provides numerical illustrations of the analytical results obtained in the pre-

vious section. The numerical results also allow us to see the size of the weight changes relative

to their counterparts under a correctly specified model. Two models will be considered, one

has two latent variables and the other has four latent variables. To save space, we only

present the results for the 2-latent-variable model. For the model with four latent variables,

we will point out the notable results while leave the numerical tables to the supplementary

material online.

Consider the model as represented by the solid arrows in Figure 1, where the vectors of

factor loadings for ξ and η are given by λx0 = (.80, 1.0, 1.2)′ and λy0 = (1.0, 1.2, .80, 1.5)′,

respectively; and the matrices of error variances in the measurement model are given by

Ψxx0 = diag(.55, .60, .40) and Ψyy0 = diag(.58, .65, .60, .40). Let φ0 = Var(ξ) = 1.0, the

regression coefficient for the structural model η = γξ + ζ is set at γ0 = .70, and the

prediction-error variance is set at σ2
ζ0 = .40. These values are chosen because they are

also the population values of the model parameters when the CB-SEM model is identified

by fixing the variance of ξ at 1.0 and the first factor loading of y at 1.0. Let θ0 denote the

vector of parameters corresponding to these population values. Alternative choices for θ0

can also be used for the purpose of illustration since the changes in weights of composites

under PLS-SEM are relative to the size of model misspecification, which will be specified

according to the value of the fit index RMSEA under CB-SEM (Steiger & Lind, 1980). Let

wa0, wba0 and wb0 be the vectors of weights for PLS-SEM modes A, BA and B corresponding

to the population values in θ0, respectively. Because the model is correctly specified, the

weight vectors wa0 for x and y are proportional to λx0 and λy0, respectively; and the weight

vectors wb0 = wba0 for x and y are proportional to Ψ−1
xx0λx0 and Ψ−1

yy0λy0, respectively.

To examine the sensitivity of the weights to model misspecification, corresponding to the

analytical results presented in the previous section, we will consider conditions when error-
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covariances or cross-loadings exist in the population but are ignored in the model. Three

conditions of error-covariance are picked. They are: 1) ex2
and ex3

are correlated, 2) ey2
and

ey3
are correlated, 3) ex2

and ey2
are correlated. They respectively represent correlated errors

within the block x, within the block y, and between the blocks x and y. Two conditions of

cross-loading are picked, and they are: 1) x2 has a non-zero loading on η, and 2) y2 has a

non-zero loading on ξ. Let the values of the error-covariance and cross-loading be denoted

as ψh and λh, respectively. For each of the 3 conditions of error-covariance, we let ψh = 0.2

and −0.2, respectively; and for each of the 2 conditions of cross-loadings, we let λh = 0.3

and −0.3, respectively. So we have a total of 10 conditions of population. The values of

the RMSEA corresponding to these 10 conditions range from .034 to .073, with a mean of

.054. They represent minor to moderate model misspecification according to established

cutoffs (e.g., Hu & Bentler, 1999; MacCallum, Browne & Sugawara, 1996) and are reported

in Tables 1 and 2.

Let Σ∗ be the population covariance matrix of (x′,y′)′ corresponding to a condition when

ψh 6= 0 or when λh 6= 0. We then fit the structural model as represented by the solid arrows

in Figure 1 to Σ∗ (under CB-SEM) using normal-distribution-based maximum likelihood

(NML). Factor loadings λ∗ and error variances Ψ∗ are obtained, and so are the ratios λ∗/λ0

for both the blocks x and y. Similarly, PLS-SEM modes A and B are applied to Σ∗ via

equations (1) and (2), respectively. We denote the obtained weights as wa∗ and wb∗. The

weights wa∗ is further transformed to wba∗ by fitting a one-factor model to the submatrix

of Σ∗ for each block of indicators, according to equation (8). We will compare the values of

w∗ against those of w0 using the ratio rj = wj∗/wj0. Because the values of the weights in

w∗ are proportionally changed due to standardization, we further scaled the ratio rj via

r
(s)
j =

wj∗/w1∗

wj0/w10
(15)

so that the value of r
(s)
j for the first item in each block is 1.0 (i.e., r

(s)
1 = 1.0). Such a scaling

makes it easier to compare the relative sensitivity of different methods.

Insert Table 1 about here

The results of the weight ratio r
(s)
j under the 6 conditions of correlated errors are given

in Table 1, where the ratio λ∗/λ0 of factor loadings under CB-SEM is also included for
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comparison purpose. The values of r
(s)
j for the condition ψx2x3

= .2 are given on the left

side of the top panel of Table 1, where all the three factor loadings within the block x under

CB-SEM are affected. While weights under mode A are not affected by the non-zero error-

covariance ψx2x3
, all the elements of wx under mode BA are affected. However, because of

the rescaling via equation (15), the first value of r
(s)
j under PLS-SEM mode BA for the block

x is still 1.0. In contrast, only the 2nd and 3rd elements of wx under PLS-SEM mode B are

affected, as indicated by the corresponding values of r
(s)
j . An interesting phenomenon is that

a positive ψx2x3
makes the weights of x2 and x3 under mode B smaller, while under mode

BA these weights become greater. When ψx2x3
= −.2, the results for the relative changes in

weights are given on the right side of the top panel of Table 1. While the weights under mode

A remain intact, the weight changes for the other two modes are in the opposite directions

of those when ψx2x3
= .2.

The middle panel of Table 1 contains the results of r
(s)
j when the error terms of y2 and

y3 are correlated. Again, all the elements of wy under PLS-SEM mode BA are affected, but

only those corresponding to y2 and y3 are affected under mode B. The pattern of the weight

changes for the condition ψy2y3
= −.2 is similar to that for the condition ψy2y3

= .2 but in

the opposite directions.

