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ABSTRACT 

COVID-19 presented a challenge to the traditional methods of teaching programming and robotics in a secondary school 

environment. When campuses were closed around the world in the spring of 2020, it was not possible for students to 

access the computer labs nor the robotics equipment that was traditionally used to facilitate the instruction of robotics 

programming units. This paper presents a design research project in which two secondary institutions in Canada and 

Turkey collaborated to teach computer science and robotics programming, specifically reinforcement learning, through 

the use of an online simulation environment. The two student cohorts in the study both were successful in developing 

reinforcement learning models for autonomous vehicles, despite not having any prior experience in machine learning nor 

artificial intelligence. The implications of this work are that physical robotics kits and dedicated robotics spaces are not 

essential to the teaching of programming and robotics. This is especially relevant to marginalized communities that do 

not have the resources to support robotics instruction, further exacerbating the digital divide. 
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1. INTRODUCTION 

The concept of Just in Time Learning (JITL) was initially primarily found in the context of professional 

and/or technical knowledge (Boese, 2016). The academic literature on this topic has recently expanded to 

include more formal education, including primary, secondary, and tertiary education (Khamis et al., 2019). 

JITL is defined as the acquisition of knowledge in response to an imminent problem or context requiring that 

knowledge. This paper will discuss the application of JITL as a means of educating and motivating secondary 

school students to learn Artificial Intelligence (AI) and Machine Learning (ML) during  

COVID-19. This work was conducted in the spring of 2020, during the height of the COVID-19 outbreak, 

within the challenging context of emergency remote instruction when access to physical robotics resources 

and computer labs was prohibited. Novice computer science students were successful in programming 

autonomous robotics vehicles, as well as learning the fundamentals of the Python programming language 

through the JITL approach. Moreover, the simulation environment enabled students to explore advanced 

topics in AI and ML as the simulation environment was free of many of the challenges that are characteristic 

of teaching with physical robotics kits. The advantages of using a simulation environment over physical 

robotics kits in a computer lab will be discussed further later in this paper. 

1.1 Building upon a Foundation of Cloud Computing 

In the spring of 2020, in response to the COVID-19 pandemic, physical school campuses were closed and 

students were required to attend school remotely. For many students, attending school meant interacting 

teachers through an online environment over the internet. This was the experience of the two cohorts in this 

design-based research project (Design-Based Research Collective, 2003; Zydney et al., 2020). One cohort 

was from a secondary school in Vancouver, Canada and consisted of seven students in the ninth grade. The 

other cohort was from a secondary school in Istanbul, Turkey and consisted of five students in the tenth and 

eleventh grades. The robotics and computer programming instruction for these two cohorts was delivered 

exclusively online using cloud computing. All students worked from their homes without access to school 
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computers, robotics equipment, or specialized/licensed software. A combination of cloud computing tools 

was used to facilitate instruction. Zoom was used for synchronous video communication, hosted by the 

teacher. Google Classroom, Google Drive, and Google Docs were used for asynchronous document sharing 

and collaboration. The AI and ML simulation environment, AWS DeepRacer, was hosted on Amazon’s 

public cloud platform as well.  

This paper extends upon the author's earlier work concerning cloud computing in education within a 

Western Canadian context. The foundational work was an exhaustive study of all 75 large K-12 districts in 

Canada's three western-most provinces (Holowka , 2018). The study employed a data transformation  

mixed-methods triangulation design and captured the educational IT infrastructure serving over 1.14 million 

students (Creswell et al., 2003). The findings of the study revealed that Western Canada was a leader in the 

adoption of cloud computing globally with every school district employing several forms of cloud computing 

for their IT infrastructure. This early adoption of cloud computing now enables future cloud computing 

technologies, such as the online simulation environment for teaching AI and ML discussed in this paper. 

Moreover, the ubiquity of cloud computing in Western Canadian K-12 underscores the broad adoption 

possibilities for this simulation technology due to the existing IT infrastructure already available to students 

and their institutions. Similarly, the consistent internet access of the Istanbul cohort, as well as their success 

with this project, suggest that a shift to cloud computing-enabled instructional tools is an option for many 

schools around the world.  

