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Abstract: Academic discourse communities and learning circles are characterized by collaboration,
sharing commonalities in terms of social interactions and language. The discourse of these com-
munities is composed of jargon, common terminologies, and similarities in how they construe and
communicate meaning. This study examines the extent to which discourse reveals “shared language”
among its participants that can promote inclusion or affinity. Shared language is characterized
in terms of linguistic features and lexical, syntactical, and semantic similarities. We leverage a
multi-method approach, including (1) feature engineering using state-of-the-art natural language
processing techniques to select the most appropriate features, (2) the bag-of-words classification
model to predict linguistic similarity, (3) explainable AI using the local interpretable model-agnostic
explanations to explain the model, and (4) a two-step cluster analysis to extract innate groupings
between linguistic similarity and emotion. We found that linguistic similarity within and between the
threaded discussions was significantly varied, revealing the dynamic and unconstrained nature of
the discourse. Further, word choice moderately predicted linguistic similarity between posts within
threaded discussions (accuracy = 0.73; F1-score = 0.67), revealing that discourse participants’ lexical
choices effectively discriminate between posts in terms of similarity. Lastly, cluster analysis reveals
profiles that are distinctly characterized in terms of linguistic similarity, trust, and affect. Our findings
demonstrate the potential role of linguistic similarity in supporting social cohesion and affinity within
online discourse communities.

Keywords: math discourse; natural language processing; linguistic similarity; algebra; discussion forums

1. Introduction

Interactions between students in collaborative learning activities are often studied
within face-to-face learning environments. Considerable evidence indicates that students
sharing ideas or questions in pursuit of knowledge demonstrate improved learning out-
comes compared to those learning in isolation [1,2]. Thus, teachers are encouraged to
incorporate collaborative activities where students engage in the co-development of a
shared mental model with one or more peers [3]. Within these collaborative environments,
learners engaging in academic discourse have a shared set of rules, including social cues
that guide their communication. For example, when one peer is confused about what the
other is saying, they may shift their eye gaze or shrug their shoulders [4]. Such exhibition
of social cues may result in a dialogic exchange in which participants make connections
between utterances to co-construct knowledge. This coordinated discourse is representa-
tive of shared language reflecting commonality or connection that unites the members of
the learning community [5,6]. Shared language further contributes to the cohesion of a
community [7]. Coordinated communication representing community members’ shared
conceptualizations and perspectives is associated with positive social outcomes not only
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in face-to-face interactions but also in technology-mediated settings [8]. Given the recent
increased adoption of online learning environments, it is increasingly important to bet-
ter understand the nature of effective communication in asynchronous and collaborative
environments such as discussion boards. The quality of discourse in asynchronous, collab-
orative digital spaces enhances the learning experience and contributes to the attainment
of learning goals. Hence, promoting student engagement and participation in academic
discourse benefits learning through collaborative problem-solving, peer instruction, and
co-construction of knowledge.

Asynchronous discussion boards are often implemented as a mechanism to build
learning communities and introduce collaborative learning activities [9]. However, stu-
dent participation in discussion boards continues to be one of the hurdles to successful
discussion board implementation. Students’ participation in discussions is linked to course
satisfaction, feelings of belonging, and positive learning outcomes [10,11]. While collabo-
ration and interaction among students enhance their overall learning experience, student
participation remains a challenge in discussion board deployments [12–14]. Despite the
goal of discussion boards to facilitate community development, build social interactions,
and scaffold meaning-making, students may not develop a feeling of belonging or a sense
of affinity toward their fellow students. However, student perceptions of affinity and
belonging are more pronounced and easier to capture within face-to-face classroom settings
as compared to an online modality.

This study investigates the factors that are associated with collaboration and social
interactions among discourse participants by looking at the discourse through the lens of
shared language, i.e., lexical entrainment and semantic similarity. In addition to probing the
similarity of students’ lexical choices in the discussion threads, we simulate the linguistic
markers of affinity and trust within a technology-mediated setting designed for learning
algebra. For example, lexical and semantic dimensions of language are indicators of
affective expressions (i.e., valence and arousal) from naturalistic dialogues within an
intelligent tutoring system [15]. Valence is a dimension of emotion that represents a
continuum of negative/unpleasant to positive/pleasant. Arousal is the dimension that
depicts the intensity of emotional activation ranging from low/calm to high/excited.
Another social factor that we simulate in modeling shared language and social interactions
among discourse participants is affinity. Coordinated communication through mimicry,
which includes word choice and syntactic structure [16], is linked to affinity [17]. When
discourse participants use the same shared language, it serves as evidence of “membership”
or inclusion and, at the same time, contributes to the cohesion of a community [7]. Discourse
participants must have coordinated notions of how to use and interpret language within
the discourse [18]. This coordination is descriptive of a shared language that reflects
the commonality of world views or conventions that unite the members of a discourse
community [5].

Understanding the nature of language within discourse communities in this study pro-
vides valuable insights into students’ engagement, trust, and affinity amongst participants,
as evidenced by their lexical choices and linguistic similarity. Evidence of engagement,
trust, and affinity indicates that students have adequately participated in the discourse,
and thus, the pedagogical goals of discussion forums are attained. Hence, the potential
benefits of discussion boards, which include increased opportunities for interaction and
enhanced learning experiences, will materialize. Multiple methods used for analyzing this
discourse leverage natural language processing (NLP) methods, including deep learning
for NLP models, and the integration of qualitative analysis to theoretically and contextually
validate the findings.

1.1. Lexical Entrainment and Semantic Similarity

In the pursuit of effective communication, parties in a conversation act cooperatively,
and this is reflected in their lexical choices to increase understanding and reduce mis-
communication. The conversing parties use common terminologies or, at times, agree
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to a change in terminology to overcome language ambiguities as conversations progress.
Linguistic or lexical mimicry describes coordinated communication that involves the repe-
tition of words and phrases among discourse participants [19]. Lexical entrainment is a
related phenomenon that encompasses lexical mimicry, the commonality of words used,
and the similarity of the linguistic choices pertaining to lexical and syntactic dimensions of
language. Lexical entrainment reflects the process of adopting a shared lexicon of terms
that parties in a conversation employ. This process represents the shared mental model of
discourse as evident in their lexical choices while communicating. Lexical entrainment usu-
ally involves coming to an understanding and collaboratively co-constructing knowledge
using the agreed-upon lexical symbols or “shared language” throughout the discourse. The
presence and extent of lexical entrainment have been observed in discourse communities
characterized by trust [20,21] and group success [22].

