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Abstract: Probability is generally considered one of the most challenging areas to teach in mathematics 

education due to its intricate nature. However, the simulation-based teaching method can increase students’ 

accessibility significantly to the probability problems because it enables students to resolve the problems with 

minimal mathematical skills. By substantially reducing the stress caused by complex mathematical calculations, 

simulations help students focus on the key concepts of complex probability problems. Furthermore, the 

programming languages, such as R and Python, can be easily implemented in classrooms to perform simulations 

that allow students and teachers to discuss the idea to solve the probability problems step by step. This article 

presents a classical probability problem known as ‘the broken stick problem’ to show the efficiency of the 

simulations in teaching probability. It contrasts the effectiveness of mathematical and computational simulation 

approaches to the solutions of the broken stick problems with several variations. For concrete illustrations, a 

series of R codes and their examples are provided at the end of the article, which can be used for the simulation 

study in probability class with various versions of broken stick problems. The extension of the computational 

approach to other historic probability problems is also discussed.  
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Introduction 

 

Probability and statistics literacy is essential for preparing students for life as informed citizens since it is 

needed in many decision-making situations such as voting, medical diagnosis, finance and insurance, and 

forecasting (Gal, 2005). It is important to use the opportunities technology offers for teachers and students to 

discuss and build models to describe real-world scenarios through simulation (Lee & Hollebrands, 2008). In this 

article, we discuss the classical probability problem, known as the broken stick problem. We present various 

versions of the broken stick problem and illustrate both the mathematical solution and the simulation-based 

approach. 
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The broken stick problem originates from an examination of Cambridge University in the mid-19th century 

(Univ. of Cambridge, 1854). It says,  

 

“A rod is marked at random at two points, and then divided into three parts at these points; the 

probability of its being possible to form a triangle with the pieces is 1/4.”   

 

The exam presented the solution using a direct mathematical approach to solving the inequalities required to 

form a triangle on the  plane. Lemoine (1875) used the combinatorial method with the discrete points 

evenly spaced on the stick. Poincare (1981) introduced a geometric approach, transforming the sample space of 

the two random points to the inside of an equilateral triangle. All methods conclude that the probability for the 

three pieces to form a triangle is 1/4. Since it was introduced in 1854, various versions of the broken stick 

problem have been proposed: for example, 

• What is the probability of forming an acute (or obtuse) triangle? 

• What is the probability of forming a triangle with an area less than 1? 

• What is the probability of forming a triangle with the largest angle greater than 60°? 

 

The mathematical solutions to the probability problems above can be challenging and inaccessible for high 

school or college students in introductory statistics courses. However, students can comprehend these problems 

using experimental approaches, such as the simulation study with the aid of technology. For example, we cannot 

conduct actual experiments for the broken stick problem, but we can have students do virtual experiments in 

classrooms with an elementary level of programming skills. The innovations in technology have made 

programming languages (such as R, Python, and JAVA) accessible to students for free. Furthermore, computers 

and statistical packages have been recommended as teaching tools (Carver et al., 2016). Using computational 

tools in probability/statistics class can be very efficient and provide great insight into understanding complex 

mathematical problems (Benakli et al., 2017; Koparan & Yilmaz, 2015). The simulation-based approach can be 

an effective alternative to help students without a solid mathematical background understand probabilistic 

phenomena without becoming lost in the steps of complex mathematical calculations.  

 

Probability Questions on the Broken Sticks 

The First Question: Forming a Triangle 

 

Question 1: A stick, dropped on the floor, breaks at random into three pieces. What is the probability that the 

three parts of the broken stick form a triangle? 

 

Let , , and   denote the lengths of the three pieces and, without loss of generality, let the length of the stick 

be one, or . For the three pieces to form a triangle, the sum of the two sides should be greater than 

that of the other side (triangle inequality theorem). Namely, for , 
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,   ,                                                     (1) 

 

Figure 2. Three pieces of broken stick with the broken points  and . 

 

With , the condition (1) can be simplified and represented by one inequality: . 