When the error terms of x2 and y2 are correlated, the results of r
(s)
j are given in the

bottom panel of Table 1. As characterized by the analytical results in the previous section,

for PLS-SEM modes A and B, only the weights for items x2 and y2 are affected. All the

weights under PLS-SEM mode BA are affected. The changes in weights that are affected by

a positive ψx2y2
are in the opposite directions from those by a negative ψx2y2

. Note that the

ratio λ∗/λ0 for y3 in the bottom panel of Table 1 has also changed, although not reflected in

the first 3 decimal places.

While the same sets of elements of wa and wb are affected by a non-zero between-block

error-covariance, the changes in elements of wa are much smaller than those of wb, indicating

more stability of mode A. Also, while all the elements of wba are affected by within-block

and between-block error-covariances, the changes of the individual elements of wba are much

smaller than those of the affected elements of wb.

Insert Table 2 about here

The results on relative weight-change (r
(s)
j ) due to cross-loadings (λx2η = ±.3, λy2ξ = ±.3)
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are in Table 2. For both PLS-SEM modes A and B, only the weights of the items that have a

cross-loading are affected. For PLS-SEM mode BA, the weights of all the items in the block

are affected. For the affected weights, the changes under mode A are much smaller than

those under mode B. For the item that has a cross-loading, the value of r
(s)
j under mode BA

is always between those under modes A and B, indicating that mode BA is a compromise of

mode A and mode B.

With a cross-loading λh = −.30, the weight of the corresponding item under mode B

becomes negative. A negative weight is not consistent with the expectation for the role of

the item (λx2ξ = 1.0, λx2η = −.3; λy2η = 1.2, λy2ξ = −.3), and is also very undesirable in

practice. Such a phenomenon does not occur to PLS-SEM modes A or BA, nor to the factor

loadings λ∗ under CB-SEM. A rationale for PLS-SEM mode B to generate negative weights

is that the cross-loading is a direct effect between the involved item and the latent variable

of the other block, while the main loading plays the role of an indirect effect between the

item and the other latent variable. Also, the cross-loading of a single item has changed

the covariances among all the observed variables in the block. Mode A does not use these

covariances but mode B does (see equations 1, 2 & 11). The negative weights or the relative

weight-changes with r
(s)
j = 3.077 or 3.744 in Table 2 reflect the hyper-sensitivity of PLS-SEM

mode B to specification errors.

Note that the pattern of weight-changes due to either error-covariances or cross-loadings

also depends on the value and sign of the regression coefficient γ of η on ξ in Figure 1. For

example, if we change the population value of γ from .70 to -.70, then a cross-loading of x2

on η at .30 in Figure 1 will result in a negative weight of x2 under mode B.

The results in Tables 1 and 2 indicate that, with either between-block error-covariances

or cross-loadings, the changes in weights of the involved items under both PLS-SEM modes

A and B are always in the same direction. But the relative change of wb is a lot greater than

that of wa. A mechanism for this phenomenon is that wb is obtained via multiple regression.

Due to the indicators within the same block being correlated, each regression coefficient or

weight under mode B has more freedom to account for the extra needs of the corresponding

item. In contrast, the regression coefficient or weight under mode A has to account for the

combined interest of the main-loading and cross-loading by itself, and the main-loading will

have a dominant role unless its size is comparable with that of the cross-loading.
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Insert Figure 3 about here

Figure 3 presents a path diagram for a model with 4 latent constructs and 13 indicators.

The solid arrows in the figure represent a unidimensional model that PLS-SEM methodology

aims to estimate, while the dashed arrows represent additional parameters/relationships that

may exist in the population. Note that ξ1 does not directly predict η2 in the model. The

two-way arrow between ξ1 and ξ2 is not considered as a direct connection under PLS-SEM.

In Figure 3, there are a total of 22 dashed arrows: four two-way arrows represent-

ing within-block error covariances, six two-way arrows representing between-block error

covariances, and twelve one-way arrows representing cross-loadings. The population val-

ues of the parameters corresponding to the solid arrows as well as the dashed ones are

described in the online supplementary material (https://www3.nd.edu/~kyuan/PLS-SEM/

sensitivity/Supplementary.pdf). The numerical results of relative changes of wa, wba and

wb for the 13 indicators are in Tables A1 to A3 of the supplementary material. They all agree

with the analytical results obtained in the previous section. Because the model structure in

Figure 3 is different from that in Figure 1, results in Tables A1 to A3 also have some notable

features. They include: (1) PLS-SEM mode B can have negative weights when there exist

within-block error-covariances in the population; (2) weights under PLS-SEM modes A, BA

and B are not affected by error-covariances between the blocks of ξ1 and ξ2; (3) weights under

the three modes are also not affected by error-covariances between the blocks of ξ1 and η2;

(4) mode A yields a negative weight when x2 has a negative loading on η1, and consequently

mode BA also has a negative weight under this condition; (5) PLS-SEM mode B may yield

negative weights under the condition of positive cross-loadings; and (6) there are multiple

conditions of Heywood case (negative error variance) when the model in equation (8) is esti-

mated by the LS method. Negative elements of Ψ∗ are always associated with large elements

of wa, and the negative error variance is changed to .05 in computing the wba via equation (7).

Readers interested in the details of the numerical results are referred to the supplementary

material (https://www3.nd.edu/~kyuan/PLS-SEM/sensitivity/Supplementary.pdf).