Semantic entrainment is likewise observed in this linguistic adaptation among dis-
course participants, leveraging semantic similarity as a measure of entrainment [23]. Se-
mantics, in linguistics, is the study of the meanings of words and sentences. Lexical
semantics represents how the meanings of words are understood in the context in which
they are used and is derived from the relationships between words in a sentence. Semantic
similarity, which represents semantic entrainment, indicates whether two texts have similar
or different meanings [24]. It is mathematically derived using word embeddings, sentence
embeddings, or both and calculates a similarity metric representing the distance between
the texts being compared. Semantic similarity NLP indices are used in various applications,
such as text categorization, summarization, question answering, feedback, and information
retrieval. Word similarities may be computed based on plain co-occurrence using measures
such as raw co-occurrence count, text frequency—inverse document frequency (TF-IDF),
or pointwise mutual information (PMI), or using second-order co-occurrences wherein
word contexts, also called word embeddings, are used in the distance calculation. Lexi-
cal databases, such as Wordnet [25], are also used in calculating the semantic similarity
between words. While semantic similarity captures overlap at the word level (i.e., local
context), textual similarity reflects the semantic equivalence beyond words (i.e., longer
strings of lexemes—sentences and paragraphs). Similarity between texts is also calculated
using various distance computation approaches that are also used in word-level similarity.
The most noteworthy innovations in similarity computations involve deep learning in
NLP, a.k.a. deep NLP. These state-of-the-art models can represent context beyond word
occurrence methods through advances in machine learning algorithms and word and
sentence embeddings. Textual similarity measures can efficiently approximate semantic,
lexical, and syntactic similarity [26]. This work on linguistic similarity represents the
discourse participants’ shared language based on the similarity of their word choices and
understanding of these words (i.e., meaning-making) [27].

1.2. Math Discussion Boards and Math Language Processing (MLP)

Language is an essential resource in mathematics learning and provides the students
the ability to participate in math instructional activities. Meaningful discourse within
math discussion boards allows the students to ask questions and supplement learning
from the lessons and instructional content. Discussion boards facilitate knowledge co-
construction and transfer. Further, math knowledge construction is comprised of procedural
and conceptual language as students conceptualize abstract ideas and collaborate in real-
time problem-solving. In prior work extracting the linguistic profiles of online math
discourse, we found that the dominant communicative goals that were prevalent in a math
discussion board include elaboration, providing instruction, establishing explicit relations
and analogies between mathematical constructs, and presenting information [28].

The application of natural language processing tasks and machine learning in math-
ematics has been limited. Specifically, in the field of information retrieval and semantic
extraction, mathematics emerges among the complex because of the inherent ambiguity
and context-dependence of mathematical language. Embeddings in MLP have been ef-
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fective in capturing term similarity, math analogies, concept modeling, query expansion,
and semantic knowledge extraction [29]. However, even with the success of embeddings
in MLP, the need for extensive math-specific benchmarks is still prevalent. There is an
extensive need for the development of implementable, robust embedding models that
accurately represent mathematical artifacts and structures [30].

1.3. Current Study

We measure word and textual semantic similarity in threaded discussions within an
online math tutoring platform using NLP and machine learning. The challenge is the
scalability of state-of-the-art NLP models to the nuances of mathematical discourse [31].
NLP semantic models need to capture mathematical reasoning on top of extracting relevant
information from natural language text [32]. As such, we model the similarity of the stu-
dents’ word choice and lexical processes (i.e., mental modeling and lexical representation
of their ideas) within mathematical discourse gathered from Algebra I discussion boards
in the Math Nation online tutoring system. In doing so, we determine the presence of
shared language by looking for indicators of linguistic entrainment and semantic similarity
(i.e., linguistic similarity). We also investigate words that reflect the lexical choices of the
students, which could depict lexical entrainment. In addition, we investigate the relation-
ship profiles between the shared language indicators and affect and trust as constructs that
represent student engagement and affinity.

The research questions that guide this study are as follows:

1. Does discourse within an online Math tutoring platform exhibit shared language?

1.1. Do the posts become more linguistically similar as the discussion progresses?
1.2. Are words indicative of similarity between the discourse participants’ posts?

2. How is linguistic similarity associated with known desirable social constructs (af-
fect measures and trust) related to student engagement and feelings of affinity and
belonging within discourse communities?

In answering these research questions, we address the limitations of discussion board
deployments as a pedagogical tool for collaborative learning. We envision that student
participation and engagement can be enhanced with the understanding of the online
discourse in math discussion boards.

2. Methods
2.1. Math Nation

Math Nation [33] is an interactive and comprehensive math teaching and learning plat-
form used extensively as either the main curriculum or supplemental material in all school
districts in Florida. This learning platform provides video tutorials, practice questions,
workbooks, and teacher resources aligned with the Florida Mathematics Standards. Student
and teacher use of Math Nation in middle and high school has been shown to increase
student achievement on the standardized algebra assessment required for high school
graduation by the state of Florida [34,35]. Math Nation features an online discussion forum
called Math Wall, where students can collaborate with other students. Participation in this
student-facilitated discussion forum is incentivized by the karma points system, where
every student who posts is awarded 100 points on their first post. Students subsequently
earn more points when they offer meaningful advice or extended help, such as (1) asking
guiding questions, (2) critiquing work, and (3) offering feedback. These types of posts
often lead to students’ queries being fully addressed. Further, Math Wall is designed such
that course mentors play a minimal role. Mentors only post when necessary, and their
posts are often related to moderating inappropriate online behavior or thread-management
tasks. For example, when a student posts about irrelevant topics or replies to an old post,
mentors will recall the attention of the students and remind them of the proper protocols
for forum participation. Sample mentor posts include: “The student ambassadors were correct
originally”, “Please don’t reply to very old posts, you may start a new post instead”, and “Where



Computers 2023, 12, 53 5 of 20

is that option? Check your scores”. In addition, the mentors also reply to unanswered and
unresolved queries.

