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Abstract

Prediction algorithms are used across public policy domains to aid in the identification of at-risk
individuals and guide service provision or resource allocation. While growing research has
investigated concerns of algorithmic bias, much less research has compared
algorithmically-driven targeting to the counterfactual: human prediction. We compare
algorithmic and human predictions in the context of a national college advising program,
focusing in particular on predicting high-achieving, lower-income students’ college enrollment
quality. College advisors slightly outperform a prediction algorithm; however, greater advisor
accuracy is concentrated among students with whom advisors had more interactions. The
algorithm achieved similar accuracy among students lower in the distribution of interactions,
despite advisors having substantially more information. We find no evidence that the advisors or
algorithm exhibit bias against vulnerable populations. Our results suggest that, especially at
scale, algorithms have the potential to provide efficient, accurate, and unbiased predictions to
target scarce social services and resources.
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Introduction

Prediction algorithms are used across numerous public policy domains to aid in the identification

of at-risk individuals and guide service provision or resource allocation. Prediction models

inform which patients receive costly medical treatments, the felony sentences judges assign to

defendants, and which college students receive additional academic support (Bird et al., 2021;

Obermeyer et al., 2019; Stevenson and Doleac, 2019). In parallel to the rising role of prediction

algorithms are growing concerns about algorithm accuracy and fairness, and whether increased

reliance on algorithms will result in worse outcomes for vulnerable populations (Bird, Castlman,

and Song, in progress; Lee et al., 2019; Osoba and Welser, 2017; Slaughter, Kopec, and Batal,

2021). For instance, Obermeyer et al. (2019) demonstrate that an algorithm used to guide health

decisions assigns similar risk levels to Black patients who are in fact sicker than their White

counterparts, and that this algorithmic bias reduces the number of Black patients recommended

for additional treatments.

Alongside concerns about algorithmic bias accuracy and fairness, it is also important to consider

the counterfactual of how inaccuracies and biases in human-generated predictions may also

negatively affect program and service allocation. Extensive research demonstrates, for instance,

that people working across a variety of professions, from police officers to physicians, exhibit

implicit biases towards others based on their identity and attributes, and that these implicit biases

impact consequential decisions, such as medical treatments and employment offers (e.g. Bertrand

and Mullainathan, 2004; Eagly and Karau, 2002; Eberhardt et al., 2004; Green et al., 2007).

Some evidence suggests that algorithms may in fact help mitigate the effect of human bias, e.g.

in employment settings (Cowgill, 2020).

In some public domains, such as criminal justice, studies have investigated the comparative

accuracy and fairness of algorithms and humans in making important predictions. Lin et al.

(2020) demonstrate that a commercial algorithm used to predict recidivism in criminal justice

outperformed humans when humans did not receive immediate feedback on the accuracy of their

predictions or when researchers provided the algorithm with additional predictors. Kleinberg et

al. (2018) show that using algorithms to determine bail decisions could substantially reduce

subsequent criminal activity relative to bail decisions determined by judges.



Investigations of model versus human accuracy are much more nascent in other domains,

however, including in education, despite rapidly growing use of algorithms to predict student

outcomes (Baker et al., 2020; Bird et al., 2021; Ekowo and Palmer, 2016; Ositelu and Acosta,

2021).1 On the one hand, we might expect teachers, counselors, and other educators to dominate

algorithms in prediction accuracy given their direct interactions with students and awareness of

contextual factors that might be difficult to incorporate into an algorithm (e.g. family or

household factors) but which affect student performance. On the other hand, substantial evidence

demonstrates that teachers exhibit racial biases and adjust their expectations and evaluation of

students based on their identity (Dee, 2005; Grissom and Redding, 2016; Starck et al., 2020). Yet

research to date exploring human versus model accuracy in education has been limited to

contexts outside of the U.S. or to very specialized settings, e.g. medical school enrollment at one

institution or a single ten-day online course (Burkhardt et al., 2018; Kanter and Veeramachanemi,

2015; Ye, 2021).

We contribute new evidence by comparing algorithm versus human accuracy in the context of a

national remote college advising program, CollegePoint, that has served tens of thousands of

high school seniors over the last decade (for more information on the CollegePoint program, see

Sullivan et al., 2021). CollegePoint pairs low- and moderate-income, high-achieving high school

seniors with professional college advisors or peer mentors who provide them with individualized

assistance with college and financial aid applications. The primary goal of CollegePoint is to

increase the share of lower-income, high-achieving students that matriculate at selective colleges

and universities with high graduation rates -- the program refers to these as “CollegePoint

schools”. Historically, advising has primarily taken place from the start of senior year, when

students are deciding which colleges to apply to, through the end of senior year, when students

decide which college they want to attend.