5. Analysis with a Real Dataset

Yuan and Deng (2021) introduced a dataset for a study of health and stress. The dataset

consists of 264 cases and 24 variables, which are indicators of four constructs. The three
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exogenous constructs are respectively: emotional exhaustion (ξ1, 5 indicators), cynicism (ξ2,

4 indicators), and professional efficacy (ξ3, 6 indicators). The single endogenous construct

depression (η) has 9 indicators. The path diagram for the original model is represented by

the solid arrows in Figure 4, which has three path coefficients (γ1, γ2, γ3) in the structural

model. We will refer to the indicators for ξ1, ξ2, ξ3 and η as block 1, block 2, block 3,

and block 4 (the block of outcome indicators), respectively. Note that the three exogenous

constructs are correlated but they are not considered as directly connected under PLS-

SEM, while each of them is directly connected with depression. The raw dataset of the 24

variables has a standardized multivariate kurtosis Ms = 23.292 (Mardia, 1970), which is

highly significant when referred to the distribution N(0, 1). Yuan and Deng (2021) applied

a robust transformation to the dataset, and the standardized multivariate kurtosis for the

transformed sample is Ms = −.003. Our analysis and results presented below are based on

fitting the model in Figure 4 to this robustly transformed sample.

Insert Figure 4 about here

5.1 Three models

When the model represented by the solid arrows in Figure 4 is estimated by normal-

distribution-based maximum likelihood (NML) under CB-SEM, Table 3 contains the pa-

rameter estimates, their standard errors (SEs) and the corresponding z-statistics. All the

loading estimates are positive and statistically significant, and so are all the error-variance

estimates. While the estimates of γ1 and γ3 are not statistically significant at the level of

.05, it does not imply that we can regard them as zero. Note that the estimates of γ3,

φ31 and φ32 are negative. The likelihood ratio statistic for the overall model structure is

Tml = 469.579, highly significant when referred to χ2
246. With fit indices CFI=.948 (Bentler,

1990) and RMSEA=.059 (Steiger & Lind, 1980), the model can be regarded as being ac-

ceptable in practice (Hu & Bentler, 1999). However, the model might be far from being

correctly specified. We will use the Lagrange multiplier (LM) test (Bentler, 2006; Silvey,

1959) to identify additional parameters to improve the goodness of model-fit. One modified

model is to include cross-loadings identified by the LM test, and another model is to include

error-covariances identified by the LM test. We will show how the weights of the composites

under PLS-SEM are affected by excluding these parameters.
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Insert Tables 3 and 4 about here

For the model represented by the solid arrows in Figure 4, the estimated weights under

PLS-SEM modes A, BA, and B are given in Table 4. For comparison purposes, these weights

are scaled so that the first element of each block is 1.0, and a superscript s is used to refer to

this scaling. Table 4 also includes a scaled version of the factor loadings as reported in Table

3, under the notation λ(s). Because we do not have the population values of the parameters

for this real-data example, the scaled values are obtained by dividing the vectors of weights

and factor loadings for each block by its first element. We put the first element of w
(s)
b for

the 3rd block (ξ3) at -1.0 so that the estimated path coefficients and correlations among the

constructs by PLS-SEM mode B can have the same signs with those by the other methods.

The estimates of the path coefficients and correlations of the constructs are also included for

reference. The estimated loadings under λ
(s)
cl and λ

(s)
ec in Table 4 are for the modified models

that include cross-loadings (cl) and error-covariances (ec), respectively, which will be further

described below.

If the model represented by the solid arrows in Figure 4 were correctly specified, we would

have w
(s)
a = λ(s) and w

(s)
b = w

(s)
ba

= cψ−1λ(s) in the population. While the three columns

of factor loadings in Table 4 are close, the estimated weights are quite different from what

would be expected for a correctly specified model. In particular, multiple elements under

w
(s)
b are negative and occurred in three of the four blocks. Multiple elements under w

(s)
ba

are

several times of its counterparts under w
(s)
b ; and a few elements under w

(s)
b are also much

greater than their counterparts under w
(s)
ba

. In contrast, the elements under w
(s)
a are much

closer to their counterparts of factor loadings, although differences exist. A Heywood case

also occurred in estimating the one-factor model via equation (8) for the 1st block, and the

negative error variance (-.071) was changed to .05 in computing the weights under mode BA.

Although we do not know the specific locations of misspecification with real data, statis-

tical techniques such as model modification index (Sörbom, 1989) and LM test (Silvey, 1959)

allow us to empirically identify parameters that can effectively improve the goodness of the

model-fit. We will use the LM test in the software EQS (Bentler, 2006) to identify these

parameters. In particular, the default option of the LM test in EQS searches for all cross-

loadings and ranks those that potentially improve the goodness of fit; and it also searches for

error-covariances when specified. For the health-stress dataset and the model represented
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by the solid arrows in Figure 4, the default LM test identifies a total of eight cross-loadings

whose inclusions are expected to significantly improve the model-fit at the level of .05. They

are reported in Table 5 in the order of their expected contributions to the reduction of Tml.

The model is re-estimated by NML after these 8 cross-loadings are included. The resulting

statistic Tml = 399.288 (CFI=0.962, RMSEA=.051) drops by 70 from that of the unidi-

mensional model although the corresponding p-value is still essentially 0 when the Tml is

referred to χ2
238. The estimates of the cross-loadings and their corresponding z-statistics are

reported in Table 5. Except for the parameter λx15ξ1
, the order of the size of the z-statistics

is consistent with the order of reduction in Tml as predicted by the LM test. The estimates

of the rescaled loadings and other parameters corresponding to the original solid arrows in

Figure 4 for this second model are reported in Table 4, under λ
(s)
cl .

