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Abstract 

A growing body of literature has focused on missing data methods that factorize the 

joint distribution into a part representing the analysis model of interest and a part 

representing the distributions of the incomplete predictors. Relatively little is known 

about the utility of this method for multilevel models with interactive effects. This study 

presents a series of Monte Carlo computer simulations that investigates Bayesian and 

multiple imputation strategies based on factored regressions. When the model's 

distributional assumptions are satisfied, these methods generally produce nearly 

unbiased estimates and good coverage, with few exceptions. Severe misspecifications 

that arise from substantially non-normal distributions can introduce biased estimates 

and poor coverage. Follow-up simulations suggest that a Yeo–Johnson transformation 

can mitigate these biases. A real data example illustrates the methodology, and the 

paper suggests several avenues for future research. 
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An Investigation of Factored Regression Missing Data Methods For Multilevel 

Models with Cross-level Interactions 

Over the last few decades, a large body of research has accumulated supporting 

the use of multiple imputation as an appropriate method to handle missing data. 

Despite being introduced over thirty years ago, methodologists have only investigated 

and fine-tuned multiple imputation's ability to handle interactions and other nonlinear 

terms in the last decade. An early recommendation was to treat incomplete product 

terms as if they were "just another variable" to be imputed using standard methods for 

normally distributed data (Allison, 2002; von Hippel, 2009). However, subsequent 

studies have shown that this approach requires the same missing completely at random 

assumption as older deletion methods, and it will introduce bias under the less 

restrictive missing at random assumption required by modern missing data estimators 

(Bartlett et al., 2015; Enders et al., 2014; Lüdtke et al., 2020b; Seaman et al., 2012; Zhang 

& Wang, 2017).  

More recently, advances have been made in generating imputations for nonlinear 

effects by factorizing the joint distribution into a part representing the analysis model of 

interest and a part representing the distributions of the incomplete predictors. Various 

names have referred to this approach in the literature (e.g., substantive-compatible 

imputation, sequential specification, model-based imputation), but we will refer to it 

simply as factored regression imputation. While the idea of using factored regression 

models dates back to early literature (Ibrahim, 1990; Ibrahim et al., 2002; Lipsitz & 

Ibrahim, 1996), it wasn't until more recently that this method was applied to incomplete 

interactive effects (Bartlett et al., 2015; Du et al., 2021; Enders et al., 2020; Erler et al., 

2016; Goldstein et al., 2014; Lüdtke et al., 2020b; Zhang & Wang, 2017) and subsequently 
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became accessible to researchers via software packages (Bartlett et al., 2021; Keller & 

Enders, 2021; Quartagno & Carpenter, 2020; Robitzsch & Lüdke, 2021). Virtually across 

the board, the literature shows that factored regression methods produce approximately 

unbiased estimates while requiring less strict assumptions than the earlier "just another 

variable" approach. This study attempts to extend our knowledge about these 

important models. 

Relative to other topics in the missing data literature, much less is known about 

the behavior of the factored regression approach to fitting multilevel models with 

interactive effects. In the biostatistics literature, Erler et al. (2016) investigated cross-

level interactions with a small simulation that didn't vary important features like 

sample size and intraclass correlation. Several studies considered factored-regression 

specification for random coefficient models (Enders et al., 2020; Enders, Hayes, et al., 

2018; Erler et al., 2019; Grund et al., 2018), and the most comprehensive study of 

interactive effects to date is a recent paper by Grund, Lüdtke, and Robitzsch  (2021). 

These authors investigated multilevel multiple imputation strategies for moderated 

regression models where the interacting predictors were linearly or non-linearly related 

to one another. Following the main findings from the single-level regression literature 

(e.g., Bartlett et al., 2015; Lüdtke et al., 2020b; Zhang & Wang, 2017), their simulation 

studies showed that, when correctly specified, multiple imputation models based on 

factored regressions hold great promise for multilevel models with incomplete 

interactive effects.  

Despite a growing body of literature supporting their use, our current 

knowledge about factored regression models is deficient on multiple fronts. Existing 

studies have primarily focused on ideal conditions where the multilevel model's 
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distributional assumptions are strictly satisfied. For example, no research to date has 

considered the impact of skewed and kurtotic data on factored regression's multilevel 

parameter recovery. Two studies have investigated this issue in the context of single-

level moderated regression models (Lüdtke et al., 2020a, 2020b), but distributional 

violations are considerably more complex with multilevel models, which could have 

non-normally distributed residuals in either the within- or between-cluster part of the 

model. Our study is the first to investigate this issue, and we use simulations to 

examine the possibility of modeling skewed predictors with a Yeo–Johnson 

transformation (Yeo & Johnson, 2000), a potential solution for non-normal data 

proposed in the single-level imputation literature (Lüdtke et al., 2020b). 