1.2 AWS DeepRacer 

Amazon Web Services (AWS) AWS DeepRacer consists of two components: a physical 1/18th scale race car 

and an online simulation environment for programming the self-driving performance of the small scale race 

car (Balaji et al., 2019). Using AI and ML, users of the AWS DeepRacer console customize self-driving 

reinforcement learning models which they develop in the online simulation environment. These models can 

be transferred to the physical car for real-world testing, though this real-world testing is not required. Figure 

1 shows the physical 1/18th scale race cars that contain a Linux operating system and a computer vision 

camera, in addition to a typical toy car electric motor drivetrain. Within the context of this paper, the use of 

AWS DeepRacer will refer to programming within the online simulation environment. This work did not use 

the physical race cars as they were inaccessible at the school due to COVID-19 restrictions. A discussion of 

the use of the physical cars occurs in the concluding section on future opportunities for research. 

The AWS DeepRacer service incorporates multiple AWS services in order to create an environment for 

the development and testing of autonomous vehicles. These multiple AWS services include storage (AWS 

S3), compute (EC2), virtual environment creation tools (AWS Robomaker), and so forth (Balaji et al., 2019; 

Suenaga & Morioka, 2020). The integration of these discrete services into the single AWS DeepRacer 

service helps students learn complex AI and ML concepts with greater ease. If learning to program AI and 

ML can be likend to learning to drive a real car, then the use of AWS DeepRacer allows students to 

concentrate on their use of the brake pedal, rather than first trying to have them understand the theory behind 

how disc brakes work. The use of AWS DeepRacer in a secondary school educational setting embodies the 

JITL approach. Using AWS DeepRacer and JITL, students can focus on an immediate outcome they are 

trying to achieve, rather than being overwhelmed by the wide-ranging supporting individual components.  

The use of AWS DeepRacer and JITL can be viewed as an alternative or modification of the conventional 

scaffolding approach used by educators. The classic use of scaffolding consists of students being guided 

through increasingly complex concepts and skills, with earlier work serving as a scaffolding for latter work 

(Hogan & Pressley, 1997). In this AWS DeepRacer application of JITL, students began with the seemingly 

complex task of programming a self-driving car. At the beginning, students had only a rudimentary 

understanding of how the multiple underlying AWS technologies functioned. However, with experience 

using the AWS DeepRacer environment, students gained familiarity with the integrated systems of the AWS 

DeepRacer plaform. Students are then encouraged to further optimize their cars’ performance by more deeply 

investigating the individual supporting components of the integrated system. Similar to reverse engineering, 

students were invited to experiment by adjusting the underlying components. This AWS DeepRacer project 

revealed that once students gained an understanding of the basic operation of their model and the simulation 

environment, they were then motivated to investigate how the modification of individual supporting 

components could enhance their work.  
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Figure 1. Physical AWS DeepRacer cars that can run ML models trained in an online simulator 

2. PROJECT GOALS AND STUDENT SKILLS 

2.1 Cloud Computing Infrastructure 

The purpose of the AWS DeepRacer unit was to introduce students to the fundamentals of computer science. 

This included an overview of cloud computing infrastructure and programming languages. The project began 

with the creation of individual student accounts, by the students themselves, in the AWS Console.  Students 

created full AWS accounts and were introduced to the login process and the various services available by the 

instructor. Students were also given a lecture on ethics and the importance of cost management when using 

cloud computing services. The configuration of AWS DeepRacer was an authentic lesson about cloud 

computing using cloud computing. 

2.2 Programming Languages and Python 

The underlying motivation for the course and the AWS DeepRacer unit was to introduce students without 

prior programming experience to the fundamentals of computer science, namely to develop an understanding 

of programming languages such as Python. AWS DeepRacer provides a low-code environment where 

students can achieve success by using pre-populated reward function code. Students were first encouraged to 

pursue success by any approach, including the use of the pre-populated code library. This would serve as a 

baseline for student learning. Students were able to successfully complete the course task without fully 

understanding programming languages. This was the baseline and the aim for students was the mere 

completion of a simple oval track within the AWS DeepRacer simulator. Figure 2 presents the simulation 

environment for a simple oval track. Figure 3, in contrast, presents the simulation environment for a more 

complex track that students later used. 
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Figure 2. AWS DeepRacer model training and evaluation within simulation on a simple oval track 

 

 

Figure 3. AWS DeepRacer model training and evaluation within simulation on a complex track 
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Using the synchronous and asynchronous cloud computing collaboration tools outlined earlier, students in 

the Vancouver and Istanbul cohorts exchanged ideas concerning how to improve their models and how to 

more quickly complete the simple oval track. Students reviewed the sample reward function code provided in 

the Python programming language and began to understand the code’s structure. Similarly, they identified 

variable that they could change. An example of the Python reward function code for a successful 

reinforcement learning model is found in Figure 4. This code was initially developed for the simple oval 

track in Figure 2 but was then transferred to the more complex track in Figure 3. 