2.2. Participants

The participants included 12 Math Nation mentors who monitored the discussions
and 1719 students in grade levels 7, 8, and 9 from multiple Florida school districts. This
includes only the students who interacted with the Math Wall by either posting a ques-
tion/query or replying to an original post to resolve a query, or, at times, just posting
random replies. Student information was anonymized prior to the analyses; hence, only
limited demographic information (e.g., gender, ethnicity, grade level, and school district)
was made available.

2.3. Discussion Threads

Math Wall threaded discussions were collected for the 2020–2021 academic year.
Discussion threads are chronologically ordered posts with an initial post that represents
a query from a student. Other students subsequently post their replies, oftentimes in
consideration of or elaborating on the most recent reply within a thread. A thread can
be represented as an ordered list of posts (p1, p2, . . . pn) that varies in length. Posts are
timestamped to reveal their sequence, but the time interval between each post is varied.
There are 4305 threads with a total of 50,975 posts, of which 4244 are the “initial” posts,
and 46,731 are the “subsequent replies”. The majority of these posts are from the students
(50,950), with the mentors having only 25 posts. The average turn-around time from the
initial post to the last reply in a thread is 5.72 h. However, some outlying threads took
longer than usual, with the greatest time interval between the original post and the last post
being 70 days and the shortest interval being 7 min. The number of posts in the threads
ranged from 1 to 142, with a mean of 12 posts (SD = 14.5). With the high variability in the
number of posts per thread, we used threads with at least 4 posts (1st quartile) and at most
16 posts (3rd quartile). Hence, 2139 threads were included in this analysis. These exclusion
criteria eliminated threads that were extremely short or lengthy.

2.4. Natural Language Processing

The NLP methods used in this study were: (1) textual similarity calculation using pre-
trained deep NLP and neural language models (i.e., spaCy language model and Universal
Sentence Encoder); (2) emotion feature extraction (i.e., valence, arousal, polarity) using
VADER; (3) derivation of trust affect measures using EmoLex; (4) textual classification
modeling using TF-IDF word vectors as features; and (5) explainable AI using the LIME
package for model interpretation. In the next section, we describe these methods and how
the combination of multiple NLP methods was adopted to address our research questions.

2.4.1. Feature Engineering

Textual similarity features. SpaCy [36] is an open-source NLP library for Python with
pipeline components (for tokenization, part-of-speech tagging, parsing, and named entity
recognition), modules, and language models that can be used for calculating semantic
similarity. SpaCy calculates semantic similarity using cosine similarity as default with
the word vectors and context-sensitive tensors in the vector space. Word vectors are
multi-dimensional representations of words, which can be implemented using word2vec
algorithms. There are many approaches to calculating sentence or document semantic
similarity. Straightforward approaches use sentence embeddings or powerful models,
such as transformers, to generate their embeddings and subsequently use any distance
computation to calculate their similarity metric.

In this study, we purposely use both word embeddings and sentence embeddings to
capture our description of semantic similarity involving similar lexical choices (word
use) and semantics in terms of the overall meaning of an individual post. Hence, a
high similarity score would indicate similar word use and similar meaning between the
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posts in comparison (i.e., high lexical and semantic similarity). We used spaCy with
the en_core_web_lg (release 3.2.0) language model composed of pre-trained statistical
models and word vectors. The spaCy pre-trained, multi-task CNN model has been trained
on OntoNotes 5 in English with GloVe vectors trained on Common Crawl [37]. One
characteristic of spaCy’s word similarity calculations is that it averages the token vectors,
with words as tokens, that comprise a document or a short sentence. Hence, even if the
sentences are semantically different (i.e., have opposite meanings) but use the same words
or use common words, spaCy will result in a high similarity score. In the same manner,
comparing semantically similar sentences that use dissimilar words will result in a lower
similarity score than sentences with different meanings but using the same words. To
address this limitation brought about by spaCy’s vector averaging, we further employed
sentence embedding through the Universal Sentence Encoder (USE) [38,39] to improve
spaCy’s similarity score computation. Similarity scores of the sentence embeddings range
between −1 and 1. Similarity scores closer to 1 reflect greater semantic similarity between
items (i.e., posts in our case) and scores closer to −1 reflect extremely dissimilar posts.
We used these features to investigate whether the discussion board discourse similarity
converges, diverges, or remains the same as the discussion progresses. Further, these
features were also used to discover inherent patterns that depict the phenomenon of
interest—lexical entrainment or shared language within the Math Wall discourse.

Affect valence, polarity, and arousal features. VADER’s Sentiment Intensity Analyzer
was used to extract the sentiment polarity (compound score) of the posts. VADER is a
rule-based model for general sentiment analysis that has outperformed human raters and
generalizes across contexts [40]. VADER provides not just the polarity (compound score) of
sentiments that reflect both the valence and arousal levels of a sentiment. VADER is known
to accurately classify sentiments in social media contexts; thus, it was an appropriate choice
due to the informal discourse in Math Wall, which has some semblance of social media
stylistic language. We also used the expanded database for Affective Norms for English
Words (ANEW) for valence and arousal scores [41]. To account for varying length, both
valence and arousal scores were normalized. Both valence and arousal scores provided
finer-grained insights even as the polarity (VADER’s compound score) encompassed both
measures (i.e., valence and arousal).

Trust features. Trust is a basic emotion and is observed in the social interactions of
discourse communities. This study used the NRC Word-Emotion Association Lexicon
(EmoLex). EmoLex [42] is a dictionary of words labeled via crowdsourcing that are associ-
ated with the 8 basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and
disgust). This study only focused on trust. EmoLex also provides associations with either
negative or positive sentiments but does not provide any sentiment or emotion intensity
information. Some example words associated with trust are {advice, congruence, constant,
eager, familiar, guide, and helpful}.

2.4.2. Text Classification

We also built a bag-of-words model to represent students’ word choices as discourse
participants. Bag-of-words is a representation that models the specific words used within
documents and can be used to determine the company a specific word keeps across large
corpora of texts and language models [27]. We particularly focused on the words they used
to understand lexical choice and detect the presence of word mimicry within the threaded
discussions. Word choice is a strong indicator of the speakers’ lexical processes [43],
and better word choice relates to increased precision of their lexical representations at
the individual difference level [44]. From the bag-of-words model, we investigated the
predictive role of words to aid in the understanding of the role that words play in textual
similarity.