A second major limitation of the existing literature is that it focuses almost 

entirely on multilevel multiple imputation, almost at the exclusion of Bayesian 

inference. In the complete-data literature there has been a growing interest in Bayesian 

multilevel models, especially with applications involving smaller sample size 

conditions (Asparouhov & Muthén, 2021a; Liu et al., 2016; McNeish, 2016a, 2016b; 

McNeish & Stapleton, 2016). From a practical perspective, Bayesian inference is 

convenient because the researcher simply fits a multilevel model to the observed data 

and summarizes the resulting posterior distributions without having to perform the 

extra steps of reanalyzing the data and pooling estimates and standard errors. 

However, Bayesian estimation with incomplete data is quite different from its complete-

data counterpart because incomplete predictor variables require additional regression 

models with their own distributional assumptions and requisite priors. As such, 

evaluating Bayesian inference and comparing it to the newer "gold standard" multiple 

imputation models is a major thrust and contribution of this paper. An important issue 
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here is the choice of prior distribution for the level-2 covariance matrix, which can 

substantially impact estimates and inference. We investigate several off-the-shelf 

Wishart prior distributions, and we describe a new separation strategy that introduces 

distinct prior distributions on each level-2 variance component and the random effect 

correlations. The parameterization we outline here is similar to other separation 

strategies proposed in the literature (Barnard et al., 2000; Merkle & Rosseel, 2018), and a 

comparable method has shown promise in simulation studies with single-level latent 

curve models (Liu et al., 2016). A major contribution of this paper is to describe and 

evaluate this new separation prior for multilevel analyses. 

The structure of this paper is as follows. We begin by discussing factored 

regression specifications and their application to a cross-level interaction with random 

slopes. Next, we provide a conceptual overview of constructing the Markov chain 

Monte Carlo (MCMC) sampler for drawing parameters and generating imputations. 

Next, we describe five different Monte Carlo simulations that investigate factored 

regression specifications. Finally, we include a substantive example applying this 

method to real data. 

Conventional Imputation Schemes 

Historically, multiple imputation was developed to generate complete data sets 

for large-scale survey data (Rubin, 1987; Rubin, 2004). In part due to computational 

restrictions of its era, the goal was often to provide data sets that could then be used for 

a wide range of secondary analyses across multiple research teams. We will refer to this 

traditional approach to multiple imputation as agnostic imputation, as the imputations 

need to be flexible enough to support a range of different analyses, but they are not 

generated to be mathematically consistent with one particular analysis model. 
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Generally, the agnostic imputation approach generates samples from the 

posterior predictive density of the unobserved variables conditional on the observed 

variables. Symbolically, this idea is 

!"#(M)|#(O)$ (1) 
where !(⋅) represents a generic density (e.g., a normal curve), #(M) represents the set of 

variables with incomplete observations for a particular individual, #(O) represents the 

set of fully observed variables, and # = &#(M),#(O)' is the set of all variables. Note that 

this representation makes no distinction between analysis variables, predictor variables, 

and auxiliary variables. For example, if an outcome measure is incomplete, it would be 

part of the set #(M); conversely, if the outcome is complete, it would be in the #(O) set. 

As a heuristic, one can think of Equation 1 as analogous to a regression problem 

involving the prediction of the missing variables given the fully observed variables, 

with imputations sampled from a distribution based upon the regression model 

parameters. Importantly, the imputation regression model need not be the same as the 

analysis model, and it usually isn't under an agnostic scheme; this is an important point 

of contrast with factored regression specifications, which tailor missing data handling 

around a particular analysis. Joint model imputation (Asparouhov & Muthe ́n, 2010b; 

Carpenter et al., 2011; Goldstein et al., 2009; Schafer, 2001; Schafer & Yucel, 2002; Yucel, 

2008, 2011) and fully conditional specification (Enders, Keller, & Levy, 2018; van 

Buuren, 2011) are the two major frameworks for implementing Equation 1 with 

multilevel data. The former uses a mean vector and covariance matrix as the basis for 

imputation, whereas the latter uses round robin regression equations where each 

incomplete variable is regressed on all other variables. Enders et al. (2016) provide an 

overview of these methods. 
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Factored Regression Specifications for Two-Level Models 