Insert Table 5 about here

With the model represented by the solid arrows in Figure 4, the search for error-covariances

by the multivariate version of the LM test identifies 25 parameters that might significantly

improve the model-fit at the level of .05. The top 10 are reported on the right side of Table 5

according to the order of their predicted contributions to the drop of Tml. After including the

10 error-covariances, their estimates and the corresponding z-statistics are also reported in

Table 5. Except for the error-covariance ψx12x10
, the squared values of the z-statistics for the

other 9 parameters are all greater than 9.0, although the order of the size of the z-statistics

differs from that predicted by the LM test. Inclusion of the 10 error-covariances results in

Tml = 313.640 (df = 236), corresponding to a p-value=0.00053 , CFI=.982, RMSEA=.035.

The estimates of the rescaled loadings and other parameters corresponding to the original

solid arrows in Figure 4 for this third model are reported in Table 4, under λ
(s)
ec .

All the parameters reported in Table 5 are marked in Figure 4 using dashed arrows,

one-way arrows for factor loadings and two-way arrows for error-covariances. The signs of

the estimated values of the cross-loadings are also included in the figure. With the above

information, we next conduct a post-hoc analysis for the results of weights in Table 4, by

treating the estimated values in Table 5 as representatives for the population values.

5.2 Effects of cross-loadings

For the effect of cross-loadings, we will first discuss the weights under mode A before

turning to those under modes B and BA. Note that we have three sets of factor loading
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estimates in Table 4. The differences between w
(s)
a and λ(s) are due to different methods

applying to the same misspecified model. The differences between w
(s)
a and λ

(s)
cl or those

between w
(s)
a and λ

(s)
ec are due to different methods as well as different models. Because the

effect of model misspecification on factor loadings has been discussed in Yuan et al. (2003,

2008), we will not further discuss the differences among λ(s), λ
(s)
cl , and λ

(s)
ce here. Actually,

the three versions of factor loadings are much closer to each other than to the weights of

PLS-SEM, simply because the factor loadings are subject to many common constraints in

their estimation that the weights under PLS-SEM are not subject to.

Mode A

According to the path diagram in Figure 4, three indicators in the first block (ξ1, emo-

tional exhaustion) have cross-loadings. They are respectively x2 L99 ξ3, x3 L99 ξ2 and

x5 L99 η, and the loadings are all positive. For the unidimensional model represented by the

solid arrows in Figure 4, there are two routes for ξ1 and ξ3 to be correlated (ξ1 ↔ ξ3,

ξ1 ↔ ξ2 ↔ ξ3) and they both deliver negative association. The positive cross-loading

x2 L99 ξ3 implies that x2 has an extra positive association with ξ3. Under the restric-

tion of the unidimensional model, a smaller wx2
is necessary to satisfy this need of x2 and

ξ3. In parallel, because the overall association between ξ1 and ξ2 (ξ1 ↔ ξ2, ξ1 ↔ ξ3 ↔ ξ2) is

positive, a greater wx3
is needed to account for the extra association between x3 and ξ2, due

to the positive cross-loading. Similarly, because the association between ξ1 and η is positive,

a greater wx5
is needed to account for the extra positive association between x5 and η. The

comparison between λ
(s)
cl and w

(s)
a in Table 4 agrees with our analysis.

One indicator (x9) in the 2nd block (ξ2, cynicism) has a negative cross-loading on ξ1.

Because the overall association between ξ1 and ξ2 is negative, a greater wx9
will account for

the extra negative association between x9 and ξ1. The results of λ
(s)
cl and w

(s)
a in Table 4 also

agree with the conclusion.

Three indicators in the 3rd block (ξ3, professional efficacy) in Figure 4 have cross-loadings.

The loading over x10 L99 ξ2 is positive, and those over x14 L99 ξ2 and x15 L99 ξ1 are negative.

Because ξ2 and ξ3 are negatively associated, wx10
needs to be smaller to react to the need

of the extra positive association between x10 and ξ2. In contrast, wx14
needs to be greater

to account for the extra association due to the negative cross-loading over x14 L99 ξ2. With

essentially the same mechanism, because the overall association between ξ3 and ξ1 is negative,
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a greater wx15
is needed to account for the extra negative association over the cross-loading

x15 L99 ξ1. The results of λ
(s)
cl and w

(s)
a in Table 4 also agree with our analysis. Because

the numbers under w
(s)
a for the 3rd block are divided by wx10

(a smaller value) for rescaling

purpose, the resulting weights for x11 to x15 all become greater than their counterpart under

λ
(s)
cl .

One indicator in the 4th block (η, depression) has a positive cross-loading (y6 L99 ξ3).

There are three routes for ξ3 to be associated with y6 under the unidimensional model

(ξ3 → η → y6, ξ3 ↔ ξ2 → η → y6, ξ3 ↔ ξ1 → η → y6), and they are all negative according

to the marked paths in Figure 4. Consequently, a smaller wy6
is needed to account for the

extra positive association. The analytical conclusion agrees with the results in Table 4.

Mode B

As showed in section 3 and further clarified in section 4, with cross-loadings, the mech-

anism for weight changes under mode B is essentially the same as that for weight changes

under mode A. However, due to indicators within each block being correlated and weights

under mode B are computed by multiple regression, each element of wb has more freedom

in accounting for the additional needs of its corresponding indicator, by leaving the common

interest of the block to other indicators.