Python’s Scikit learn library was used for the preprocessing pipeline (i.e., vectorization,
feature selection, cross-validation, and logistic regression). Prior to any processing, the
posts were anonymized and cleaned such that the data did not reveal the students’ identity
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(i.e., names). The posts were also preprocessed to remove noise and stop words. The TF-IDF
vectorizer is calculated from the cleaned posts’ unigram and bigram counts. The Similarity
outcome variable was coded as a dichotomous class, with Not Similar representing threads
with a mean similarity score below the overall mean and Similar representing threads
that are greater than or equal to the overall mean similarity score (i.e., 0 would be threads
that are not semantically similar on average, and 1 would be threads that are, on average,
semantically similar). We qualitatively evaluated the validity of the dichotomous classes
by randomly checking a select number of posts (n = 20) for each class and found that the
dichotomous categories appropriately represented the semantic similarity of the threaded
discussions. We ensured that the qualitative verification involved threads with outlying
extreme aggregated similarity values and values that are nearest to the dichotomization
cut-off/threshold mean similarity score. The feature selection/dimensionality reduction
method used was SelectKBest, which selects the best features based on the X2 value.
Using the reduced feature matrix, the logistic regression classification model was trained
with 10-fold cross-validation at the thread-level repeated three times. Finally, the model
performance was evaluated using the F1-score as the metric.

2.4.3. Model Explainability

The Local Interpretable Model-Agnostic Explanations (LIME) package was used to
interpret and explain model classifications. While we were able to derive the most relevant
words in the model (best features based on X2), we wanted to supplement the findings by
understanding word contributions at the local prediction level. LIME provides a means to
explain and visualize individual predictions. Even with acceptable levels of accuracy and
other measures of performance, model explainability at prediction-level granularity pro-
vides more relevant and useful insights. LIME interprets individual instances of predictions
without looking into the model and learns an interpretable model to explain individual
predictions [45]. We ran repeated iterations of LIME to find more stable results to facilitate
the interpretations.

2.5. Cluster Analysis

One goal was to discover innate patterns that potentially exist between linguistic simi-
larity and valence, polarity, arousal, and trust and extract underlying thread profiles. We
implemented a two-step cluster analysis as it performs better than traditional hierarchical
clustering methods [46]. This technique determines the optimal number of clusters based
on the Bayesian information criterion (BIC) as the measure of fit [47]. Further, we measured
cluster quality fitness using the silhouette measure of cohesion and separation to evaluate
the overall cluster model quality. In defining the thread profiles based on the resulting
clusters, we referenced relevant theories and prior work.

3. Results
3.1. Similarity as Proxy for Shared Language in Discourse

RQ#1 Does discourse within an online Math tutoring platform exhibit shared language?

To answer this question, we calculated linguistic similarity scores to determine if the
discourse participants’ posts are linguistically similar within and across the threaded dis-
cussions. In examining linguistic similarity, we probed into domain-specific semantics used
in the Math Wall discourse. Similarity scores were investigated at two levels: (1) similarity
between the posts within a threaded discussion and (2) similarity between the threads that
comprise the Math Wall discourse. Within both levels, we observed that shared language is
present in the Math Wall discourse.

Post Similarity Score. The similarity calculations derived are the similarity of the replies
to the original post (OP similarity) and the similarity of the current post to the immediately
succeeding post (P2P similarity; post pn to pn + 1). The sequence of pairwise similarity
scores reflects the sequence of the posts as revealed in the timestamps. The means of both
post similarity measures have minimal differences (OP similarity M = 0.1777; SD = 0.0915;
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min = −0.0520; max = 0.7618; P2P similarity M = 0.2108; SD = 0.1134; min = −0.0627;
max = 0.7380). The two post similarity scores are positively correlated (r = 0.41, p < 0.001).
The minimal difference and the positive correlation between OP similarity and P2P similar-
ity reflect that the similarity of individual posts to the original post is almost the same as
the similarity of individual posts to subsequent replies (posts). Hence, if a post is similar to
the original post, then similarity with the succeeding post is also noted.

Thread Similarity Score. The thread similarity was also calculated in a pairwise fashion
such that each thread was compared to all threads in the data (M = 0.3183; SD = 0.1532;
min = −0.1834; max = 0.9785). The thread similarity scores exhibit extremely high dis-
persion with many outlying threads in terms of their pairwise similarity scores. Upon
qualitative evaluation of the actual posts, these threads with very high standard deviations
(SD > M) are comprised of posts characterized by different communicative intentions
and seemingly unrelated. A specific example would be the pairwise comparison between
a thread discussing rational numbers versus a thread containing some random or non-
algebra-related posts (e.g., “wassup, wassup; how is everyone?; goodbye”). The spread of the
thread similarity scores indicates that the Math Wall discourse is comprised of a combina-
tion of discussion threads that exhibit shared language and those that do not.

Similarity Scores Variance Analysis

An analysis of the variance of the post similarity scores across the threads was con-
ducted to determine if there are significant differences between the variances. The Shapiro–
Wilk test of normality on the similarity scores grouped by thread determined that not all
the threads are normally distributed. We do not present the descriptive statistics for the
post similarity scores by thread here due to the large number of threads. Subsequently, per-
forming a normality test for the similarity scores (without grouping by thread) also renders
a non-normal distribution (statistically significant at p < 0.001). Furthermore, we analyzed
the variance of both post and thread similarity scores using unequal sample sizes and
found statistically significant differences in the variance across the threads (Kruskal–Wallis
X2 (2110) = 3192, p< 0.001; Levene’s F statistic (2110, 11797) = 2). These results reiterate the
significant differences in the variances of similarity scores of posts within the threads. In
other words, the linguistic similarity scores of the posts were different across the discussion
threads, such that some threads were linguistically similar and some were not.

RQ#1.1 Do the posts become more linguistically similar as the discussion progresses?