As mentioned previously, the factored regression specification factorizes a joint 

distribution into a part representing the analysis model of interest and a part 

representing the distributions of the incomplete predictors. To illustrate, consider an 

analysis involving an outcome variable Y and two predictors, X and Z. The trivariate 

joint distribution factors into the product of multiple distributions, each corresponding 

to a regression model. There are two predominant factorizations suggested in the 

literature. The first factorizes the joint distribution into the product of a univariate 

distribution for the analysis model and a joint distribution for the predictors (Enders et 

al., 2020; Keller & Enders, 2021). Applied to the trivariate example, the factorization is !(",#,$) = !(" |#,$) × !(#,$) (2) 
where the leftmost term is the multivariate distribution of all three variables, the first 

term to the right of the equals sign is a density that corresponds to the analysis model, 

and the rightmost term is the joint distribution of the predictors (e.g., a bivariate normal 

distribution). Continuing to factorize the predictor distribution leads to the so-called 

sequential specification that instead uses a set of univariate distributions to represent 

the distributions of the incomplete predictors (Erler et al., 2019; Erler et al., 2016; Lüdtke 

et al., 2020b). !(",#,$) = !(" |#,$) × !(# |$) × !($) (3) 
The two specifications are equivalent in some situations but different in others. 

To illustrate factorized specifications more concretely, we focus on their 

application to a two-level hierarchical linear model with a cross-level interaction (i.e., 

the product of a level-1 and level-2 predictor). The analysis model is given as follows 

&!" = '(# + )#!* + '($ + )$!*+!" + (%," + (&+!"," + -!" = &.!" + -!" 
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!"!""#"# ∼ %$ &'00( ,)% = ! *%!$ *%!%"*%!%" *%"$ #+ (4) 
,&" ∼ %-0, *'$. 

where yij is the dependent variable with observation i nested in cluster j, xij is the level-1 

predictor value for that observation, and zj is the level-2 moderator score for cluster j. 

The u0j and u1j terms are level-2 random effects that are multivariate normal with means 

of zero and an unstructured covariance matrix, )%. For our discussion, we assume that 

the observed data satisfy the missing at random mechanism and the parameters 

associated with the cause of missingness are distinct from the analysis model 

parameters (i.e., ignorability; Rubin, 1976). However, this assumption is unnecessary as 

the factorization scheme readily extends to nonignorable mechanisms (Du et al., 2021). 

As discussed previously, the conditional density /(0 |1,2) in Equations 2 and 3 

corresponds to the focal analysis model and the corresponding distributional 

assumptions for the outcome (i.e., Y is conditionally normal given the predictors and 

random effects). More concretely, the density is given by the conditional normal 

distribution implied by the cross-level analysis model from Equation 4 

/(0 |1,2) = 1√24*'$ exp ⎣⎢⎢⎢⎢⎢⎢⎡− 12 &9&" − 9:&"*'$ +$⎦⎥⎥⎥⎥⎥⎥⎤ = %#-9:&", *'$. (5) 
where 9:&" is the predicted value from Equation 4, and %# denotes a normal distribution 

function with a conditional mean and variance as its arguments. The outcome variable's 

distribution is common to Equations 2 and 3, but the two factorizations apply different 

models to the predictors. 
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Joint Model Specification for Predictors 

Returning to Equation 2, the !(",#) term corresponds to a within- and between-

level multivariate normal distribution for the predictors (Enders et al., 2020; Keller & 

Du, 2019). The within-cluster model for X describes the distribution of the level-1 scores 

around their level-2 latent group means, and the between-cluster model for X and Z is a 

bivariate normal distribution for the means and level-2 scores. These densities are 

$!" ~ %# &'$", (%$& ) 
(6) *'$"+" ,~ %& -. = *'$'', ,/( = 0 (($& (($'(('$ (('& 12 

where '$" is the latent group mean of " for cluster 3, (%$&  is the within-cluster variance, 

. is a vector of grand means, and /( is an unstructured between-cluster covariance 

matrix that defines the relationship between the latent cluster means and the level-2 

predictor. Importantly, the expressions in Equation 6 are not posterior predictive 

distributions that generates imputations, as those distributions also rely on the model-

implied distribution of Y. 

 The joint model parameterization for predictor variables has several advantages, 

chief among them is computational efficiency because the multivariate distribution can 

be recast as a fully conditional specification problem where each predictor is regressed 

on all others (Bartlett et al., 2015; Enders et al., 2020; Keller & Enders, 2021). Second, in 

the context of Bayesian estimation and posterior inference, the joint model specification 

facilitates both grand mean centering and latent group mean centering—a vital step in 

most multilevel analyses—because the Markov chain Monte Carlo (MCMC) algorithm 

yields estimates of these quantities at every iteration (Enders & Keller, 2019). Finally, 

this model readily accommodates binary, ordinal, and nominal predictors using a latent 
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response variable (probit regression) formulation. The primary downside of this 

specification is that it does not allow nonlinear relations among predictors or non-

normal continuous distributions. 