According to Figure 4, three indicators in block 1 (ξ1, emotional exhaustion) have cross-

loadings, they are respectively x2 on ξ3, x3 on ξ2, and x5 on η. For the unidimensional

model represented by the solid arrows in Figure 4, the association between ξ1 and ξ3 is

negative. A smaller wx2
is needed to account for the extra positive association between x2

and ξ3. The weight can even be negative if this relationship is strong enough, as is the case

under PLS-SEM mode B in Table 4. In contrast, the cross-loading of x3 on ξ2 is positive,

implying an additional positive association between x3 and ξ2. Under the unidimensional

model represented by the solid arrows in Figure 4, the association between x3 and ξ2 is

positive. The extra positive association between x3 and ξ2 can be picked up by increasing

the value of the weight, not a sign change. In parallel, the positive cross-loading of x5 on

η implies that they have a stronger association than implied by the unidimensional model.

Since the association over the path x5 ← ξ1 → η is positive, the extra association between x5

and η can be realized by a greater weight of wx5
instead of a sign change. However, we cannot

explain why x4 also has a negative weight, which might be caused by model misspecification
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not detected by the LM test, as to be further discussed in the concluding section.

The 2nd block (ξ2, cynicism) has one cross-loading (x9 L99 ξ1) that is negative. While

the negative cross-loading of x9 on ξ1 may need a smaller or negative wx9
to account for

the needed association, the variable x9 is also subject to the constraint of a negative within-

block error-covariance ψx6x9
, which works against such a move. Consequently, all the weights

within the 2nd block are positive.

Three indicators in the 3rd block (ξ3, professional efficacy) have cross-loadings (x10 L99 ξ2,

x14 L99 ξ2, x15 L99 ξ1). The positive loading of x10 on ξ2 implies that they have an extra

positive association beyond what the unidimensional model can deliver. Because both the

routes ξ3 ↔ ξ2 and ξ3 ↔ ξ1 ↔ ξ2 are negative, the weight for x9 needs to be negative in

order to account for the extra positive association. In contrast, the association between ξ3

and ξ2 (via the paths ξ3 ↔ ξ2 and ξ3 ↔ ξ1 ↔ ξ2) is negative, the extra association due to

the negative loading of x14 on ξ2 can be accounted by a greater positive value of wx14
. With

the same mechanism, the extra association due to the negative loading of x15 on ξ1 can be

accounted for by a greater positive value of wx15
. Such a pattern is clearly reflected by the

results in Table 4.

For the block of the outcome indicators (η, depression), the cross-loading of y6 on ξ3

suggests that the two have an extra positive association. However, under the unidimensional

model, all the paths between ξ3 and η (ξ3 → η, ξ3 ↔ ξ2 → η, ξ3 ↔ ξ2 ↔ ξ1 → η) deliver

negative association. The negative weight of y6 under mode B is to account for the needed

positive association between ξ3 and y6. Again, the negative weights of y3 under PLS-SEM

mode B can be because of correlated errors within the block or misspecification not identified

by the LM test.

The results in Table 4 under PLS-SEM mode B are mostly consistent with our anal-

ysis, although variations exist due to misspecification not identified by the LM test or by

interactions from the misspecification within each block.

Mode BA

The values of wba are closely related to those of wa and the variances of the observed

variables. This is because the solution to equation (8) satisfies ψjj∗ = σjj − θ∗w
2
aj. If the

value-change of waj is to such a degree that ψjj∗ is close to zero, then the corresponding

value of wba will be rather large, as for x5 and x15 in Table 4. Heywood case can even

25



occur if the value of waj is large enough, as for x3 in Table 4 as well as cases reported in

the supplementary material. Because the negative error variance is replaced by .05 in the

computation, the weights under mode BA always have the same sign as those of mode A.

5.3 Effects of error-covariances

Mode A

According to the results in section 3, within-block correlated errors do not affect the

weights under PLS-SEM mode A. For the 10 error-covariances in Table 5, nine are within-

block covariances. Only the last one (ψx7y7
) is between-block error-covariance, and its esti-

mated value (.086) is small. This explains why the weights under mode A are rather close to

the factor loadings (λ
(s)
ec ) under CB-SEM, and their fine differences can be due to misspec-

ification not on the top ten list of the LM test, which identifies 25 error-covariances. The

observed differences between w
(s)
a and λ

(s)
ec or λ

(s)
cl are due to cross-loadings or other model

misspecification not detected by the LM-test.

Mode B

Within-block error-covariances do affect the weights under PLS-SEM mode B. Cases of

negative wb caused by within-block error-covariances were reported in the supplementary

material for the analysis of the model in Figure 3. The accumulation of the effects by

positive and negative error-covariances makes weights to change in different directions. For

the four blocks of indicators in Figure 4, the 3rd block (ξ3, professional efficacy) has most

correlated errors, the weight wb in this block also varies most, from -1.0 to 1.998. Actually,

the first error of the block is correlated with three other errors within the same block, this

also explains why we need to set the first wb of this block as negative in order to keep the

correlations and path coefficients among the constructs under mode B consistent with the

other methods.

The block that does not have a negative weights under mode B is the 2nd block (ξ2,

cynicism). This block has one-cross loading, one within-block error-covariance, and one

between-block error-covariance. While the other blocks have either more correlated errors

or more cross-loadings.

The results in sections 3 and 4 imply that weight-changes for composites under PLS-SEM

depend on the size and signs of the cross-loadings and error-covariances as well as those of

the path coefficients in the structural model. With real data, sampling errors also contribute
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to the fine differences among the estimated weights in Table 4.

6. Discussion and Recommendation

Many aspects of path analysis depend on the properties of the composites, which are

further determined by how the composites are formulated. For a given set of indicators,

the properties of a weighted composite are totally determined by the corresponding weights.