But, throughout this paper, we maintain the original conditions in (1) since it is more intuitive and much easier 

for students to understand. In Figure 1, the points  and  represent two real numbers randomly selected in the 

interval (0, 1). Thus, the points  and  can be considered two random points described on the Cambridge 

University exam aforementioned above. Using two points  and  on the stick, we break the stick into three 

pieces. Then, the lengths of the three pieces , , and  can be written in terms of  and  

                                                     (2) 

provided  (see Figure 1). By substituting (2) for (1), we can see the inequalities in (1) are 

equivalent to 

 .                                                        (3) 

We can graph these inequalities using the Desmos graphing calculator. The intersection of all three inequalities 

shows the region where a triangle is formed. Including the case of , two regions exist where the 

three pieces form a triangle (Figure 2). Then, the probability of forming a triangle is the sum of the areas of the 

shaded regions, which is 1/4, as depicted in the graph.  

 

To answer Question 1, we can also calculate the probability using calculus based on the probability distribution 

theory. Let  be an event that the three parts of the broken stick form a triangle. Since  and  are independent 

uniform random variables on (0,1), the joint probability density function of  and  is given by  

with  and . Hence, the probability that the three parts of the broken stick form a triangle is 

obtained by solving the system of the inequalities (3). Let  denote the event that the broken sticks form a 

triangle. Then 

 

 

 is obtained by multiplying 2 to  since we have two cases to 
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consider: , and .  Though Question 1 is the simplest case among the broken stick 

problems, the mathematical solution provided in (4) is not easy to understand unless students have 

comprehensive knowledge in many mathematic topics such as a system of the inequalities, double integral, 

probability distribution theory, etc.  

 

  

Figure 3. Geometric Representation of Question 1 (left) and Question 2 (right). The Shaded Regions İnclude All 

of The Pairs  Forming a Triangle (left) and An Acute Triangle (Right). 

 

Next, we explore an alternative solution: the computational approach. Imagine having a stick with a length of 1 

and breaking it at two random points to make three pieces. Since  and  are random numbers between 0 and 1, 

we have two cases: , or . Thus, the lengths of the three sides can be formulated by  

 (see Figure 1). After we obtain the lengths of 

three sides , , and ), we determine whether these three pieces can form a triangle and record the result by 

checking the inequalities in (1) are true or not (yes or no). We repeat these steps sufficiently many times, say 

10,000 times. Among the 10,000 repetitions, we count the number of yeses. Then, the probability is given by the 

number of yeses divided by the number of repetitions. The whole procedure is summarized in Algorithm 1. 

 

Table 1. Algorithm of The R Code for The Simulation Study: Question 1. 

Algorithm 1. 

 [1] Set . 

 [2] Generate    and    from  independently. 

 [3] Set    and . 

 [4] If    and    and   , then . 

 [5] Repeat Step [2] - Step [4]   times. 

 [6] Result:  .  

 

In Algorithm 1,  denotes a uniform distribution over (0,1). Thus,   and    represent the broken points in 
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Figure 1. Table 2 shows an R code based on Algorithm 1. Since many online R compilers are available, such as 

http://makemeanalyst.com/run-your-r-code, https://rextester.com/l/r_online_compiler, https://rdrr.io/snippets, 

and we can compile this code wherever the internet is available without installing a software for the R compiler. 

 

Table 2. R Code for Question 1. 

R code  

# Step[1] Initialize variables 

N = 10000   # The number of repetitions 

Counter = 0 # Variable for counting the number of cases to form triangles 

 

# Step[5] Repeat Step[2]-Step[4] N times 

  for (i in 1:N){ 

# Step[2] Generate random variables x and y from uniform(0 ,1) 

    x = runif(1,0,1); y = runif(1,0,1);  

 

# Step[3]: Three sides of the triangle 

    a = min(x,y) 

    b = max(x,y)-min(x,y)  

    c = 1-max(x,y) 

 

# Step[4]: Condition for forming a triangle (the Core Part) 

    if (a+b>c & b+c>a & c+a>b) Counter=Counter+1 

} 

# Step [6]: Calculate the probability to form a triangle 

Prob = Counter/N  

Prob   # Print out the result 

 

The core part in the R code above is Step [4], which determines whether the three pieces can form a triangle or 

not. The condition is the same as (1). One of the advantages of the simulation-based approach is that students 

can compute the probabilities for different variations of the broken stick problem by modifying Step [4] only. 