Sequential Specification for Predictors 

Alternatively, we can also model the density !(",#) by using the chain rule to 

factor the joint distribution as a sequence of univariate conditional models, as in 

Equation 3. Applied to the cross-level interaction model, the conditional distributions 

are both normal, as follows. 

!(" |#) = $!%γ" + γ!'# + ("#, )$%& * 
(7) !(#) = $!%+', )('& * 

Considering the conditional distribution of the level-1 predictor, γ" + γ!'# + ("# is the 

predicted value from a random intercept regression model X regressed on Z, and )$%&  is 

the within-cluster residual variance. The !(#) term translates into an intercept only 

regression model with a mean and between-cluster variance, +' and )('& , respectively. It 

is important to reiterate that these expressions are not the posterior predictive 

distributions that generate imputations, as those distributions also condition on the 

model-implied distribution of Y. 

The main advantages of the sequential approach is that it can offer more 

flexibility in modeling the association between X and Z (Grund, Lüdtke, & Robitzsch, 

2021b;  Lüdtke et al., 2020b). For example, a researcher might posit that a nonlinear 

relationship between X and Z exists and would like to model this explicitly. By using 

the sequential approach, we could easily model said nonlinearity by adding a 

polynomial term to the random intercept model that defines the !(" |#) density (Lüdtke 
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et al., 2020b). Additionally, the sequential specification allows non-normal continuous 

variables to be modeled using a Yeo–Johnson transformation (Yeo & Johnson, 2000), 

which is an extension of the popular Box–Cox transformation. In context of Bayesian 

estimation and posterior inference, the sequential specification may be more limiting 

because the group and grand means needed for centering are not always explicit model 

parameters (a feature that is not necessary for conducting multiple imputation). 

Categorical Predictors 

Either factored regression specification allow for categorical predictor variables. 

We describe the procedure for a binary covariate using the latent response formulation 

(Agresti, 2012; Albert & Chib, 1993; Johnson & Albert, 1999), and this framework also 

accommodates ordinal and multicategorical nominal predictors (Enders, Keller, & Levy, 

2018; Goldstein et al., 2009). The binary probit model imagines discrete responses as 

originating from an underlying normally distributed latent variable with a single fixed 

threshold, ! = 0, dividing the latent variable distribution into the discrete observations; 

participants with latent scores below the threshold have a discrete value of 0, and cases 

with latent responses above the threshold have values of 1. To illustrate how the probit 

model applies to the joint and sequential models, imagine that Z is now a level-2 

dummy code with scores of 0 and 1. We denote the underlying latent response variable 

as Z*. The link between " and Z* is as follows. 

#! = $ 1 if #!∗ > 0 0 otherwise (8) 
Using a probit model with normally distributed latent scores yields models that 

maintain the same general structure as those for continuous predictors. For example, 

when Z is binary, the between-cluster model from Equation 6 is 
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!"!"#"∗ $~%$ &' = ("!"%) ,*& = ! +&!$ +&!%+&%! 1 $, (9) 
where "!" and #"∗ are both level-2 latent variables, and +&%$  = 1 in the lower diagonal of 

*& indicates that the variance is fixed for identification, and the fixed threshold 

identifies the mean structure. Similarly, the sequential specification's between-cluster 

model from Equation 7 is an empty regression model for Z* with the variance again 

fixed at 1 for identification, and the within-cluster model is unchanged. -(.) = %'("%∗, 1) (10) 
In both parameterizations, the Z dummy code appears on the right side of the focal 

regression and thus the conditional mean of the normal distribution in Equation 5. 

Finally, the sequential specification also accommodates logistic covariate models using 

the Pólya-Gamma specification described by Polson et al. (2013) and Asparouhov and 

Muthén (2021b), but we focus on the latent response formulation because of its 

computational efficiency. 

Distributions of Missing Values 

 In a factored regression specification, the distributions of missing values are a 

function of every model in which an incomplete variable appears. To replace missing 

outcome scores, MCMC samples imputations from the normal distribution in Equation 

5, conditional on the current parameter values and random effects. In the sequential 

specification in Equation 3, the level-1 predictor X appears in the conditional mean of 

Y's normal distribution from Equation 5, and it functions as an outcome in its 

regression model and density in Equation 7. Symbolically, the conditional distribution 

of X given all other analysis variables is the product of two normal distributions. 

-(/ |0,.) ∝ -(0 |/,.) × -(/ |.) = %'345(", +)$6 × %'3γ* + γ'#" + 8*", ++!$ 6 (11) 
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The resulting function is also normal distribution, the mean and variance of which 

depend on both the analysis and predictor model parameters (Enders et al., 2020, Eq. 

20). Importantly, the presence of a product term in the imputation model introduces a 

heteroscedastic variance parameter, such that the normal distribution's spread depends 

on the product term, cluster j's random slope residual and its value on the moderator 

variable (Enders et al., 2020, Eq. 8). 