Post Similarity across Sequence. We investigated whether the posts (1) become more
similar as the discussion unfolds, (2) retain their level of similarity, or (3) become less similar.
To answer RQ#1.1, we examined the linear trend of similarity scores over time. From visual
inspection of the means of the scores across sequences 1 to 15, a linear trend was observed
with notable shifts as the discussion unfolded (see Figure 1). However, this trend cannot
be established or validated, even with attempts to calculate linear contrasts, because the
homogeneity of variance assumption is violated (Levene’s statistic: F (14, 13897) = 2.774,
p < 0.001; Welch’s F (14, 2759) = 1.701, p = 0.051). Hence, it cannot be determined if post
similarity behaviors exhibit a linear trend, such as becoming more similar, retaining the
same level of similarity, or becoming less similar as the discussions unfold.

A post hoc qualitative inspection of the discussion transcripts supports the absence
of this linear trend. It is observed that there is usually a notably high similarity at the
beginning of the threads, demonstrating that threads usually open with either a common
greeting or an elaboration and clarification of the query posted. Only until this common
understanding of the question or query is reached will the posts be reflective of diverse
answers or solutions wherein individuals contribute to the problem-solving task in the
current thread. Hence, shifts in similarity are observed as the discussion progresses.
Towards the end, there is also a shift where similarity tends to increase. As in the case of
the initiations of discussions, the endings also exhibit common terms and statements by
participants, such as thank you or goodbye. However, this pattern of communication flow is
not present in all discussion threads.
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Figure 1. Mean Similarity Score across Sequences (from initial post to the 15th post).

Post Similarity vs. Thread Similarity. Both similarity scores depict relatively high
variability. However, the variability between threads (thread similarity) is notably higher
than the variability within threads (post similarity). This outcome corroborates the lexical
entrainment phenomena, which describes how discourse participants adapt their lexical
choices to shared conceptualizations within conversations, and, in effect, there is more
observed variability across conversations than within conversations [19]. Hence, for the
Math Wall discourse, posts within a thread were more linguistically similar. On the other
hand, the threads were less similar overall, as compared to posts within threads.

3.2. Similarity Predictive Model

RQ#1.2 Are words indicative of similarity between discourse participants’ posts?

We modeled P2P similarity, (i.e., post pn to pn + 1) to determine the turn-by-turn
progression of similarity. First, we generated a dichotomous similarity outcome variable by
categorizing the similarity scores into two bins (i.e., similar and dissimilar). The category
was similar if the score was greater than or equal to the average score; otherwise, the
category was dissimilar. This dichotomous categorization distinguishes threads that depict
lexical entrainment and shared language versus the threads that were less similar than
the average tendency. We then extracted the TF-IDF features from the text and used
SelectKBest to use the best features (i.e., higher X2 values) for classification. The top 10 best
word features (i.e., unigrams and bigrams) are presented in Table 1. Logistic regression
was used to fit the model with three repeats of 10-fold cross-validation. The final logistic
regression model achieved a good fit (accuracy = 0.73, F1-score = 0.67).

Table 1. Top 10 Features (n-grams) based on X2 values.

Feature X2 Feature X2

square 3.20 make sure 2.48

square root 3.12 graph 2.47

pemdas 3.07 coordinates 2.35

alright 2.97 equation 2.21

hello 2.55 subtracting sides 1.98

Local Analysis of Predictions

We used the LIME package to explain specific instances of the predictions of the classi-
fication model. Example LIME results for three arbitrarily chosen threads are presented in
Tables 2–7.
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Table 2. Sample Thread 1.

Post Where can I find help with properties of exponents?

Reply Section 1 topic 2

Reply You can find it by pressing Section 1 and then pressing the video of topic 2.

Reply Hi, you can look at the 8th grade section and it should be section 8.7 of that

Reply Those are all about exponents

Reply you can refer to section 1 topic 2

Reply Section 1 topic 2,4,5,6 could help.

Table 3. Word Probabilities for Prediction on Thread 1.

Most Informative Words

Class: Not Similar Class: Similar

‘section’, −0.0589 ‘grade’, 0.0251

‘topic’, −0.0397 ‘help’, 0.0211

‘property’, −0.0219 ‘exponent’, 0.0157

Table 4. Sample Thread 2.

Post The police department is having a bake sale. Donuts cost $1.50 each and cinnamon
roll costs $2.50 each. The department uses the algebraic expression 1.50

Reply The question isn’t finished... Can you put the rest?

Reply The police department is having a bake sale. Donuts cost $1.50 each and cinnamon
rolls cost $2.50 each. The department uses the algebraic expression 1.50

Reply
a. What does the x variable represent?
b. What does the y variable represent?

c. A family buys 3 donuts and 4 cinnamon rolls. What are their total expenses?

Reply The department uses the algebraic expression 1.50

Table 5. Word Probabilities for Prediction on Thread 2.

Most Informative Words

Class: Not Similar Class: Similar

‘expression’, −0.06372 ‘having’, 0.0129

‘represent’, −0.03780 ‘question’, 0.0060

‘variable’, −0.0193

Table 6. Sample Thread 3.

Post where can i find a section on integers?

Reply What do you mean by integers? Rational and Irrational?

Reply ex. −3 + −4 = −7

Reply I think that deals with rational and irrational numbers, section 1 topic 3

Reply ok thanks

Reply No problem, glad that I could help
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Table 7. Word Probabilities for Prediction on Thread 3.

Most Informative Words

Class: Not Similar Class: Similar

‘section’, −0.0360 ‘glad’, 0.0365

‘thank’, −0.0290 ‘help’, 0.0315

‘mean’, −0.0202 ‘integer’, 0.0263

‘problem’, −0.0160 ‘Irrational’, 0.0195

‘number’, 0.0186

Prediction on Thread 1 (see Table 2). The thread’s true class is Similar (Pr(Similar) =
0.4230), and it has been incorrectly predicted as Not Similar (Pr(NotSimilar) = 0.5770).
However, looking at the probabilities, the difference between the classes is relatively small.
The words that contribute to the classification decision are presented in Table 3.

Prediction on Thread 2 (Table 4). The thread’s true class is Not Similar (Pr(Not Similar)
= 0.7195; (Pr(Similar) = 0.2805), and it is correctly predicted as such. It can be observed
that in this correct prediction, the probability of the true class is notably higher than the
probability of the incorrect class. The words that contribute to the prediction are presented
in Table 5.