The following sections discuss this point in detail with specific examples. 

 

The Second Question: Forming an Acute Triangle 

 

Question 2: A stick, dropped on the floor, breaks at random into three pieces. What is the probability that the 

three parts of the broken stick form an acute triangle? 

 

Question 2 is one of the extensions of Question 1. For the three pieces to form an acute triangle, the sum of the 

squares of any two sides should be greater than that of the third side (Pythagorean inequality theorem). That is, 
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                                                    ,   ,                                                 (5) 

and these inequalities can be represented in terms of  and , where , in the same manner used 

for Question 1 by using (2): 

            (6) 

The area of the region created by the points ) satisfying the inequalities in (6) represents half of the 

probability of forming an acute triangle since it covers the case  only. By including the case of 

, we can find two regions where an acute triangle is formed (Figure 2). Then, the sum of the 

areas of the shaded regions provides the probability of forming an acute triangle. However, it is much more 

difficult to calculate the sum of the areas mathematically by solving a system of inequalities in (6). The equation 

in (7) demonstrates how it can be computed using calculus. Let  denote the event that the broken sticks form 

an acute triangle. Then the probability of  is given by 

 

In the mathematical approach for , it is impossible to avoid using complex integration, which makes 

students digress from the main idea of the problem. However, when we use the computational methods, we need 

to add the conditions in (6) only to Step [4] of Algorithm 1 as follows: 

 

Step [4]: Condition for Forming an Acute Triangle (Question 2) 

[4] If (   &    &  ) and  (  &   &  ),  

      then . 

 

The Third Question: Forming an Obtuse Triangle 

 

Question 3: A stick, dropped on the floor, breaks at random into three pieces. What is the probability that the 

three parts of the broken stick form an obtuse triangle? 

 

Let  denote the event that the three parts of the broken stick form an obtuse triangle. Using the Pythagorean 

inequality theorem, the conditions for a triangle with lengths of sides , , and  to be an obtuse triangle are 

,    ,                                               (8) 

or, in terms of  and , for , 

             (9) 

Figure 3 (left panel) presents the graphical representation of Question 3. The shaded parts indicate where an 

obtuse triangle forms. For example, the shaded parts of the upper triangle denote the region created by (3) and 

(9). The total area of shaded regions of the left panel in Figure 3 directly gives and can be calculated as 

follows: 
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Again, we emphasize that  can also be obtained without employing the complicated mathematics stated 

in (10). By only adding the conditions in (8) to Step [4] in Algorithm 1, we obtain the value for . 

 

Step [4] Condition for Forming an Obtuse Triangle (Question 3) 

[4] If (  &    &  ) and (  &   &  ),  

      then . 

 

Remark:  can also be calculated using the results of Questions 1 and 2. Since 

, we can conclude . In 

the left panel of Figure 3, when a point  is exactly on the dotted curves, the three sides ( , , and ) form a 

right triangle. However, since the area of the region comprising the points on the dotted curves is zero, the 

probability that the three sides form a right triangle is zero. 

 

 
 

 

Figure 4. Geometric Representation of Question 3(left) and Question 4 (right). The Shaded Regions İnclude All 

of the Pairs  Forming an Obtuse Triangle (left) and a Triangle with An Area < 0.03. 

 

Beyond Forming a Triangle 

The Fourth Question: Forming a Triangle with an Area Less Than 0.03 

 

Question 4: A stick, dropped on the floor, breaks at random into three pieces. What is the probability that the 

three parts of the broken stick form a triangle with an area less than 0.03? 
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Let  denote the event that the three parts of the broken stick form a triangle with an area<0.03. Since we 

have the lengths of the three sides, Heron’s formula can be used to solve this problem. With Heron’s formula, 

the area of the triangle is given by 

                                            

 

because  Moreover, the inequality (11) is easy to demonstrate that this is equivalent to the 

quadratic inequality for  and  by inserting (2) in (11), for , 

 

 

The right panel in Figure 3 displays the region created by the points  satisfying the obtuse triangle 

conditions. The upper-left part is for  and the lower-right part is for . Solving the 

quadratic inequality (12) for  (using the quadratic formula) results in the complement set of  

. Here,   and  are defined as follows: 

  and  . 