Turning to the level-2 predictor Z, this variable appears in the conditional mean 

of the Y and X densities, and it is the outcome in the empty level-2 model on bottom 

line of Equation 7. Symbolically, the conditional distribution of Z given all other 

analysis variables is the product of three normal distributions !("|#,$) ∝ !(# |$,") × !($ |") × !(")
= '!()", *#"$ + ×,'!(-.%&, *'$+ × '!(γ( + γ!0& + 1(&, *)*$ ++!

%=! (12) 
where the densities for the Y and X models are a product over all observations within a 

cluster, which are assumed independent after conditioning on the random effects. 

Finally, when Z is a binary predictor, the latent responses are missing data that require 

imputation. For cases with observed Z responses, MCMC samples "∗ values from a 

truncated normal distribution; when Z = 0, the algorithm samples negative imputations 

for "∗ (i.e., latent scores fall below the fixed threshold), and it otherwise samples 

positive imputations if Z = 1. For cases where Z is missing, the "∗ are drawn from an 

unconstrained normal distribution. Like its continuous counterpart, the posterior 

predictive distribution of missing "∗ values is proportional to the triple product in 

Equation 10, where *#"$  is fixed at 1 to identify the latent response variable's metric. The 

procedure naturally produces a discrete impute by comparing each "∗ to the fixed 

threshold. 
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Prior Distributions for the Level-2 Covariance Matrix 

 As noted previously, the choice of prior specification for the level-2 covariance 

matrix can impact one's results. The inverse Wishart distribution is a popular choice of 

conjugate prior, the form of which is 

!("!) ∝ |"!|−(#$!+%+&) '⁄ exp $− 12 tr&'("!−&() (13) 
where the hyperparameters '( and *!( are a sum of squares and cross-products matrix 

and degrees of freedom, respectively. Roughly speaking, the hyperparameters encode a 

prior guess about the random effect covariance matrix, and the degrees of freedom 

parameter is essentially the number of imaginary level-2 units assigned to that matrix. 

Assigning '( = 0 and *!( = V − 1 gives the multivariate sibling of the Jeffreys prior 

(Gelman et al., 2014), and other common choices include '( = I and *!( = V, '( = I and *!( = V + 1, and an improper prior with *!( = −V – 1 (Asparouhov & Muthén, 2010a; 

Lunn et al., 2013). The hyperparameters can also be estimated from the data (Casella, 

2001; Darnieder, 2011; McNeish, 2016b); however, data driven priors typically do not 

account for incomplete data. A limitation of the inverse Wishart prior is that it can't 

disentangle variances and covariances (Gelman, 2006; Grimm et al., 2016; Muthén & 

Asparouhov, 2012), and this one-size-fits-all characteristic of the prior can introduce 

bias in small samples (McNeish, 2016a, 2016b). 

A major thrust of this paper is to describe and evaluate a separation-type 

strategy that treats each element of the level-2 covariance matrix as a distinct parameter 

with its own prior. Extending ideas from Merkle and Rosseel (2018) to the multilevel 

context, we define the +(" and +&" from Equation 4 as level-2 latent variables, and we use 

a phantom latent variable to induce their correlation. To illustrate the main ideas, 
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Figure 1 shows a pair of path diagrams. The inferential model in panel (A) corresponds 

to the focal analysis from Equation 4, and the working model in panel (B) reflects a 

specification that decouples the random effect correlation from the variance 

components. In panel (B), the level-2 phantom variable, D, can be viewed as a proxy for 

the correlation, and the additional augmented parameters in the working model—!!, !", "#!"∗ , and "#""∗—are deterministic functions that preserve the random effect correlation.  

Essentially, the procedure works as follows. First, MCMC samples random 

effects that condition the working model parameters, including the phantom variable 

correlation. In turn, the inferential model's regression coefficients, level-1 residual 

variance, and level-2 variances all condition on these random effects. Importantly, 

MCMC treats each level-2 variance component as a distinct parameter with its own 

prior, and conditioning on correlated random effects produces variance estimates that 

reflect the working model's phantom variable-induced correlation. Finally, the level-2 

variances enter the working model via the augmented parameters, and MCMC updates 

the residual correlation and phantom variable scores. Following Merkle and Rosseel 

(2018), we use a positively skewed inverse gamma prior with shape and scale 

parameters a = 1 and b = 0.5 (or equivalently, hyperparameters #$% = 2 and %% = 1), and 

we use a beta prior distribution for the correlation with both shape parameters set to 1 

(i.e., a flat prior over most of the correlation's –1 to +1 range). Interested readers can 

find a more technical summary of the MCMC estimation steps and conditional 

distributions in Section A of the online supplemental material. 