Equally-weighted composites are easy to formulate but do not use any psychometric proper-

ties of the indicators. In contrast, composites under PLS-SEM mode B possess the property

of maximum reliability among all weighted composites. But such a property is obtained under

the assumption of a correctly specified measurement model. Because model misspecification

cannot be avoided in practice, sensitivity analysis of the weights of composites is necessary

to better understand the results of different approaches to path analysis. The results of

our study indicate that weights of composites under PLS-SEM mode A are not affected by

within-block error-covariances; and between-block error-covariances and cross-loadings only

affect the weights of the involved individual items. The weights under PLS-SEM mode B are

affected by all three types of model misspecification. While only the weights of the involved

items under mode B are affected, they can have substantial value changes. In contrast, a

single specification error has a block-wise effect on the weights under mode BA. But wba

of the involved items are not as sensitive as the corresponding wb to each type of specifica-

tion errors. Unless Heywood case occurs, the sign of wba is always the same as that of wa.

However, the values of wba can be rather large when the corresponding error variances in

equation (8) are close to zero. Studies on Heywood cases indicated that they are related to

sampling error, specification error and/or small values of error variances (Kano, 1998; van

Driel, 1978). We suspect that the same causes apply to the model in equation (8) while

additional studies are needed.

Both “sensitivity” and “stability” can be used to describe the properties of weights of

composites under PLS-SEM. Sensitivity might be a good property if our purpose is to detect

model misspecification or to maximize the power in detecting the relationship among the

involved constructs. However, a weight that can change from positive to negative might

be too sensitive to model specification. This is the case of PLS-SEM mode B. In contrast,

stability to minor or moderate model misspecification can be regarded as a good property.

However, a rather stable method may not be able to reflect key properties of the data
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and model. This is the case for PLS-SEM mode A. Actually, mode A ignores the size

of measurement error and the resulting composite can be less reliable than the equally-

weighted composite or a single item of its block. The weights under PLS-SEM mode BA are

a compromise between those under modes A and B. The resulting composites of mode BA

keep the stability of mode A and also the sensitivity of mode B. In particular, composites

under mode BA account for measurement errors as the Bartlett-factor-scores do and possess

the property of maximum reliability. Consequently, we recommend the use of mode BA for

models with reflective indicators while additional studies are needed regarding the sensitivity

of wba to sampling and specification errors when the true error variance is small.

The results of the article show that the patterns of the different weights may contain

valuable information about model specification. If the scaled versions of wa are close to

the factor loadings for a block of indicators, then the block may not have significant cross-

loadings or between-block error-covariances. But significant within-block error-covariances

may still exist. If wb is close to wba for a block of indicators, then the block may not have sig-

nificant (between- & within-block) error-covariances nor cross-loadings. However, indicators

in the other blocks may still have cross-loadings on the factor of this block. Consequently,

approximate equality of wb and wba for all the blocks implies that the measurement model

is well-specified and the corresponding composites approximately possess the maximum re-

liability. If the three weights (wa, wba , wb) are approximately equal across all the blocks,

then the items of the observed data may be parallel or the error variances of each block

are approximately homogeneous. However, additional studies are needed to make the above

observations statically sound or to develop proper statistical tests to compare the different

weights.

Our analysis of the real data is based on the results of the LM test, which is an important

tool for post-hoc model modification. In particular, given the formulation of the model,

the LM test can identify the parameters whose inclusion will most effectively improve the

model-fit under CB-SEM. However, the LM test may not be able to identify the correct paths

when the model is far from being correct or when multiple locations of the model contain

specification errors (Yuan & Bentler, 2004). The parameters identified by the LM test may

be affected by chance errors, especially when the sample size is small. Nevertheless, when

the sample size is sufficiently large, the test can provide valuable information on lack of fit
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locally when the base model has the correct number of latent variables and each indicator has

a major loading on the construct of its assigned block (MacCallum, Roznowski & Necowitz,

1992).

When the model is correctly specified or when within-block error-covariances exist, con-

sistent parameter estimates can be obtained by a procedure called PLSc or its modification

(Dijkstra & Henseler, 2015; Rademaker et al., 2019), based on estimated weights by PLS-

SEM mode A. Although CB-SEM automatically deliver consistent parameter estimates when

error-covariances or cross-loadings are known a priori, it would be an advance of the PLS-

SEM methodology if procedures can be developed to yield consistent parameter estimates by

accounting for cross-loadings or between-block error-covariances. While additional studies

are needed in this direction, the analytical results in this article will provide the needed

guidance for such a development.

While the focus of this article is on models with reflective indicators, PLS-SEM mode B

was conventionally recommended for models with formative indicators, which do not need to

contain measurement errors nor do they share a common latent trait (Treiblmaier, Bentler

& Mair, 2011). Note that the algorithm for computing the weights under mode B does not

know whether the indicators are truly formative or reflective. When prediction accuracy is a

primary concern, model specification or the signs of the weights might be only a secondary

concern (Rigdon et al., 2017). Then the hyper-sensitivity of the weights under mode B can be

a strength. This sensitivity allows the method to fully pick up the extra associations that are

neglected by the specified path model. Such a strength has been proven with two blocks of

indicators, where mode B yields the greatest possible correlation between the two composites

(Areskoug, 1982). With error-free formative indicators, we may call the covariances of items

not fully explained by the path model excess item-covariances. The results of this article shed

a different perspective on the strength of PLS-SEM mode B in picking up the excess item-

covariances. Because excess item-covariances exert a more direct effect on the relationship of

the composites than covariances transferred via the path coefficients, mode B has to adjust

the individual weights in order to maximize the predictive power.