While CollegePoint has historically concluded advising at the end of students’ senior year in

high school, during the COVID-19 pandemic the program extended advising into the summer

1 For instance, at least 1,400 colleges and universities now use predictive analytics, collectively spending hundreds
of millions of dollars each year on prediction software (Barshay and Aslanian, 2019).



after high school. Due to resource limitations CollegePoint was not able to provide summer

advising to all students. To guide which students advisors focused their time on during the

summer after high school, we trained a logistic regression algorithm (using data from several

CollegePoint cohorts) to predict whether students would enroll at a CollegePoint school. The

predictors included measures related to academic performance, student and high school

demographics; the number and selectivity of college applications submitted by students; and

college cost. We provide further detail on the algorithm and associated data in the Data and

Methods section of the paper. We applied the algorithm to students from the CollegePoint Class

of 2021 cohort to generate predictions for enrollment in a CollegePoint school during the Fall

2021 semester.

In parallel, we worked with program leadership to have CollegePoint advisors complete a guided

assessment of whether students in their Class of 2021 caseload would attend a CollegePoint

school.2 Thirty-three advisors participated in the activity, providing assessments for 856 students

drawn from across the country. Advisors had access to all of the student-level data we used as

algorithm predictors. In addition, advisors had detailed notes from their interactions with

students as well as student self-reported data on where students had been accepted to college and

where they planned to enroll as of the end of high school that was not available when we trained

the algorithm. Advisors thus had substantially more information to inform their predictions than

did the algorithm, at least for students with whom they had more frequent interactions.

Our primary analysis focuses on assessing the accuracy with which the algorithm and advisors

predicted students’ enrollment at CollegePoint schools, for the 856 students for whom we

observe both algorithm predictions and advisor assessments. The analysis yields several key

results. First, both the algorithm and advisors accurately predict attendance at a CollegePoint

school for the majority of students (66-69 percent). Second, advisors, on average, slightly

outperform the algorithm in predicting student enrollment. However, the modestly greater

advisor accuracy is entirely concentrated among students with whom advisors had more frequent

interactions. Specifically, advisors outperform the algorithm for students with whom advisors

2 We provide the guided assessment advisors used in the Appendix and discuss the assessment process in more detail
in the Data and Methods section.



had above the 60th percentile of interactions for the analytic sample (10 or more interactions).

By comparison, the algorithm achieved similar accuracy among students lower in the distribution

of interactions. This is despite advisors having substantially more information than the algorithm,

both from their qualitative notes from interacting with students and from additional milestone

completion data (e.g. where students were accepted to college) to which advisors had access but

which we were not able to incorporate into the algorithm. Third, we find no evidence that the

algorithm’s or advisors’ predictions are differentially accurate across student groups, suggesting

that neither the algorithm nor advisors exhibit clear bias in their assessments of students’

probability of enrolling at a CollegePoint school.

Data and Methods

Sample Overview

CollegePoint is a remote college advising program funded by Bloomberg Philanthropies that has

been serving high-achieving, low- and moderate-income students since 2014. The primary

objective of CollegePoint is to increase enrollment at high-quality colleges and universities for

this population of students. Specifically, CollegePoint focuses on institutions with graduation

rates above 70 percent, which we refer to as “CollegePoint schools”. CollegePoint recruits high

school students who score above the 90th percentile on their PSAT, SAT or ACT and have a high

school GPA of 3.5 or higher, and also have annual family income below $80,000. Once the

student signs up for CollegePoint, they are connected to a remote advisor from one of four

participating advising organizations. Sullivan et al (2021) provides additional detail about

CollegePoint organizational practices.

In this paper, we compare advisor-generated and algorithm-generated predictions of the

enrollment outcomes for high school students in the CollegePoint Class of 2021; we trained the

algorithm on historical data from the CollegePoint Classes of 2017 through 2020. Table 1

presents baseline characteristics for three samples: (1) the historical training sample; (2) the full

Class of 2021; and (3) the subset of the Class of 2021 for whom we have advisor predictions

(described below). Overall, approximately half of the students are first generation college

students, and all of the students in the Class of 2021 are low- or moderate-income. The majority



of students identify as Asian, White, or Hispanic/Latino- with these three groups making up

approximately 60 percent of the students served. The subset of students with advisor predictions

are very similar to the full Class of 2021.3

Data Overview

Through CollegePoint, its partner advising organizations, and external data sources, we observe

student demographics, test scores, high school characteristics, college application information,

and college enrollment. College Board and the ACT provided student-level demographics

(race/ethnicity, gender, parent education); SAT, ACT, or PSAT score; high school attended and

GPA, and family income category. Over the course of the advising period (which generally spans

the students’ senior year of high school), advisors made a record of each interaction they have

with a student and the topics discussed. Advisors also recorded the list of colleges to which a

student applied; we supplement this list with information about SAT score sends from the

College Board.