Non-Normal Continuous Predictors 

In addition to incomplete categorical predictors, researchers often are faced with 

non-normally distributed continuous incomplete predictors. The multilevel complete 
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data literature suggests that fixed and random effect parameters tend to be robust to 

violations of the distributional assumptions (Grilli & Rampichini, 2015; Jacqmin-Gadda 

et al., 2007; Maas & Hox, 2004a, 2004b; McCulloch & Neuhaus, 2011; Schielzeth et al., 

2020; Verbeke & Lesaffre, 1996). However, these studies have focused on 

misspecification in the outcome model’s distributional assumptions, not the predictor 

models, where parameter estimates are not of inferential interest. Instead, these 

predictor models aim to provide predictions when simulation imputations from the 

posterior predictive distribution. In the context of complete data outcomes, Schielzeth et 

al. (2020) found that violations of the random effect distribution resulted in poor 

estimates of specific random effects (i.e., the cluster residual), which are required for 

multilevel imputation. Thus, despite multilevel model’s robustness to distributional 

violations for parameter inferences, it may be important to attempt to handle the non-

normality in predictor’s distributions.  

The literature suggests several solutions to accounting for non-normally 

distributed variables, including copula-based (Gomes et al., 2019; Hollenbach et al., 

2021; Käärik, 2006; Käärik & Käärik, 2009; Robbins et al., 2013) and transformation-

based approaches (Goldstein et al., 2009; Lüdtke et al., 2020b). Thus far, copula-based 

approaches have focused on agnostic imputation schemes because they generally focus 

on modeling and imputing the unobserved variables conditional on the observed 

variables. In the context of multilevel data, Goldstein et al. (2009) discussed (but not 

studied in detail) the imputation of continuous non-normal responses using the Box–

Cox transformation (Box & Cox, 1964) and argued that their approach is a multilevel 

extension of a Gaussian copula approach (p. 194, Section 5.3). A significant limitation of 

the Box-Cox transformation is that values must be positive. Because of this limitation, 
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Yeo and Johnson (2000) proposed a transformation with similar properties to a Box–Cox 

transformation for positive values and accommodates negative values. The Yeo–

Johnson transformation has shown promise when paired with single-level factored 

regression specifications (Lüdtke et al., 2020b). We focus on the Yeo–Johnson 

transformation because it is available in software programs (e.g., Blimp and the R 

package mdmb; Keller & Enders, 2021; Robitzsch & Lüdke, 2021) and readily extends to 

multilevel models.  

The Yeo–Johnson procedure models a predictor, X, using a normalized proxy, !∗, with a mean and variance, ""∗ and #"∗# , respectively. The procedure uses the Yeo–

Johnson transformation to link the proxy to the observed variable: 

ℎ$(!) = ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎧)(! + 1)$ − 1+ ,⁄ln(! + 1)−)(−! + 1)#−$ − 1+ (2 − ,)-−ln(−! + 1)    if ! ≥ 0 and , ≠ 0if ! ≥ 0 and , = 0if ! < 0 and , ≠ 2if ! < 0 and , = 2 (14) 

where , is a shape parameter and ℎ$(!) = !∗. Importantly, the above power 

transformations subsume several common functions, including inverse, logarithmic, 

square root, identity function (i.e., ℎ$=&(!) = !.), and Box-Cox transformations, the 

latter of which was discussed but not studied in detail by Goldstein et al. (2009). 

The additional , parameters must also be sampled, and details of this procedure are 

supplied in the Technical Appendix provided as part of the online supplemental 

material (Section A). Finally, imputations for missing observations are sampled from 

their appropriate factored conditional distributions (see equations 11 and 12) with the 

substitution of the models in Equation 14.  

Returning to the sequential specification for predictor variables, the 

untransformed covariates appear in the focal regression from Equation 4, and the 
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!(" |#) and !(#) terms in Equation 7 change to reflect the conditional distributions of the 

normalized scores.  

!("∗|#) = $"%γ# + γ"'$ + (#$, )%&∗' * 
(15) !(#∗) = $"%+(∗, ))(∗' * 

The additional , parameters must also be sampled, and details of this procedure are 

supplied in the Technical Appendix provided as part of the online supplemental 

material (Section A). Finally, imputations for missing observations are sampled from 

their appropriate factored conditional distributions (see equations 11 and 12) with the 

substitution of the models in Equation 15.  