There are also several developments for composite models where formative indicators are

assumed to be error-free (see e.g., Cho & Choi, 2020; Cho, Sarstedt & Hwang, 2022; Dijkstra,

2017; Henseler, 2021; Hwang et al., 2020; 2021; Schuberth, 2021). In particular, Dijkstra
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(2017) showed that, under a composite model with some regularity conditions, PLS-SEM

mode B yields consistent estimates of the population weights for all the formative indicators.

The regularity conditions include that all the covariance matrices between different blocks

of indicators are rank 1. When cross-loadings or excess item-covariances exist, the rank 1

condition will be violated. Additional studies are needed to further examine how weights

under mode B are affected under misspecified composite models.
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Figure 1. A model with two latent variables and seven indicators, dashed arrows represent

parameters whose non-zero values make the unidimensional model misspecified.

� �

� �

� �

� �

� �

� �

� �

Figure 2. A model with three latent variables and ten indicators, dashed arrows represent
parameters whose non-zero values make the unidimensional model misspecified.
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Figure 3. A model with four latent variables and thirteen indicators, dashed arrows

represent parameters whose non-zero values make the unidimensional model misspecified.
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Figure 4. A latent-variable model of health and stress (Yuan & Deng, 2021, N = 264, the
dashed arrows are model modifications identified by the Lagrange Multiplier test but are

not part of the original model).
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Table 1. Relative population weight changes (r
(s)
j in equation 15) for the three modes of

PLS-SEM when the model in Figure 1 (2 latent variables and 7 indicators) is misspecified
by omitting error covariances of size ψh = ±0.2.

ψx2x3
= ψx3x2

= 0.2, RMSEA=0.034 ψx2x3
= ψx3x2

= −0.2, RMSEA=0.042
variable λ∗/λ0 PLS-A PLS-BA PLS-B λ∗/λ0 PLS-A PLS-BA PLS-B
x1 0.939 1.000 1.000 1.000 1.042 1.000 1.000 1.000
x2 1.085 1.000 1.046 0.480 0.925 1.000 0.965 1.920
x3 1.071 1.000 1.274 0.867 0.943 1.000 0.849 1.533
y1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ψy2y3
= ψy3y2

= 0.2, RMSEA=0.073 ψy2y3
= ψy3y2

= −0.2, RMSEA=0.070
variable λ∗/λ0 PLS-A PLS-BA PLS-B λ∗/λ0 PLS-A PLS-BA PLS-B
x1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y2 1.053 1.000 1.010 0.867 0.975 1.000 0.991 1.362
y3 1.079 1.000 0.987 0.600 0.959 1.000 1.012 1.629
y4 0.982 1.000 1.085 1.000 1.023 1.000 0.932 1.000

ψx2y2
= ψy2x2

= 0.2, RMSEA=0.073 ψx2y2
= ψy2x2

= −0.2, RMSEA=0.072
variable λ∗/λ0 PLS-A PLS-BA PLS-B λ∗/λ0 PLS-A PLS-BA PLS-B
x1 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x2 1.013 1.068 1.319 1.746 0.990 0.939 0.787 0.802
x3 0.990 1.000 0.904 1.000 1.008 1.000 1.124 1.000
y1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y2 1.010 1.081 1.496 2.149 0.993 0.926 0.716 0.505
y3 1.000 1.000 1.025 1.000 1.000 1.000 0.974 1.000
y4 0.995 1.000 0.873 1.000 1.005 1.000 1.185 1.000



Table 2. Relative population weight changes (r
(s)
j in equation 15) for the three modes of

PLS-SEM when the model in Figure 1 (2 latent variables and 7 indicators) is misspecified
by omitting cross-loadings of size λh = ±0.3.

λx2η = 0.3, RMSEA=0.037 λx2η = −0.3, RMSEA=0.044
variable λ∗/λ0 PLS-A PLS-BA PLS-B λ∗/λ0 PLS-A PLS-BA PLS-B
x1 0.986 1.000 1.000 1.000 0.989 1.000 1.000 1.000
x2 1.259 1.381 2.412 3.077 0.757 0.619 0.381 -0.154
x3 0.968 1.000 0.820 1.000 1.031 1.000 1.582 1.000
y1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

λy2ξ = 0.3, RMSEA=0.045 λy2ξ = −0.3, RMSEA=0.049
variable λ∗/λ0 PLS-A PLS-BA PLS-B λ∗/λ0 PLS-A PLS-BA PLS-B
x1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
y2 1.229 1.357 2.750 3.744 0.787 0.643 0.384 -0.425
y3 1.001 1.000 1.045 1.000 1.000 1.000 0.945 1.000
y4 0.989 1.000 0.796 1.000 1.015 1.000 1.535 1.000



Table 3. Estimates of the parameters for the model represented by the solid arrows in

Figure 4 under CB-SEM.