 

 

Figure 4. An example of a successful AWS DeepRacer model reward function written in Python 

2.3 Student Collaboration, Competition, and Success  

The underlying goal of the AWS DeepRacer unit was to teach students robotics and programming skills. This 

was successful as each student in the course was able to iterate upon their reinforcement learning models and 

demonstrate an increased understanding of the Python programming language. By the end of the AWS 

DeepRacer unit, students were required to complete the following three tasks: 1) to successfully complete 

five virtual races on five different tracks within the simulation environment, 2) to develop a log of changes to 
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their reward functions written in Python, and 3) provide an optional video reflection on their experience 

collaborating with peers, both locally and internationally. All students successfully completed the first two 

tasks and the majority of students completed the third.  

The students demonstrated considerable growth in their understanding of the Python programming 

language and pursued advanced topics beyond the course’s scope in order to achieve a higher position on the 

races’ leaderboards. When students completed a track, their lap times were recorded automatically within the 

AWS DeepRacer Community Race Leaderboard. The competitive element of the activity, even though it did 

not have any relation to the course mark, provided added motivation and engagement for the students. 

Students took pride in leapfrogging each others’ performance as they learned more advanced reinforcement 

learning strategies. Moreover, the leaderboards indicated the completion lap times for the students and was a 

helpful tool for showing the improvements in the performance of their AI/ML models.  

An enabler of students’ success was the open, collaborative nature of the activity. Students were required 

to produce a shared development log which detailed both successful ML models, as well as models which 

resulted in failure. The instructor modeled this activity by providing an open example for students to view 

using a shared Google Doc. The instructor included both working reward functions and reward functions that 

were unsuccessful. This openness modeled the collaborative scholarly process of research, as well as 

provided students with time-saving insights as to what strategies to avoid. The collaborative and social nature 

of this activity was often described as a positive aspect of the AWS DeepRacer exercise by the students in 

their reflection videos.  

3. REIMAGINING ROBOTICS INSTRUCTION 

COVID-19 exacerbated existing challenges pertaining to teaching robotics within a secondary school 

context. Prior to COVID-19, teaching computer programming for robotics was problematic because of the 

physical space required for the use of traditional robotics kits. When schools were moved to fully online 

instruction in the spring of 2020, access to such kits was further restricted. Prior to COVID-19, the 

Vancouver school shifted away from traditional robotics kits towards a cloud-based simulation environment 

for teaching programming and robotics. This approach resolved many of the challenges associated with 

teaching programming and robotics and made possible the international collaboration described in this paper. 

The success of this collaboration now serves as a guide, informing the teaching of programming and robotics 

in upcoming academic years. 

3.1 Proprietary Physical Robotics Kit Limitations 

The conventional means of teaching computer programming and robotics in many primary and secondary 

schools involves the use of physical robotics kits. These kits often contain proprietary components and 

kit/vendor-specific software that is not widely used in the IT industry (Vandevelde et al., 2013). Examples of 

such proprietary robotics kits include those made by VEX Robotics and Lego Mindstorms (Habib, 2012). 

Such kits are problematic for some schools in that they require a considerable initial financial outlay, 

physical storage space within the school, computers with licensed software through which to update the 

proprietary robotics controller hardware, maintenance of the computers which are used for the licensed 

software, maintenance/replacement of the robotics kits’ parts, and consistent access to physical space for 

students to experiment with the physical robots. In many schools, the availability of physical space for such 

robotics activities would be at the expense of space for the enrollment of students. The challenges associated 

with physical robotics kits are considerable and can present a barrier to schools having any kind of robotics 

program and/or programming club. 

3.2 Benefits of an Online Simulation Environment for Robotics Instruction 

An online simulation environment for robotics instruction is free from all of the challenges associated with 

physical robotics kits outlined in the previous section. The shift from physical robotics kits towards virtual 

robots within an online simulation hosted in the cloud also yields benefits pertaining to instructional design. 