MCMC Estimation 

This section briefly summarizes the MCMC estimation steps for the factored 

regression. While MCMC methods provide several ways of sampling imputations and 

parameters, we use a Gibbs sampler to break the complex multivariate distribution of 

the unknowns into separate conditional parts. For some quantities with non-standard or 

intractable distributions, we use a Metropolis-Hastings step within the Gibbs sampler 

(Gelman et al., 2014; Hastings, 1970; Lynch, 2007). The following steps provide a 

conceptual recipe for the sampling procedure, and the online supplement (Section A) 

includes a detailed technical appendix that gives a complete summary of the estimation 

steps, including the full conditional distributions for each parameter.  

1. Sample the focal regression model's slope coefficients, conditional on the current 

data, random effects, and level-1 residual variance. 

2. Sample the level-2 random effects, conditional on the current data and model 

parameters. With an inverse Wishart prior for the level-2 covariance matrix, 
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sampling follows standard multivariate normal expressions from the literature 

(Browne, 1998; Draper, 2008). With a separation-type prior, the random effect 

imputations condition on the inferential (focal) and working models in Figure 1. 

3. Sample the level-1 residual variance, conditional on the current data, coefficients, 

and random effects. 

4. Sample the level-2 covariance matrix, conditional on the current random effects. 

With an inverse Wishart prior for the level-2 covariance matrix, !! is sampled in 

a single step. With a separation-type prior specification, the level-2 variance 

components and the random effect correlation are sampled in separate steps, as 

described previously. 

5. For each incomplete predictor, sample the slope coefficients, random effects (if 

measured at level-1), between-cluster variance (if measured at level-1), and 

residual variance. These sampling steps rely on the same conditional 

distributions used to estimate the focal regression model. When applying the 

Yeo–Johnson procedure, the predictor's model also includes a shape parameter. 

6. For each incomplete variable, sample imputations from the posterior predictive 

distribution. The distribution's center and spread depends on every model that 

features the incomplete variable, as described previously. 

 The MCMC algorithm simultaneously generates model parameters for Bayesian 

inference and multiple imputations. When using the former, the collection of parameter 

values obtained from the T iterations following the burn-in period estimate marginal 

posterior distributions, the center and spread of which are analogous to frequentist 

point estimates and standard errors. In this scenario, the imputations from each 

iteration t are simply a means to an end, which is to fill-in the data to simplify the 
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estimation of parameters. In contrast, a multiple imputation analysis requires a small 

collection M imputed data sets (e.g., 20 or more; Graham et al., 2007) from the MCMC 

process. The researcher then fits the multilevel model of interest—the same model 

specified in !(" |#,$)—to each data set and then uses Rubin's (1987) pooling rules to 

obtain point estimates and standard errors. As noted previously, the literature to date 

has focused almost entirely on multiple imputation, and a major thrust of this study is 

to evaluate Bayesian inference and compare it to multiple imputation. 

Computer Simulation Studies 

This section outlines the five computer simulation studies that investigate 

factored regression specifications for multilevel models with cross-level interactions. As 

a worst-case baseline, we also include the multilevel extension of the just-another-

variable imputation method that treats the cross-level product as a normally distributed 

level-1 variable. All five simulations used the analysis model given in Equation 4. The 

dependent variable was complete, and missing values on both predictors followed a 

missing at random mechanism with Y as the cause of missingness. 

Simulations 1 and 2 investigated conditions where factored regression 

specifications described earlier correctly model the predictor distributions. More 

specifically, Simulation 1 investigated a continuous level-2 predictor, and Simulation 2 

investigated a binary level-2 predictor. The multiple imputation aspects of Simulation 1 

is comparable to Grund, Lüdtke, and Robitzsch (2021), but we additionally investigate 

Bayesian estimation and inference, we explore the effect of different prior distributions 

for the random effect covariance matrix. For the remaining three simulations, we 

systematically investigated the impact of misspecifying a distribution in one of the 

predictor models. Simulation 3 investigated a misspecification where the normal 
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distribution for !!" in Equation 6 is applied to a highly skewed and kurtotic set of latent 

group means that follows a one degree of freedom chi-square distribution. Simulation 4 

investigated a different between-cluster misspecification where the normal distribution 

for Z in Equation 6 or 7 is applied to a highly skewed and kurtotic level-2 predictor that 

follows a one degree of freedom chi-square distribution. Finally, Simulation 5 

investigated a misspecification where the within-cluster normal distribution in the top 

expression of Equation 6 is applied to a level-1 predictor with highly skewed and 

kurtotic within-cluster residuals that follows a one degree of freedom chi-square 

distribution. We chose this chi-square distribution to induce extreme distributional 

misspecifications that likely represent an upper bound for what researchers might 

encounter in applied practice. Previous studies have not examined the robustness of 

factored regression specifications to such conditions in this context. For Simulations 4 

and 5, we also investigate the possibility of applying a Yeo–Johnson transformation 

(Yeo & Johnson, 2000) proposed in the single-level imputation literature (Lüdtke et al., 

2020b). 