We linked each student’s high school to the National Center for Education Statistics (NCES)

database and the list of colleges to which they apply to the Integrated Postsecondary Education

Data System (IPEDS) to obtain institutional characteristics. Among these are the racial

composition of the student’s high school, the net price of college, the distance of the student to

the colleges to which they applied, and the average SAT score percentile for the incoming

college class among the application schools. We observe students’ eventual college enrollment

outcomes through National Student Clearinghouse (NSC) matches.4

Advisor Prediction

Our data on advisor predictions of whether students would enroll at a CollegePoint school come

from a guided reflection CollegePoint administered to a subset of CollegePoint advisors in May

2021. The guided reflection prompted advisors to gather and consider data, notes, and contextual

4 The NSC includes student-by-term enrollment and graduation records for nearly all colleges and universities in the
United States. The NSC currently covers 97.3 percent of all higher education enrollments; the coverage is 99.6
percent and 96.4 percent for public 4-year and not-for-profit 4-year institutions, respectively.

3 For all CollegePoint Classes, our main source of demographic data is the College Board. For the Classes of 2017 to
2020, we supplemented this with demographic information from both Common App and the ACT. We did not have
access to these supplemental data sources for the Class of 2021, which accounts for the differences in missingness
on baseline measures for the Class of 2021.



information they had on specified students from their advising caseload, and for each student, to

assess how likely they would be to matriculate at a CollegePoint school. The reflection then

prompted advisors to translate this assessment into a 1 to 10 rating, for each student on their

caseload, of the likelihood of enrollment at a CollegePoint school. The reflection also prompted

advisors to consider and identify the extent to which various barriers could potentially impede

students from successfully matriculating at a CollegePoint school. We include the full guided

reflection advisors were asked to complete in the Appendix.

CollegePoint invited advisors from two out of four organizations, College Advising Corps and

College Possible, to participate in this project. 68.8 percent of College Advising Corps advisors

(16 advisors in total) and 81.4 percent of College Possible advisors (27 advisors in total) who

advised the Class of 2021 agreed to participate. CollegePoint prompted advisors to complete the

reflection for a randomly selected one-third of their advising caseload, yielding predictions of

enrollment at CollegePoint schools and associated potential barriers to enrollment for 856

students.

Algorithm Prediction

To generate our predictions for the Class of 2021, we use a logistic regression algorithm trained

on data from previous CollegePoint classes (2017-2020).5 We used logistic regression as our

prediction algorithm because of its widespread use in predictive modeling, its suitability for

binary outcomes, and relatively low cost to implement (in terms of computing power and

technical skills required). In a systematic comparison of prediction models in postsecondary

education applications, we moreover found little difference in performance between logistic

regression and more advanced prediction methods (e.g. random forest models) (Bird et al.,

2021).

5 We originally developed this prediction algorithm to predict CollegePoint school enrollment for the Class of 2020,
using historical training data from the Classes of 2017 to 2019.  The initial goal for creating this algorithm was to
allow CollegePoint to target resources toward at-risk students.  Specifically, during the COVID-19 pandemic,
CollegePoint decided to extend advising through the summer after high school to support students after high school
graduation with difficulties they might encounter matriculating to their intended college or university.  CollegePoint
had limited summer advising to extend to students, however, and was interested in using an algorithm to inform
which students advisors targeted for more intensive support.



Our primary outcome of interest is whether students enrolled at a CollegePoint school, which we

define based on student-level college enrollment records from the National Student

Clearinghouse. We included a total of 98 student-level predictors in our algorithm. These

predictors include demographic predictors (student’s gender, race/ethnicity, income category,

parental education, state of residence, whether state of residence has a CollegePoint school, and

percent of high school population that is non-white), predictors describing student-advisor

interactions (the number of times the student and advisor interacted, whether the student and

advisor discussed one of the several common topics)6, predictors describing student test scores

(students’ first SAT/ACT score, best SAT/ACT score, and best pre-CollegePoint SAT/ACT

score)7, predictors describing program implementation (what month the student began receiving

CollegePoint, which of organization the student was assigned to), and predictors describing the

colleges within a student’s application set (whether college is a Barrons 1 or 2, total in-state cost

of college, student’s distance from college, average SAT percentile score of incoming college

class, net price of college based for family income categories <$30k, $30k-48k, and $48-75k).