Prediction on Thread 3 (Table 6). The thread’s true class is Not Similar, and it has been
correctly predicted as such Pr(Not Similar) = 0.5028; Pr(Similar) = 0.4972. The difference
between the probabilities of both classes is relatively small. The words that contribute to
the prediction are presented in Table 7.

The specific predictions illustrate that words pertaining to algebra constructs are
the words that are more likely to contribute to classifying the posts in terms of semantic
similarity (e.g., “square”, “square root”, “exponent”). There are also words that occur more
often (e.g., “help”, “section”, “problem”) and thus contribute to determining similarity.
The top-contributing words to the predictions reveal that the semantic context of the words,
relative to the context of the discussion thread, is correctly captured by the classification
model. For example, words (or groups of words) that reference an unrelated section, such
as the reference to “section 8.7” within thread 1, which is about “section 1”, contribute to
the dissimilarity of the discussion. In addition, words such as the algebraic terms used in
thread 3, e.g., “integer” and “number”, contribute to the similarity of the discussion.

3.3. Cluster Analysis

RQ2: How is linguistic similarity associated with known desirable social constructs (affect
measures and trust) related to student engagement and feelings of affinity and belonging
within discourse communities?

The desirable social constructs included in this analysis are constructs that are associ-
ated with the shared language of discourse communities (i.e., valence, arousal, polarity,
and trust). The descriptive statistics of these constructs are presented in Table 8. These
constructs are not correlated with linguistic similarity scores. Valence and arousal are
highly correlated, depicting that the discourse participants expressed words reflecting
engagement and arousal when posts were strongly positive or strongly negative. The
correlations between these constructs are presented in Figure 2.

Using Schwarz’s Bayesian criterion (BIC), the resulting optimal number of clusters is
3 (ratio of BIC change = 0.527) with a fair Silhouette score (Silhouette Score (n = 3): 0.24),
revealing some slight cluster overlapping. We performed two-step clustering using the
larger collection of threads (total: 3830; number of posts ≥ 2). The cluster distribution and
profiles (centroids) are presented in Tables 9 and 10, respectively. We report the significant
differences between the clusters in terms of all five features and effect sizes in Appendix B.
A Bonferroni post hoc test illustrates the specific differences between the mean differences
of the three clusters (p < 0.001). Specifically, similarity and trust were significantly different
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for all three clusters. Valence and arousal were significantly different for clusters 1 and
3. Polarity was significantly different for clusters 1 and 3, as well as clusters 2 and 3. To
visualize these differences, we present the cluster mean plots for the five input variables for
each cluster (see Figure 3).

Table 8. Descriptive Statistics of the Cluster Model Inputs.

Mean SD Min Max

Similarity 0.1777 0.0915 −0.0520 0.7618

Trust 0.1617 0.0200 0 0.1622

Valence * 0.1482 0.1470 0 1.1824

Arousal * 0.1231 0.1199 0 0.9200

Polarity 0.1212 0.1259 −0.5303 0.8530
* Normalized measures divided by the number of words.
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Table 9. Cluster Membership Distributions.

Cluster N % of Total

1 974 24.4

2 461 12.0

3 2395 62.5

Total 3830

Table 10. Cluster Centroids.

Cluster Similarity
M (SD)

Trust
M (SD)

Valence
M (SD)

Arousal
M (SD)

Polarity
M (SD)

1 0.2944
(0.1496)

0.0187
(0.0267)

0.0430
(0.0725)

0.0363
(0.0620)

0.0143
(0.0206)

2 0.2259
(0.1486)

0.0330
(0.0438)

0.4642
(0.2690)

0.3780
(0.2073)

0.0151
(0.0173)

3 0.1539
(0.0495)

0.0130
(0.0124)

0.1288
(0.0888)

0.1073
(0.0736)

0.0110
(0.0007)
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Cluster 1 threads exhibit the most lexical entrainment and have the highest similarity,
lowest valence, arousal and polarity, with trust having middle values as compared to the
other two clusters. In the sample thread presented in Appendix A—Table A1, the negative
affect, confusion, is manifested. Cluster 2 reveals threads that exhibit the most affinity, emo-
tion, and (some level of) lexical entrainment. These threads have the highest trust, valence,
arousal, and polarity. Cluster 2 also has relatively high similarity, only slightly lower than
the similarity means of Cluster 1. While Cluster 2 had the fewest members (12% of the total
number of threads), we find this cluster the most interesting because it corroborates work
that indicates trust is associated with feelings of belongingness and affinity to a group or
community. High valence and polarity indicate positive emotions. High arousal, when
associated with high valence, suggests the intensity of positive emotions, which may reflect
engagement. The sample thread in Appendix A—Table A2 manifested trust, appreciation,
and collaborative meaning-making between the students. Cluster 3, with the greatest num-
ber of members (62.5% of the total number of threads), has the lowest trust and similarity
and neutral affect measures, which is indicative of diversity in participants’ lexical choices
and a lower sense of affinity among the discourse participants (see Appendix A—Table A3
for an example).

4. Discussion

The objective of this study was to investigate the presence of shared language or
linguistic similarity in students’ posts as they participated in threaded discussions within
Math Wall. We analyzed the behavior of linguistic similarity as the discussion progressed.
In examining linguistic similarity, we examined math-specific semantics (meaning) and
lexical choices of the discourse. Further, through cluster analysis, we investigated the
relationship profiles between linguistic similarity as a shared language indicator and
constructs that represent student engagement and affinity, namely trust and affect measures
of valence, arousal, and polarity.

Shared language in the Math Wall discourse

We found that the Math Wall threaded discussions exhibit shared language. Linguistic
similarity exists between the posts in a threaded discussion. Significant differences in
the linguistic similarity within the threads are found for the two post similarity scores
(i.e., OP similarity and P2P similarity). The observed high similarity at the beginning of
the discussion was qualitatively verified to match the nature of the threaded discussions.
Specifically, individuals aim to derive an understanding of the query in the initial post
and, hence, subsequent replies tend to repeat, rephrase, or elaborate on the initial posts.
Subsequent posts are, then, characterized by individual solutions and responses to solve
the query. This phenomenon of higher similarity scores at the beginning of turn-by-turn
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discussions is also observed in similar work by Liebman and Gergle [8]. Further, toward the
end of the discussion, there is also an observable shift to increased similarity. This is again
qualitatively explained by a common practice of expressing gratitude and appreciation or
bidding goodbye as the discussion ends.