para est SE z para est SE z
λx1ξ1

1.006 0.060 16.820 ψx1x1
0.390 0.043 9.084

λx2ξ1
1.057 0.066 15.984 ψx2x2

0.535 0.056 9.558
λx3ξ1

1.202 0.072 16.621 ψx3x3
0.587 0.064 9.210

λx4ξ1
1.085 0.062 17.460 ψx4x4

0.379 0.044 8.612
λx5ξ1

1.110 0.068 16.365 ψx5x5
0.536 0.057 9.359

λx6ξ2
1.193 0.073 16.442 ψx6x6

0.588 0.067 8.814
λx7ξ2

1.288 0.071 18.155 ψx7x7
0.409 0.058 7.014

λx8ξ2
1.335 0.078 17.107 ψx8x8

0.612 0.074 8.235
λx9ξ2

1.071 0.081 13.157 ψx9x9
1.054 0.102 10.311

λx10ξ3
1.221 0.079 15.449 ψx10x10

0.823 0.083 9.935
λx11ξ3

1.399 0.080 17.445 ψx11x11
0.642 0.072 8.875

λx12ξ3
1.340 0.081 16.586 ψx12x12

0.744 0.079 9.421
λx13ξ3

1.234 0.084 14.738 ψx13x13
0.995 0.098 10.177

λx14ξ3
1.380 0.081 16.955 ψx14x14

0.715 0.078 9.207
λx15ξ3

1.304 0.080 16.337 ψx15x15
0.752 0.079 9.550

λy1η 1.000 ψy1y1
0.174 0.018 9.667

λy2η 1.034 0.072 14.441 ψy2y2
0.173 0.018 9.529

λy3η 0.916 0.076 11.977 ψy3y3
0.270 0.026 10.497

λy4η 0.918 0.065 14.032 ψy4y4
0.154 0.016 9.753

λy5η 0.786 0.076 10.359 ψy5y5
0.305 0.028 10.835

λy6η 0.999 0.076 13.200 ψy6y6
0.231 0.023 10.115

λy7η 0.947 0.077 12.232 ψy7y7
0.270 0.026 10.428

λy8η 0.921 0.074 12.440 ψy8y8
0.242 0.023 10.369

λy9η 0.742 0.075 9.863 ψy9y9
0.310 0.028 10.914

γ1 0.066 0.036 1.831 φ21 0.451 0.055 8.260
γ2 0.269 0.040 6.783 φ31 -0.182 0.064 -2.832
γ3 -0.044 0.032 -1.365 φ32 -0.187 0.065 -2.887
σ2

ζ 0.202 0.028 7.279



Table 4. Estimates of weights for composites under PLS-SEM mode A (wa), mode B (wb),

and mode BA (wba) based on the model represented by the solid arrows in Figure 4. Three
sets of estimates of factor loadings and structural parameters are also included for reference
(λ, λcl, λec for the models represented by the solid arrows in Figure 4, with 8 cross-loadings,
and with 10 error-covariances, respectively). The super script s indicates that the weight

vectors as well as the factor loadings for each block of indicators are scaled so that its first
element is 1.0 while the first element of wb for the block of ξ3 under mode B is kept at −1.0.

variable λ(s) λ
(s)
cl λ

(s)
ec w

(s)
a w

(s)
ba

w
(s)
b

x1ξ1
1.000 1.000 1.000 1.000 1.000 1.000

x2ξ1
1.050 1.079 1.046 0.706 0.272 -1.248

x3ξ1
1.195 1.057 1.241 1.490 ∗13.494 1.759

x4ξ1
1.078 1.079 1.115 0.869 0.470 -0.809

x5ξ1
1.103 1.040 1.153 1.337 8.359 1.336

x6ξ2
1.000 1.000 1.000 1.000 1.000 1.000

x7ξ2
1.080 1.079 1.057 1.041 1.117 1.107

x8ξ2
1.119 1.123 1.093 1.240 2.164 2.533

x9ξ2
0.898 0.969 0.921 1.018 0.853 1.357

x10ξ3
1.000 1.000 1.000 1.000 1.000 -1.000

x11ξ3
1.146 1.100 1.139 1.507 2.838 1.365

x12ξ3
1.097 1.051 1.162 1.309 1.678 -0.279

x13ξ3
1.010 0.965 1.054 1.598 4.811 1.121

x14ξ3
1.130 1.054 1.257 1.628 4.662 0.025

x15ξ3
1.068 0.998 1.097 1.690 12.658 1.998

y1η 1.000 1.000 1.000 1.000 1.000 1.000
y2η 1.034 1.036 1.067 1.002 0.864 0.659
y3η 0.916 0.913 0.881 0.761 0.279 -0.302
y4η 0.918 0.916 0.895 0.899 0.885 0.947
y5η 0.786 0.784 0.809 0.650 0.222 0.067
y6η 0.999 1.033 1.001 0.799 0.305 -0.218
y7η 0.947 0.946 0.929 0.907 0.430 0.628
y8η 0.921 0.922 0.889 0.831 0.386 0.104
y9η 0.742 0.745 0.746 0.666 0.244 0.325

γ1 0.066 0.046 0.072 0.148 0.161 0.198
γ2 0.269 0.280 0.266 0.436 0.435 0.408
γ3 -0.044 -0.054 -0.034 -0.079 -0.084 -0.122
φ21 0.451 0.420 0.452 0.424 0.463 0.447
φ31 -0.182 -0.174 -0.194 -0.181 -0.224 -0.229
φ32 -0.187 -0.187 -0.202 -0.176 -0.194 -0.207

Note∗: A negative error-variance (-0.071), called Heywood case, occurred for x3ξ1
in the

procedure of transforming wa to wba , and the negative value is changed to .05.



Table 5. Model modification by including cross-loadings or error-covariances
cross-loadings error-covariances

order loading est z error-cov est z
1 λx3ξ2

.283 4.664 ψx10x11
.289 3.907

2 λx10ξ2
.218 3.407 ψy3y4

.067 4.127
3 λx5η .279 2.741 ψx10x12

.122 1.853
4 λy6ξ3

.082 2.463 ψy7y8
.084 4.366

5 λx2ξ3
.120 2.340 ψx1x2

.144 3.351
6 λx15ξ1

-.156 -2.514 ψx12x14
-.284 -4.860

7 λx9ξ1
-.180 -2.308 ψy2y5

-.054 -3.473
8 λx14ξ2

-.145 -2.292 ψx10x14
-.228 -3.854

9 ψx6x9
-.191 -3.271

10 ψx7y7
.086 3.339