For this last category of predictors describing college application behavior, if a student applied to

multiple colleges, then we aggregated or averaged each predictor across the set of colleges to

which the student applied (e.g. number of Barron’s 1 or 2 schools applied to; average distance in

miles from student’s home to each college applied to).8 For student observations missing

predictor values, we converted the missing values to zero and include an indicator to capture

whether or not the predictor is missing; these missing indicators are included in the predictor

counts in the above paragraph.9

9 Data are missing for three reasons. First, demographic data is missing if the student is not in the College Board
data (i.e. they did not take the SAT). For the Classes of 2017-2020, we supplemented demographic data with
information from the Common App and the ACT, but we did not receive this data for the Class of 2021, resulting in
higher rates of demographic missingness for the Class of 2021. Second, students’ high school characteristics are
missing if we do not have a valid high school code for the student. For the Classes of 2017-2020, CollegePoint
recorded students’ high school’s numerical code via their intake form, but they stopped this process for the Class of
2021. Consequently, we must rely fully on the high school code provided by College Board for the Class of 2021,
and roughly 25 percent of the Class of 2021 cannot be linked to high school characteristics (see Table 1). Finally,
college application data are missing if the advisor did not have a record of the student applying to any college as of
the time of data collection (or we do not observe this application, due to lack of advisor record or SAT score send),
or if the student applied to a college that is not in the IPEDS data (e.g. a university outside the United States).

8 Barron's index is commonly used as a high-level measure of institutional selectivity.  Barron’s 1 institutions are
classified as “most competitive” and Barron’s 2 are classified as “highly competitive”.  Examples of Barron’s 1
institutions include Harvard University, Williams College, and University of Virginia; examples of Barron’s 2
institutions include Boston University, Trinity College, and Ohio State University.

7 We convert the composite SAT and ACT scores to percentile scores, and combine these percentile scores into one
measure.

6 The top four topics are applying for financial aid, applying to college, college list, and college decision.



Following standard predictive modeling practices, we randomly divided the historical cohorts

into a training set (80 percent) and a test set (20 percent); this division allowed us to evaluate the

performance of the algorithm on out-of-sample data. The training set established the algorithm

parameters (i.e. the coefficients of the logistic model), and used those parameters to assign each

student in the test set a predicted score ranging from zero to one. To convert these predicted

scores to a binary prediction (i.e. will or will not enroll at a CollegePoint school), we followed a

commonly used procedure to set the threshold to maximize the F1-score.10 The resulting

threshold was 0.40, indicating that any student with a predicted score at or above 0.40 is

predicted to enroll at a CollegePoint school, while all other students are predicted not to enroll at

a CollegePoint School.

We report three standard metrics of algorithm accuracy: c-statistic, precision, and recall. The

c-statistic is a goodness of fit measure, and is equal to the probability that a randomly chosen true

positive is assigned a higher predicted score by the algorithm than a randomly chosen true

negative. Our algorithm has a c-statistic of 0.76, indicating moderately good performance.11 The

algorithm’s c-statistic of 0.76 means that for any two selected students -- one who enrolled at a

CollegePoint school and one who didn’t -- the algorithm assigns a higher predicted score to the

enrolled student 76 percent of the time. Our algorithm’s precision is 0.66, indicating that 66

percent of students that the algorithm predicted to enroll in a CollegePoint school actually did so.

Our algorithm’s recall is 0.87, indicating that 87 percent of the students who actually did enroll at

a CollegePoint school were accurately predicted by the algorithm.

Comparing Advisor  and Algorithm Prediction

Our main comparison of interest is between the advisor- and algorithm-generated predictions of

enrollment in a CollegePoint school. Since a student’s enrollment outcome is binary, we convert

the algorithm’s and advisor’s predictions to also be binary. As mentioned above, the algorithm

internally generates a binary enrollment prediction based on a threshold value (0.40). We map

11 According to Hosmer, Lemeshow, and Sturdivant (2013), a c-statistic between 0.7 and 0.8 is considered
acceptable performance. Similarly, Bowers and Zhou (2019) characterize a c-statistic between 0.75 and 0.85 as
“partially convincing”.

10 The F1-score is the harmonic mean of precision and recall.  We use 10-fold cross-validation to find the threshold
to maximize the F1-score.



advisor ratings to a binary variable where a rating of 1-4 (inclusive) is a prediction of no

enrollment in a CollegePoint schools and a rating of 5-10 (inclusive) is a prediction of

enrollment. It is then straightforward to compare the binary predictions of the algorithm and

advisors to students’ actual (binary) enrollment outcome.12

Results

Advisor versus Algorithm Accuracy

We begin by comparing the overlap between algorithm predicted scores and advisor ratings.

