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Abstract. Randomized A /B tests allow causal estimation without con-
founding but are often under-powered. This paper uses a new dataset,
including over 250 randomized comparisons conducted in an online learn-
ing platform, to illustrate a method combining data from A /B tests with
log data from users who were not in the experiment. Inference remains
exact and unbiased without additional assumptions, regardless of the
deep-learning model’s quality. In this dataset, incorporating auxiliary
data improves precision consistently and, in some cases, substantially.

Introduction In randomized A /B tests on an online learning platform, students
are randomized between different educational conditions and their subsequent
outcomes are compared. Estimates from A/B tests are unbiased, but may be
imprecise due to small sample sizes. An observational study can often boast a
larger sample size but is subject to confounding so conventional analysis of A/B
tests discards data from the “remnant” of the experiment—students who were
not randomized, but for whom covariate and outcome data are available.

However, data from the remnant an can play a valuable role in causal estima-
tion. [2] suggests first using the remnant data to train a model using covariates
to predict outcomes; then, using that fitted model to predict (or impute) out-
comes for participants in the experiment. Finally, use those imputations as a
covariate in a causal effect estimator. This method builds on recent work in
design-based covariate adjustment, e.g. [5], and in particular, using the remnant
to improve precision [e.g.] [1]. Unfortunately, [2] provides only limited evidence
of the method’s success in practice.

This paper reviews two of the causal estimators of [2], and applies them to
an new dataset: a collection of 84 multi-armed A/B tests run on the ASSIST-
ments TestBed [3], which together include 377 different two-way comparisons,
and 41,226 students. Alongside this experimental data, we collected log data for
an additional 193,218 students who worked on similar skill builders in ASSIST-
ments but did not participate in any of the 84 experiments—the remnant. We
used these datasets to estimate the causal effects of each of the conditions on
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assignment completion. Our interest here is not on the treatment effects them-
selves, but on the extent to which these methods reduce standard errors. Our
results give a much clearer picture of the potential impacts of using remnant
data in design-based causal inference: incorporating remnant data consistently
improves statistical precision, sometimes substantially.

Method For each subject i in a randomized experiment, let Z; = 1 if i is
randomized to the treatment condition and Z; = 0 if ¢ is randomized to control,
and let Y; be the outcome of interest. Following [4], define y¢ and y! as the
outcomes ¢ would have exhibited had ¢ been assigned to control or treatment,
respectively. Then, assuming no spillover effects, Y; = Z;y! + (1 — Z;)y¢, and the
treatment effect for student i is 7, = y! — y¢.

Let x; be a k x 1 vector of baseline covariates for subject 7, and let §¢(-) and
7*(+) be functions from R*¥ — R! that impute y¢ and y¢, respectively, as a function
of ;. Finally, if Pr(Z = 1) = 1/2, let m; = 1/2(y§ + y!), subject i’s expected
counterfactual potential outcome, and let m; = 1/2(9%(x;) + 9(x;)) be it’s
estimate. Then, if §¢(-) and §(-) are constructed such that {§¢(zx;), §¢(x;)} 1L Z;,
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is an unbiased estimate for 7. In fact, this unbiasedness holds regardless of §°(-)
or §%(-)’s other properties—they need not be unbiased, or consistent, or correct
in any sense for 7 to be unbiased.

[2] combines two approaches to ensuring that {§°(x;), §*(x;)} L Z;: the first
uses a leave-one-out algorithm using observations other than ¢ to train models
9¢,(-) and §* ;(-) that will in-turn give rise to imputations §¢(x;) and §*(x;) and
finally m;. As long as Z; L Z; for i # j, then {9°(x;),9*(x;)} L Z; will hold.

The second approach uses the remnant to train a different model, §"(-),
producing imputations z” = ¢§"(x;). Importantly, " is a baseline covariate,
unaffected by treatment assignment, since it is a function of baseline covariates
x and a model fit to a separate sample. Therefore, it can be incorporated into
an estimator such as (1), perhaps alongside other covariates. If §"(-) performs
well in the experimental sample, so that |z" — y¢| tends to be small, then doing
so can drastically improve precision; in the limit, if 2" = y{ for all 7, then the
standard error of 7 would be due only to treatment effect heterogeneity, and the
average effect on treated subjects would be known exactly. On the other hand,
if §"(-) does not perform well it will not threaten the validity of the inference,
and in large samples it will not harm precision.

Here, we include two specific versions of 7: first, 755[z", LS] uses 2" as the
only covariate and uses ordinary least squares linear regression (OLS) for leave-
one-out imputation models §°(-) and §'(-). We expect that when §"(-) performs
well, OLS will be optimal since the relationship between Y and z” will be approx-
imately linear. Second, 755[&, EN] uses z" alongside a vector of other covariates
x; leave-one-out imputation models §°(+) and §*(-) are ensembles of OLS regres-
sion of Y on z” and a random forest imputing Y from both = and 2".
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Application We gathered a set of 84 A /B tests run on the TestBed with assign-
ment completion as a binary outcome. We also gathered standard student-level
aggregated predictors. Several experiments included multiple conditions; in those
cases we estimated each pairwise contrast separately, as long as the p-value test-
ing Pr(Z = 1/2) was greater than 0.1.

We used remnant data to train a deep learning model §"(-) imputing com-
pletion from covariates. Three different sets of data were collected for each
sample in the datasets: prior student statistics, prior assignment statistics,
and prior daily actions. The full dataset used in this work can be found
at https://osf.io/k8ph9/?view _only=ca7495965ba047e5a9a478aaf4f3779e. Each
of the three types of data in the remnant dataset were used to pre-
dict both skill builder completion and number of problems completed
for mastery. a fourth neural network was trained using a combination
of the previous three models. The details and code can be found at
https: //github.com/adamSales/reloop377abTests. We used this fourth model,
9" (), to construct imputations z” for each subject i in each experiment.

combined combined combined

Fig. 1. Boxplots and jittered scatter plots of the ratios of estimated sampling variances
of #PM_ #3827, OLS|, +%%|x; RF|, and #%%[&; EN]

Figure 1 gives boxplots of ratios of estimated sampling variances V() for
causal estimates: 7PM, the Welch two-sample t-test, 755[x, RF], the leave-
one-out estimator using student-level covariates but no information from the
remnant, and the two new estimators, 755[z", L.S] and 75%[&, EN]. The left and
middle panels including remnant-based imputations is equivalent to increasing
the sample size, relative to a t-test, by a factor of about 10-25% in about half
of all cases, but up to 50%-70% in the most extreme cases.> The right panel

3 Since sampling variance is typically o 1/n, ratios of sampling variances can be
interpreted as ratios of effective sample sizes.
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shows that compared to 75°[z; RF], including remnant based imputations was
equivalent to increasing the sample size by roughly 8-12% in half of all cases,
but as much as 30% in others.

Discussion The approach illustrated here shows that data that do not meet
an assumption—randomization—can still be used to help learn connections
between covariates and outcomes. Its causal estimates will be unbiased, and
inference correct, regardless of the data quality or model properties in the
remnant. However, better data and better model fit will lead to better precision.
The results in the ASSISTments A/B tests show that it sometimes improves
precision greatly, and sometimes barely at all. Future research will explain this
variance, as well as formulate suitable defaults and recommendations for when
and how it should be used.
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