 

Hence, with the condition (3), the following algebraic derivation provides the probability that the three parts of 

the broken stick form a triangle with an area less than 0.03: 

 

 

where  and , which are the solutions for , for . 

We can calculate this probability through a simulation by using the condition (11) and modifying step [4] of 

Algorithm 1 in the following way. 

 

Step [4] Condition for Forming a Triangle with an Area less than 0.03 

[4]  If  (   &    &  ) and ,  

      then  

 

Figure 4 displays a part of the results of the simulation study. With the number of replications large enough, 

each graph shows the computational solution converging to the theoretical solution of each Question 1-4.  
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Figure 5: Simulation Results for Question 1-4. The Computational Solutions Converge to Theoretical Solutions 

 

The Fifth Question: Mixed Conditions and Beyond the Broken Stick Problems 

 

Question 5: A stick, dropped on the floor, breaks at random into three pieces. What is the probability that the 

three parts of the broken stick form an acute triangle with an area greater than 0.03? 

 

Question 5 contains the conditions for Questions 2 and 4. Obviously, the mathematical approach for Question 5 

is much more intractable. Since it is very challenging to deliver the mathematical procedure for Question 

5within a single class period, the mathematical approach tends to make the class inefficient and demotivate the 

students. However, the computational method does not require substantial mathematical work and knowledge to 

answer Question 5. It is enough to write two conditions together in Step [4] as follows. 

 

Step[4] Condition for Forming an Acute Triangle with an Area greater than 0.03 (Question 5) 

[4] If (   &    &  )  and (  &   &  ) and 

,  then  

 

Moving from Question 1 to Question 5, we observed the mathematical solutions becoming more complicated 

and requiring a high level of algebra and calculus. However, the computational approach enables students to 

find the answers by only revising the mathematical conditions in the R code. Furthermore, the computational 
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approach is much more intuitive since each line of code reveals the corresponding geometric expression 

directly. For instance, in Question 4, the mathematical solution includes complex mathematical works such as 

(11) to (13), which are hard to understand for most students in elementary statistics class. In contrast, the 

computational approach directly states Heron’s formula (11) only in code, which is the core formula for this 

problem. Thus, for the simulation-based approach, we do not need to employ daunting mathematical works 

beyond Heron’s formula to solve Question 4, and students can enjoy the probability problems without 

unnecessary stress caused by complicated mathematics. 

 

This article illustrated the advantages of the computational approach in teaching probability problems using the 

broken stick problem only. However, we can apply this approach to the extended areas such as the following: 

• Advanced geometric probability: forming quadrilaterals, pentagons, and -sided polygons 

with numerous variations (Crowdmath, 2019). 

• Historic probability problems  

o Buffon’s needle (Buffon, 1777) 

o Monty Hall problem (Selvin, 1975) 

o Gambler’s ruin problem (David, 1998). 

• Dynamic model simulation: the wildland fire behavior and disease/virus spread.  

 

We can create interesting and exciting classes that motivate students by implementing the computational 

approach to probability problems. If instructors keep developing simulation examples for various probability 

problems, we can expect to provide students with more friendly probability classes in the near future.      