Figure 1 displays the correlation between algorithm and advisor predictions; the size of the

circles is directly proportional to the number of students each represents.13 There is a moderate

positive relationship (correlation=0.44 ) between the algorithm and advisors’ predictions, with

fairly common “disagreement” between the algorithm and advisors on their assessment of the

likelihood a student would enroll at a CollegePoint school. For instance, among students the

advisors identify as most likely to enroll at a CollegePoint school (“10” out of the 1-10 rating),

there is a nontrivial mass of students (19.14 percent) for whom the algorithm generated a

predicted score of 0.40 or lower. When we convert the advisor ratings and algorithm predicted

scores to the binary predictions of “will enroll at a CollegePoint school” (rating >= 5; predicted

score >= 0.4) or “will not enroll at a CollegePoint schools”, we find that the advisors and

algorithm predict different outcomes for 31.3 percent of students. This level of “disagreement” is

perhaps not surprising, given that advisors had access to more, and arguably richer, information

and data about students.

The magnitude of “disagreement” between the algorithm and advisors did not translate into

substantially greater accuracy of predictions for the advisors relative to the algorithm.

Specifically, the overall accuracy for advisors is slightly higher compared to the algorithm,

though this difference in accuracy is not statistically significant (68.46 percent versus 65.5

percent; p =0.11).  As we indicate in the lower left of Figure 2, the algorithm and advisor

13 Since advisor predictions of likelihood of enrollment were on a 1-10 scale, and algorithm-predicted scores were
from 0-1, we rescaled the algorithm scores to be from 1-10 such that (0.0, 0.1) = 1; [0.1,0.2) = 2; ... [0.9, 1) = 10.

12 When we repeat our analysis treating the rating of “5” as either a prediction students would not enroll at a
CollegePoint school or as an inconclusive prediction, our results are very similar.



provided the same accurate predictions for just under  half of students (49.9 percent). When the

algorithm and advisors disagreed, the advisors had accurate predictions for slightly more

students (18.8 versus 15.6 percent). Neither were correct in predicting outcomes for the

remaining 15.7 percent of the sample. The algorithm has a lower false positive rate -- i.e.

incorrectly predicting a student will enroll when they will not -- compared with the advisors

(22.5 percent versus 27.4 percent; p < 0.01). However, the algorithm also has a significantly

higher false negative rate -- i.e. incorrectly predicting a student will not enroll when they do --

compared with the advisors (12.0 percent versus 3.9 percent; p < 0.01).  In this sense, the

algorithm is slightly more “pessimistic” about students’ enrollment outcomes than the advisors.

We also present in Figure 2 the accuracy rates for the algorithm and advisor across the prediction

distribution. The x-axis corresponds to the algorithm predicted scores (blue circle) and advisor

ratings (red triangle), with the size of the shapes being directly proportional to the number of

students each represents. The y-axis corresponds to the accuracy of the algorithm and advisor

predictions (i.e. whether students predicted to enroll at a CollegePoint school actually did so).

We define accuracy as whether the advisor or algorithm made a correct binary prediction, i.e.

whether or not the student would enroll at a CollegePoint school.14 Several notable features

emerge from this plot. First, both the algorithm and advisors are generally more accurate closer

to the tails of the distribution.15 This pattern makes intuitive sense, since the profiles of students

most or least likely to enroll at a CollegePoint school may be most apparent to advisors and have

data attributes most strongly associated with CollegePoint enrollment, facilitating accurate

prediction by the algorithm. By comparison, accuracy rates are lowest in the middle of the

distribution, where students’ outcomes may have been more ambiguous. Second, at most points

in the distribution the algorithm and advisors had fairly similar accuracy rates. When we focus

on predicted scores and ratings of 2, 3, and 4, we see that advisors were more accurate than the

algorithm, which perhaps indicates the advisors had access to contextual information suggesting

students faced barriers to enrolling at a CollegePoint school. The algorithm was modestly more

accurate for predicted scores or ratings of 5, 6, and 7. This may reflect that, for students for

15 The algorithm accuracy for students in the bin of 0.9 - 1.0 is quite low, but this represents very few students
(0.1%).

14 If a student did enroll at a CollegePoint school, then an accurate advisor prediction would be a rating >= 5; an
accurate algorithm prediction would be a predicted score >= 0.40.



whom the advisors had greater uncertainty about their enrollment outcomes, they defaulted to

assigning students a rating of 5. As we see above in Figure 1, this seems to be reflected in the

distribution of advisor ratings, with advisors assigning the ratings of 1, 5, and 10 with the

greatest frequency.16

Relationship between Prediction Accuracy and Frequency of Interactions with Advisor

In the CollegePoint initiative, students had the opportunity to interact with their advisor at

numerous points throughout the college and financial aid application process and while they

were making their choice about which college to attend. The average student interacted with

their advisor 10.1 times, though the full distribution ranges from 1 to 61 with an interquartile

range of 3 to 13. Over the course of these interactions, students may have shared meaningful

information about their personal circumstances (e.g. a parent losing a job, making paying for

college more difficult), which advisors captured in qualitative notes and could factor into their

predictions. By comparison, the algorithm was fully reliant on the comparatively

easy-to-quantify measures we describe above.  Table 2 compares advisor versus algorithm

accuracy based on the quintile of number of interactions a student had with their advisor. Across

the first three quintiles (students with 9 or fewer interactions) the algorithm has slightly better

accuracy compared to advisors (67.6 percent versus 63.4 percent).  However, advisors are

significantly more accurate than the algorithm for students in the top two quintiles (10 or more

interactions, 76.5 percent accurate compared to 61.6 percent for the algorithm). This result is

intuitive -- more interactions with students mean advisors have more information on which to

base their ratings.