In addition to the space and equipment required for physical robotics kits, a considerable percentage of an 
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activity’s time involving such kits is often dedicated to the management of the physical components of the 

robot (e.g., plastic gears, wheels, etc.). The students’ efforts go towards assembling and repairing the pieces 

of the robot, rather than developing and refining the code. In such an example, a considerable amount of time 

is spent by students on low-level assembly work rather than on the intended higher-level analysis of their 

code. The use of an online simulation environment means that students work nearly entirely on the 

programming of their vehicles and the code of their reward functions.  

The use of an online simulation environment using cloud computing also allows students to work on their 

robotics projects at any time from any location with internet access. Students are able to log into the 

simulation environment from a web browser, such as Google Chrome, without the need for any other 

specialized software. Students can then experiment with the code of their model and run virtual 

training/evaluation sessions where they test the code. Educational initiatives by vendors, such as AWS 

Educate, give students free computational credits/hours resulting in no additional cost to students or their 

institutions.  

As the testing of the code can take hours, students can also run these training/evaluation sessions 

unattended. Students can create a model training/evaluation, turn off their computer, and then review the 

results hours later. This is possible because the simulation runs entirely in the cloud, independent of the 

students’ computer. This allows students to advance their robotics work at home and at school. This was a 

critical benefit during COVID-19 when schools were inaccessible. The simulation environment allowed 

students to engage fully in the robotics unit, in spite of not being able to access the school buildings. 

3.3 Online Simulations Leading to Physical Robotics Testing 

The use of online simulations for teaching students programming and robotics is meant to expedite the 

students’ learning and not to serve as a complete replacement for physical robotics programming. The reality 

gap in robotics refers to the differences between simulations and reality (Collins et al., 2019; Koos et al., 

2012). The AWS DeepRacer simulation environment is a training environment for reinforcement learning 

models which can later be downloaded to a robust physical small race car (Figure 1). Though this project did 

not involve the use of these physical cars, it is important to clarify that the online simulation environment is 

an accelerant for the development of student skills with robotics, rather than a purely virtual replacement 

with no connection to the real world. When students are ready, they can transfer their reinforcement learning 

models to the physical cars. The ability to explore and address the reality gap will be a valuable opportunity 

to extend their learning in the fields of robotics and programming. 

4. CONCLUSION 

The use of AWS DeepRacer during COVID-19 within a secondary school context was an emergency 

initiative that revealed the viability of using a simulation environment to teach a non-expert audience 

robotics, programming, AI, and ML. The initiative was successful in that all students were able to program 

working models for their simulation environments and complete multiple races/tracks. Students who had no 

prior experience with the Python language were able to modify/create the reinforcement learning code to 

improve their AI/ML car models. Students also engaged with concepts outside of the course’s core 

curriculum in efforts to improve their models. This included modifying AI/ML hyperparameters and 

researching senior-level calculus to optimize the reward functions they had written in Python. As the majority 

of the students were in the ninth grade, this early effort to understand senior-level concepts in mathematics 

will hopefully allow them to make connections to the more advanced/abstract mathematical concepts they 

will encounter in future courses. 

Limitations of this work pertain primarily to this project’s relatively small size. As this was a pilot 

project, conducted in an emergency setting during the COVID-19, there are opportunities to expand upon this 

work in the future. Future studies can focus on replicating and expanding this study to better understand the 

efficacy of robotics instruction within a simulation environment. For example, a more experimental research 

design can be implemented where two cohorts of students are taught similar concepts of AI and ML. One 

cohort could be taught using a simulation environment such as AWS DeepRacer, while the other could be 

taught using more conventional, on-site-only methods with physical robotics kits. Quantitative analysis could 
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be applied to examine the differences between the two groups, especially if multiple large cohorts can be 

engaged. Similarly, future research can be conducted into the reality gap and the challenges associated with 

transferring self-driving models from the AWS DeepRacer simulation environment to the physical cars. 

A further opportunity for a future study may involve a simple replication of this work with a different 

cohort of students. It is possible that the success of this project was enabled by the very positive and perhaps 

exceptional nature of the students in this initial study’s cohort. Future studies with different students, schools, 

and teachers would also yield valuable insights into the efficacy of using simulation environments to teach 

foundational robotics programming concepts.  
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