Overall, the high variability of thread similarity reveals the dynamic nature of how
individuals contribute to these threaded discussions. Even when there is one common
goal (i.e., a specific query), some threads (14%) have highly cohesive discussions from
beginning to end (i.e., low variability in similarity). Some threads (27%) have varied views
and then reach an agreement (i.e., converging similarity), while others (42%) do not come
to an understanding (i.e., diverging similarity). Some (17%) start out as confused, then
end up in agreement or resolve the confusion (i.e., increasing similarity). These scenarios
depict similarity shifts and the high variability of similarity among the threads. Hence, the
threaded discussions do not always become more linguistically similar as the discussion
progresses.

Lexical choice as a predictor of linguistic similarity

We found that deriving lexical and semantic textual similarity with the state-of-the-
art word and embedding models successfully captured the domain-specific semantics
within the Math Nation discourse. The non-latent words used in the discourse can predict
similarity. Further, the use of the bag-of-words (TF-IDF) model in fitting the predictive
model contributed to insights on the nature of the lexicons used in the discourse that
aligned with the algebra curriculum and reflected the specific mathematical content and
actions. Studying the predictions at the individual level using LIME revealed that words
represent algebra constructs (e.g., exponent, integer, irrational), and words that depict
frequent action (e.g., help) contribute to a prediction of 1 (i.e., high likelihood of similarity).
This can be explained by the students’ reference to uniform math constructs and common
action words when discussing the topic at hand. Conversely, words that represent specific
artifacts in Math Nation (e.g., a section, topic, or problem) contribute to a prediction of 0
(low likelihood of similarity). This could be attributed to the diverse solutions referencing
various parts of the curriculum that discourse participants suggest in their attempts to
solve a problem.

We also found that specific words can efficiently distinguish the likelihood of similarity
of the posts within threads. These words, in particular, are math constructs (rational, square
root), Math Nation artifacts (e.g., section, unit), emotion (e.g., glad), and action (e.g., help,
mean). These agreed-upon lexical choices echo lexical entrainment as the students did not
identify what specific keywords or terms they would adhere to in the conversation. For
example, one thread would unanimously use raise to the 3rd power, while another thread
would use cube root. The presence of commonly used and “implicitly agreed-upon” words
within a threaded discussion explains the phenomenon of lexical choices that contribute to
linguistic convergence [19,48,49].

Linguistic similarity and desirable social constructs

The profiles that emerged, in terms of similarity and the desirable emotional measures
of interest (i.e., valence, intensity, polarity, and trust), demonstrate the differences in the
threaded discussions. The majority of the threads in the third cluster had the least similar
words indicative of trust; however, they were “middle ground” compared to the threads
from the other two clusters in terms of emotion measures. After post hoc qualitative analy-
sis, we found that these threads were indicative of posts from students who were confused,
did not understand concepts, or had unresolved queries who posted questions hoping to
find answers. The second cluster had the highest means for all affect features, including
trust, had a relatively high mean similarity, and was comprised of the fewest threads.
These threads were cohesive threads (i.e., relatively high similarity) and had the highest
presence of words depicting trust. These threads also had the highest means for features of
emotion (valence, arousal, intensity) and depicted ideal discussions where collaborative
meaning-making was present. The posts reflect a coherent discussion on a single topic and
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reflect a common goal. This profile shows that Math Wall had some discussion threads
(although only 12% of the total number of discussion threads) that depict desirable learning
behaviors, i.e., collaboration and coherent discourse. Coherent academic discussions where
participants negotiate agreements or disagreements are essential in maintaining the trust
and inclusiveness of discourse communities [50]. Cooperative learning helps students with
math anxiety and encourages help-seeking behavior [51]. We note from our qualitative
evaluation that while some threads resolved the queries in the initial post, some threads
remained unresolved, but the progression of the discussion revolved around solutions
where the participants collaborated in an attempt to achieve resolution.

The clusters that were significantly different in terms of similarity and trust corrobo-
rates prior work [20,21] that describes the trust that members of discourse communities
exhibit. Trust, as a social affect, is a factor that motivates students to seek help from
their peers within digital and non-digital learning environments [52]. The majority of the
discussion threads, i.e., those belonging to Clusters 1 and 2, had low trust values. Math
Nation could implement design changes to improve trust within Math Wall. For example,
increasing the participation of mentors, study experts, and teachers may increase the level
of trust in Math Wall as a student-led discussion board. Emotional valence, polarity, and
intensity, along with similarity, uniquely describe and differentiate the three clusters. The
clusters representing the profiles of discussion threads show that high similarity evokes
both positive and negative emotions that may be intense or subtle. Threads that have high
similarity and relatively intense, positive emotions were threads that showed delight in the
queries being answered and problems being resolved. At the other end of the spectrum,
threads that have high similarity and low-intensity negative emotions were characterized
by posts that pertain to difficult concepts where confusion is apparent. It should be noted
that the posts were still relevant to the topic at hand, but confusion was present. The
low arousal scores of these threads show that even as negative emotions are present, the
emotions are at a subtle degree to not bring about frustration and other more intense
negative emotions. Low similarity associated with low trust described threads that did
not have relevant or related posts. These threads did not resolve any Algebra query nor
address any concern, and oftentimes were composed of random posts overall.