When we explore the relationship between interactions and advisor ratings, we find that advisors

are more likely to rate students as very low (1 or 2) or very high (8, 9, or 10) if they had more

interactions with students, while advisors were more likely to assign a middle rating for students

16 We chose to have advisor ratings of 5 corresponding as the threshold for assigning a binary advisor prediction
because of its closeness to  the algorithm’s predicted score threshold of 0.40.  We acknowledge that a rating of 5
could instead be interpreted as “unsure either way”. However, because approximately half of students with a rating
of 5 do enroll at a high-quality college, the advisor accuracy is virtually unchanged if we treat ratings of 5
differently.  Specifically, if we treat a rating of 5 as predicting a negative outcome, the overall advisor accuracy is
70.1 percent. If we treat a rating of 5 as 50 percent predicting a negative outcome and 50 percent predicting a
positive outcome, then the overall advisor accuracy is 69.5 percent.



with whom they did not frequently interact.  Again, this pattern suggests that advisors likely used

a rating of 5 as a default “I don’t know” option for students they knew little about.

We next explore whether the timing of interactions is related to advisor accuracy.  If an advisor

only interacted with a student during the Fall of their senior year, then that advisor would only

know that student’s intended or actual application behavior (information that is also incorporated

as predictors into the algorithm).  However, if an advisor continued to interact with the student

during the Spring, the advisor may learn to which schools the student was admitted, and

eventually to which school the student accepted the admission offer. In Figure 3, we show

advisor and algorithm accuracy separately for the subgroups of students who did or did not

interact with their advisor after key dates in the admissions process: January 31st (typical date

for colleges to send Early Decision admissions decisions); April 1st (typical date for colleges to

send regular admissions decisions); and May 1st (typical deadline for students to accept

admissions offer).  In Plot A, we see that advisors have worse accuracy than the algorithm for

students who did not interact on or after January 31st (58 versus 66 percent, respectively, p =

0.04), but significantly better accuracy for students they did interact with on or after January 31st

(73 versus 65 percent, respectively, p < 0.01). We find similar differences in advisor/algorithm

accuracy for students who interacted on or after April 1st (11.9 percent better advisor accuracy, p

= 0.01) and on or after May 1st (19.4 percent better advisor accuracy, p = 0.02).  These results

suggest that the modestly higher level of overall accuracy from the advisors compared to the

algorithm is driven, at least in part, by advisors having additional knowledge of admissions and

acceptance decisions.

Investigating potential accuracy bias in algorithm and advisor predictions

Finally, we compare the advisors’ and algorithm accuracy across student demographic and

socio-economic subgroups. As seen in Table 3, we find that advisors are directionally more

accurate than the algorithm for every subgroup (or equally accurate, in the case of the

middle-income subgroup), with more precisely-measured differences for the non-URM17 (p

=0.03), low-income (p =0.01), and female (p =0.08) subgroups.

17 URM is an abbreviation for underrepresented minoritized, which includes non-White and non-Asian students.



When we compare advisors’ accuracy across subgroups, we find that advisors have similar levels

of accuracy for more disadvantaged subgroups and less disadvantaged subgroups.  In fact,

advisors are slightly more accurate for low-income students compared with middle-income

students, though this difference is not statistically significant (p = 0.43). When we compare the

algorithm’s accuracy across subgroups, we find more variation in accuracy across subgroups;

however, the algorithm is generally more accurate for more disadvantaged subgroups compared

to less disadvantaged subgroups.  Specifically, the algorithm is more accurate for URM students

compared with non-URM students (p = 0.07).

The results that both advisors and the algorithm are similarly or more accurate for more

disadvantaged populations run contrary to previous work that both humans and algorithms are

worse at predicting outcomes for marginalized people (Bertrand and Mullainathan, 2004; Koch,

D’Mello, and Sackett, 2014; Gershenson, Holt, and Papageorge, 2016), and therefore may allay

concerns that making predictions (either by humans or algorithms) could lead to bias against

vulnerable populations, at least in the context of this CollegePoint algorithm.