 

Conclusion 

 

In modern society, it is crucial to have the ability to solve problems in a multi-dimensional approach. Often, we 

think of only mathematical rules and formulas to solve problems, but today’s advances in technology offer 

further opportunities to comprehend problems from multiple points of view. In general, solving a probability 

problem may require advanced knowledge of mathematics, and it is still essential for students to understand and 

value mathematical solutions.  However, using technological tools that are available online and offline, students 

can solve complex mathematic problems with minimal effort. Moreover, providing students with different 

approaches to solving problems helps them be more flexible and creative in problem-solving. As shown in ‘the 

broken stick problem’, in teaching probability, the simulation-based approach can be an attractive alternative for 

transforming a heavy and flat math class into an inspiring and exciting event.  
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Appendix (R code for simulation study) 

 

# A function obtaining the simulated probability -------------------------------- 

 

Triangle <- function(n) { 

# Generate two random variables between 0 and 1 

  v <- runif(n,0,1); w <- runif(n,0,1);  

 

# The Lengths of three broken pieces  

  a <- pmin(v,w); b <- pmax(v,w)-pmin(v,w); c <- 1-pmax(v,w) 

 

# Sort a, b, c in Increasing Order 

  s1 <- pmin(a,b,c)  # The shortest side 

  s3 <- pmax(a,b,c)  # The longest side 

  s2 <- 1-s1-s3      # The middle length side 
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  s  <- 1/2          # Half perimeter for Heron's formula 

Trials<-seq(1,n,1)  

 

# 1. Q1: Forming a Triangle 

  count1 <- ((s1+s2)>s3) 

  cumul1 <- cumsum(count1) 

  Prob1  <- cumul1/Trials 

 

# 2. Q2: Forming an Acute Triangle 

  count2 <- (((s1+s2)>s3)&((s1^2+s2^2)>s3^2)) 

  cumul2 <- cumsum(count2) 

  Prob2  <- cumul2/Trials 

 

# 3. Q3: Forming an Obtuse Triangle 

  count3 <- (((s1+s2)>s3)&((s1^2+s2^2)<s3^2)) 

  cumul3 <- cumsum(count3) 

  Prob3  <- cumul3/Trials 

 

# 4. Q4: Forming a Triangle with Area<0.03 

  count4 <- (((s1+s2)>s3)&(sqrt(abs(s*(s-s1)*(s-s2)*(s-s3)))<0.03)) 

  cumul4 <- cumsum(count4) 

  Prob4  <- cumul4/Trials 

 

Prob=cbind(Prob1, Prob2, Prob3, Prob4, Trials) 

Prob      # Return the results 

}         # The end of Triangle Function                 

 

# Graph function ---------------------------------------------------------------- 

  Graph   <- function(Prob,Qnum,title){ 

    color <-c("red","blue","purple","darkgreen","black") 

thsol <-c(0.25, 0.0794, 0.1706, 0.1156) 

 

  plot(Prob[,5],Prob[,Qnum], type="l", lty=1, lwd=3, ylim=c(0,0.4),  

  xlab="The number of Trials", ylab="Probability", col=color[Qnum],  

  cex.axis=1.3, cex.lab=1.3, cex.main=1.3, main=title) 

    lines(Prob[,5],rep(thsol[Qnum],n), type="l", lty=3, lwd=3, col=color[5]) 

  legend("topright", legend=c("simulated prob.", "theoretic prob."),  

  lty=c(1,3), lwd=3, col=c(color[Qnum],color[5]),cex=1.3) 

} 
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# The end of Graph function 

#-------------------------------------------------------------------------------- 

 

# Execute the functions: ‘Triangle’ and ‘Graph’ --------------------------------- 

  n     <- 5000        # The number of simulations 

  Prob  <- Triangle(n) 

#-------------------------------------------------------------------------------- 

 

# Print the results out: Probabilities 

  paste("The probability to form a triangle is", Prob1[n]) 

  paste("The probability to form an Acute triangle is", Prob2[n]) 

  paste("The probability to form an Obtuse triangle is", Prob3[n]) 

  paste("The probability to form a triangle with an area<0.03 is", Prob4[n]) 

 

# Print the results out: Graphs 

  par(mfrow=c(2,2)) 

  Graph(Prob,1,"Q1: Forming a Triangle") 

  Graph(Prob,2,"Q2: Forming an Acute Triangle") 

  Graph(Prob,3,"Q3: Forming an Obtuse Triangle") 

  Graph(Prob,4,"Q4: Forming a Triangle with Area<0.03") 

 