5. Limitations, Conclusions, and Future Work

As with all studies, this study has several limitations. First, although the sample is
considerably large, the threads are vastly unequal in terms of the number of posts. The
large variance and small group sizes, when grouped according to threads and sequence,
contributed to marginally significant findings in variance and trend analysis. This is typical
of many discussion boards but also begs caution, given that this variance may restrict the
likelihood of generalization to other discussion boards. Second, the temporal aspect of
the posts was not included in this analysis. The threads have unevenly spaced posts and
unequal numbers of posts. For this work, our objective was to characterize the discourse,
in general, in terms of targeted language and emotional features independent of their
temporal arrangement. We recognize the value of conducting a temporal analysis as future
work to derive insights on the implications of timely resolution of queries on discussion
boards. Lastly, this study aims to specifically focus on the similarity of content as a
valuable construct in discussion board implementations and does not include investigations
regarding the impact towards desirable learning outcomes. One reason for this choice is
practical; it is currently unavailable in this dataset. Nonetheless, another reason is because
our overarching objective is to understand and depict the nature of collaborative language,
which may or may not be associated with outcomes depending on multiple complex factors
(e.g., student skills and classroom contexts). As we better understand and characterize
the nature of this language, we will be better situated to explore the relations between the
nature of language and learning outcomes, such as student performance measures.
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Implications for Discussion Boards as a Pedagogical Tool

The diverse nature of the discourse, as measured by semantic similarity at the word
and semantic textual levels, depicts the dynamic nature of the discussions. While most
queries (initial posts) were properly addressed and eventually resolved, the students
did not show that they were particularly constrained to only academically related and
relevant posts. The students, at times, interjected “unrelated” replies to display humor or
just entirely random statements. The threads can be characterized as a rich and diverse
collection of posts. Further, while only marginally significant, there was an observed trend
of threads starting with high similarity followed by shifts to decreased similarity as the
discussion progressed, followed again by shifts to an increase in similarity toward the
end of the discussion. We verified this trend with a qualitative validation of the threads
depicting the same trend and found that in the early part of the discussion, similarity
is “maintained”, and a slight increase or decrease can manifest as an elaboration or a
summarization transpires. However, towards the end of the discussion, the thread’s topic,
context, and wordings shift to non-algebra-related content, as most threads end with posts
such as “thank you”, “goodnight”, “glad I could help”, and “bye”. This explains the shift in the
word and textual similarity scores as the discussion comes to a close. The unconstrained
and free nature of discussion boards may encourage student participation. Even as students
occasionally post directly related or irrelevant replies, student engagement is still better
than non-participation. Discussion boards, after all, are venues for social relationships
within virtual environments.

The presence of similarity and emotional constructs provide evidence of the value that
linguistic similarity could bring to the design of discussion boards. Given the importance
of trust and positive emotions in contributing to students’ feelings of affinity [20,21], future
training of instructors and tutors who monitor discussion boards should focus on proper
scaffolding of language and leveraging linguistic similarity when responding to students.
Specific approaches would include the use of common and widely used words, adding
to or referencing a prior idea, elaborating or summarizing a prior idea, and ensuring the
resolution of a query within a reasonable timeframe.

Implications to Scalability of NLP Language Models for the Mathematics Domain

State-of-the-art semantic extraction and information retrieval have made grand strides
in terms of capturing context across domains. For mathematical domains, however, there
is much room for the desired scalability. The complexity of encompassing mathematical
context within deep NLP remains challenging because of the inherent structure of mathe-
matical texts [29,30,53]. Our findings corroborate this scalability challenge. While we found
that Math Wall discourse similarity was efficiently captured (i.e., similarity scores reflected
the presence of similar references to common algebra constructs and intent and actions
on math problem-solving activities), we found instances of this scalability problem in our
analysis. Specific mathematical nuances that were not captured include relatively lower
similarity scores for posts with mathematical jargon referring to the same constructs as
“PEMDAS (order of operations)” and “hierarchy of operations”, as well as “cubed” and
“3rd power”. Although, in this study, we addressed this seeming limitation with the use
of the bag-of-words (TF-IDF) model, which provided additional insights into the specific
words used that existed in our dataset. Our findings, therefore, highlight the need for
math-specific deep NLP lexical and semantic models.

In conclusion, we envision and encourage future research in two equally important
directions: (1) examining the extent to which the shared language within Math Nation’s
discourse community is also descriptive of other instances of math discourse communities
and (2) building robust deep NLP language models that adapt specifically to math domains
and tasks.
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Appendix A. Sample Threads Per Cluster

Table A1. Sample Cluster 1 Thread.

Post I am so confused please help

Reply Hello <<Student1>>, have you watched Section 1, Topic 2?

Reply Yes, a while ago. I can go watch it again.

Reply No, that’s ok

Reply Okay, thank you!

Reply Or you could. Alright, if you still have questions, be sure to come back

Table A2. Sample Cluster 2 Thread.

Post I need help solving this.

Reply Hello <<Student1>>, your first step is to remove the parenthesis around the
exponent 1, so the exponents combine to make 1 times 3/4

Reply Ok after I do that what do I do?

Reply Ok, so then I get 3/4 as the answer right?

Reply Yes I got that

Reply So, (1/p squared+ 1/p) to the power of p

Reply I am stuck on this problem too. What would be the next step?

Reply (28/9) raised to the power 3/4?

Reply Thank you

Reply After that step I got (28/9) raised to the power 3/4

Reply any way to show how you got to 28/9?

Reply Is the final answer (3.111) raised to the power 3
4

Reply Thank you very much

Reply <<Student2>> when you do (1/9/16 + 1/3/4) to the power of 3/4 you will
get (28/9) raised to the power 3

4

Reply Thank you, <<Student1>>
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Table A3. Sample Cluster 3 Thread.

Post How do i solve a to the second power x a to the third power?

Reply do you mean

Reply Yes

Reply when multiplying same base exponents, you add the exponent values

Reply x¬≤ *x= x¬≥
Reply were you talking to me? that was an example

Reply its ok

Appendix B. Two-step Cluster Analysis ANOVA and Effect Sizes

Table A4. ANOVA and Effect Sizes.

Sum of
Squares df Mean

Square
F

(p < 0.001)
Eta-

Squared

Similarity Between Groups 14.069 2 7.035 761.140 0.285

Within Groups 35.370 3827 0.009

Total 49.439 3829

Trust Between Groups 0.158 2 0.079 155.809 0.075

Within Groups 1.944 3827 0.001

Total 2.102 3829

Valence Between Groups 57.741 2 28.871 1928.289 0.502

Within Groups 57.299 3827 0.015

Total 115.040 3829

Arousal Between Groups 37.885 2 18.943 1987.085 0.509

Within Groups 36.482 3827 0.010

Total 74.368 3829

Polarity Between Groups 1.480 2 0.740 41.546 0.021

Within Groups 68.180 3827 0.018

Total 69.661 3829
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