Discussion

Prediction algorithms have the potential to increase the accuracy and efficiency of service

provision and resource allocation across a variety of policy domains. The importance of efficient

and effective targeting has only increased in the wake of the COVID-19 pandemic, with growing

shares of the population potentially benefiting from limited social services, e.g. to address

learning loss in schools or mental health counseling needs (Centers for Disease Control, 2022;

Kuhfeld et al., 2022). While growing research has investigated concerns that algorithmic bias

could result in fewer resources being allocated to more vulnerable populations, much less

research (especially outside criminal justice) has empirically compared service and resource

targeting through algorithms to the counterfactual: human judgment and prediction.

Our results indicate that humans are slightly more accurate in their predictions than algorithms,

at least as it pertains to college enrollment quality, when they are able to consider a broader and

more qualitatively-rich range of data. Specific to our context, advisor accuracy was highest

among students with whom advisors had interacted frequently and thus may have had insight



into relevant contextual factors affecting whether and where students would enroll in college.

Our results also indicate that humans are less confident and less accurate in their predictions

when the outcome is more ambiguous. Whereas advisor predictions were more accurate among

students least or most likely to enroll at a CollegePoint school, they appeared to default to a

neutral rating of “5” for students whose enrollment outcomes were less clear, and for these

students advisor predictions were less accurate than the algorithm.

Especially at scale, people tasked with allocating scarce services and resources may often find

themselves in the position of having had fewer interactions with the individuals they are serving

or facing uncertainty about individuals’ potential outcomes. Our results suggest that, in these

scenarios, algorithms may equal or exceed humans in the accuracy with which they predict

individual outcomes. Algorithms may also allow for more cost-efficient prediction at scale.

While the upfront costs to train algorithms are non-trivial, primarily in terms of skilled analytic

capacity, once operational the variable costs to generate predictions from algorithms are likely to

be far lower than having humans manually assess individuals’ probability of achieving different

outcomes.

Despite concerns about algorithm accuracy and fairness in education, we do not find evidence

that algorithmic or human predictions are less accurate for historically vulnerable populations

pursuing postsecondary education. If anything, our results indicate that both the algorithm and

advisors’ predictions are more accurate for disadvantaged populations, which could result in

better-targeted services and resources for these students.

Given the nascence of research on algorithmic and human prediction accuracy, it will remain

important for researchers to investigate algorithm accuracy and fairness in other policy domains

and at other educational margins where these algorithms are applied. But our results suggest that

algorithms have the potential to provide efficient, accurate, and unbiased predictions to target

scarce social services and resources.
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Table 1: Student characteristics of relevant samples 

  

Classes of 

2017-2020  

Full Class 

of 2021   

Class of 2021 

with advisor 

predictions 

  (1)  (2)  (3) 

       

Female  45.6%  43.7%  45.2% 

Male  38.3%  32.6%  29.1% 

Missing Gender  16.1%  23.6%  25.6% 

       

Asian  24.1%  23.6%  19.3% 

Black  6.3%  8.6%  7.9% 

Hispanic/Latino  18.5%  22.1%  22.9% 

White  28.9%  17.8%  18.8% 

Other Race  4.8%  3.7%  4.6% 

       

Missing Race  17.4%  24.3%  26.5% 

First Gen  42.7%  54.4%  52.5% 

Not First Gen  48.4%  20.6%  20.8% 

Missing Parent Ed  9.0%  25.0%  26.8% 

       

Low Income  37.1%  45.8%  43.8% 

Middle Income  58.2%  54.2%  56.2% 

High Income  4.7%  0.0%  0.0% 

       

Maximum SAT or ACT Score (Percentile)  95.5  92.0  90.5 

       

Number of Advisor Interactions  7.43  10.33  10.07 

       

N   27,599   5,775   856 

 
  



Figure 1: Relationship between Advisor ratings and Algorithm predicted scores 

 
Notes: the x-axis denotes an advisor’s assessment of the likelihood a student will enroll at a CollegePoint school, 

with 1 being the lowest and 10 being the highest.  The y-axis denotes the logistic model's predicted score, rescaled 

from 0-1 to 1-10 such that (0.0, 0.1) = 1; [0.1,0.2) = 2; ... [0.9, 1) = 10. The size of each circle is directly 

proportional to the number of students within that rating-by-predicted score cell.  

  



Figure 2: Comparing accuracy of advisor ratings and algorithm's predicted scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: the x-axis denotes either an advisor’s assessment of the likelihood a student will enroll at a CollegePoint 

school (with 1 being the lowest and 10 being the highest) or the algorithm's predicted score, rescaled from 0-1 to 1-

10 such that (0.0, 0.1) = 1; [0.1,0.2) = 2; ... [0.9, 1) = 10. The y-axis denotes the share of students with a particular 

rating or scaled predicted score for whom the advisor or algorithm were correct in their prediction.  The size of each 

circle (algorithm) or triangle (advisor) is directly proportional to the number of students within that rating or 

predicted score cell. 

  



Table 2: Comparing Advisor and Algorithm Accuracy, by 

Frequency of Advisor-Student Interactions 

  

Advisor 

Accuracy  

Algorithm 

Accuracy  

P-value 

(1) = 

(2)  

  (1)  (2)  (3)  

        

Overall  0.688  0.655  0.11  

        
Quintile of 

interactions        

1st  0.598  0.685  0.04  
2nd  0.685  0.623  0.28  
3rd  0.653  0.699  0.286  
4th  0.767  0.599  <0.01  
5th  0.764  0.634  <0.01  

        

Bottom 3 quintiles  0.635  0.676  0.12  
Top 2 quintiles  0.765  0.616  <0.01  

        

Notes: Accuracy is equal to the share of students for whom the advisor 

or algorithm made a create prediction. The 1st (bottom) quintile 

corresponds to the 20% of students with the fewest interactions with 

their advisors. The p-values are from a paired t-test that advisor 

accuracy is equal to algorithm accuracy within each grouping. 
 

  



Figure 3: Comparing advisor and algorithm accuracy, by timing of last advisor-student 

interaction 

 
Notes: Accuracy is equal to the share of students for whom the advisor or algorithm made a create prediction. 

Within each plot, the "Interactions >0" bars include students who had at least one interaction with their advisor on or 

after the relevant date (e.g. January 31st), while the "No Interactions" bars include students who did not have any 

interactions with their advisor on or after that date. 

  



Table 3: Comparing advisor and algorithm accuracy by student demographic 

characteristics 

        

  

Advisor 

Accuracy  

Algorithm 

Accuracy  

P-value: 

Advisor = 

Algorithm  

  (1)  (2)  (3)  

        

Overall  0.688  0.653  0.11  

        

URM  0.687  0.68  0.85  
Non-URM  0.678  0.61  0.03  

P-value: URM = non-URM  0.82  0.07    

        

Low Income  0.699  0.627  0.01  
Middle Income  0.674  0.674  1  

P-value: Low income = Middle Income  0.43  0.15    

        

First Gen  0.684  0.657  0.34  
Not First Gen  0.691  0.601  0.2  

P-value: First Gen = Not First Gen  0.96  0.8    

        

Female  0.685  0.633  0.08  
Male  0.684  0.67  0.58  

P-value: Female = Male  0.99  0.27    

        

Notes: Accuracy is equal to the share of students for whom the advisor or algorithm made a 

create prediction.  The p-values in column (3) are the result of a paried t-test of algorithm 

accuracy and advisor accuracy within each subgroup.  The p-values presented in separate 

rows (e.g. P-value: URM = non-URM) represent a paired-test of advisor accuracy across 

demographic subgroups (column 1) or of algorithm accuracy across demographic subgroups 

(column 2) 
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Please fill out the following information separately for each of the students on your
spreadsheet. We recognize that for some students you may have had limited substantive
interactions. We’d still appreciate if you could provide your best assessment for the
questions that follow.

1.

2.

3.

4.

Mark only one oval.

Least Likely

1 2 3 4 5 6 7 8 9 10

Most Likely

Please indicate from 1-10, with 10 being the most influential, whether each of the following
barriers might contribute to the student not enrolling at a CollegePoint school.

CO2021 College Enrollment Predictions
* Required

EASE ID *

Student's first name *

Student's last name *

On a 1-10 scale, with 10 being most likely to attend a CollegePoint school, what is your best
estimate for how likely this student is to attend a CollegePoint school this fall? *
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5.

Mark only one oval.

Least Influential

1 2 3 4 5 6 7 8 9 10

Most Influential

6.

Mark only one oval.

Least Influential

1 2 3 4 5 6 7 8 9 10

Most Influential

7.

Mark only one oval.

Least Influential

1 2 3 4 5 6 7 8 9 10

Most Influential

8.

Mark only one oval.

Least Influential

1 2 3 4 5 6 7 8 9 10

Most Influential

They did not apply to a broad enough range of CollegePoint schools. *

Their academic background may not have been competitive enough for the CollegePoint
schools they applied to. *

The CollegePoint schools they were accepted to were too far from home. *

The student had concerns about whether they would “belong” or “fit in” at the CollegePoint
schools they were accepted to. *
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9.

Mark only one oval.

Least Influential
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Most Influential

10.

Mark only one oval.

Least Influential

1 2 3 4 5 6 7 8 9 10

Most Influential

11.

This content is neither created nor endorsed by Google.

The student did not have enough support from her family to attend one of the CollegePoint
schools she was accepted to. *

The student could not afford to attend one of the CollegePoints he/she was accepted to. *

Please list other concrete barriers that may prevent this student from attending a
CollegePoint school. *
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