Overview of Simulation Conditions 

Each simulation had four between-subjects factors: within-cluster sample size ("" 
= 5, 15, and 25), number of clusters (J = 25, 50, and 200), intraclass correlation (ICC = 

0.10 and 0.50), and missing data rate (15%, and 30%). Each study used 2,000 replications 

for each of the 36 conditions. For Simulation 2, we also included a condition where we 

investigated two sets of category proportions for the binary level-2 predictor: a 80/20 

split and 50/50 split of 0s and 1s. 

The conditions were chosen based on a review of guidelines from the literature, 

published Monte Carlo studies, generalizability to typical social science data, and 
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considerations to methodological interests (e.g., evaluating behavior with small and 

large sample sizes). For example, Maas and Hox (2005) suggested that within cluster 

sample of !! = 30 is the norm for level-1 in educational research; thus, we chose to vary 

the within cluster sample size at varying amounts under !! = 30. For number of level-2 

clusters, Maas and Hox (2005) suggested that 50 clusters are common in educational 

research, and Kreft and de Leeuw (1998) recommend a minimum of 30 clusters. Finally, 

the 200 clusters condition allowed us to investigate the large sample properties of the 

factored regression specification and how it might differ between imputation and Bayes 

posterior medians. Turning to the ICC condition, we chose ICC's that are representative 

of published research (Gulliford et al., 1999; Hedges & Hedberg, 2007; Murray & 

Blistein, 2003); thus, we chose an ICC of 0.10 to constitute a value for cross-sectional 

data, and an ICC of 0.50 to constitute a value for repeated measures data. The missing 

data rates we used represent a moderate and large amount of missing data (i.e., 15% 

and 30% on both predictors, respectively). The 15% condition is a threshold where 

traditional fully conditional specification begins to show biases (Enders, Hayes, & Du, 

2018; Enders, Keller, & Levy, 2018; Grund et al., 2018), and the 30% condition should 

reveal distortions. 

For all simulations, we set the population value of "" to equal to 10 and set the 

population means of X and Z to equal 0. In addition, we fixed the total variance of X 

and Z to 1 (when Z was continuous) and set the population variance of Y equal to 100. 

For the analysis model's random effects, we set the covariance between the random 

intercepts and slopes (i.e., ##!#") to a value corresponding to a correlation equal to 0.30. 

We specified the random slope variance (i.e., ##"$ ) to account for 5% of the within-cluster 

outcome variance (Rights & Sterba, 2019). For the correlation structure, the slope 
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coefficients were derived after setting the population correlations among all variables 

equal to 0.40, and the cross-level product term's slope was derived by setting its 

bivariate association with Y equal to 0.15. In the online supplemental material (Section 

F), we  show the true multilevel model parameters for each condition, and provide a 

detailed description of their derivation. 

Data Generation 

We generated the data using R programming language for statistical computing (R Core 

Team, 2020). To generate the predictors, we used the following equations, where !!  = !" = 0. "#$  = !!$ + ##$(!) 
(16) !!$ = !! + #$(!) $$∗ = !" + #$(") 

The distributions of the variables depend on the simulation condition. For Simulation 1, 

we use the distributions given in Equation 8, where $$ = $$∗. For Simulation 2, the #$(") 
term is on the latent response metric, and $$∗ is converted to a binary variable using the 

function given in Equation 10. For Simulations 3, the #$(!) residuals were generated 

based on a transformed one degree of freedom chi-square variable. To illustrate, the 

data generation for Simulation 3 was created with the following expressions 

##$(!) ~ %&0, '&!' ( 
(17) )!!$$$ * = )!!!"* + +,-$(!)∗ -$(")∗ − 1√2 0 12(  

-$(!)∗  ~ %(0,1)	
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!!(")∗ = χ$(1) 
where L is the Cholesky decomposition of #%, the between-cluster covariance matrix 

from Equation 8. To generate the data, we drew pairs of normal and chi-square variates 

for each cluster,  !!(&)∗  and the !!(")∗ , respectively. The row vector to the left of L scales the 

variables to have a mean of 0 and a variance of 1, then multiplying scores by the 

Cholesky decomposition of the #% matrix induces the desired correlation and scaling. In 

Simulation 4, !!(&)∗  and !!(")∗  switched roles, such that !!(&)∗  became the rescaled chi-square 

variate. Finally, in Simulation 5, both !!(&)∗  and !!(")∗  were normally distributed variables, 

and $'!(&) was a rescaled chi-square variate with a mean of 0 and variance equal to %(&$ . 

After generating the predictor scores and random effects, we generated Y scores 

by substituting these quantities into the analysis model from Equation 4 along with the 

derived population parameters. Finally, to generate data that are missing at random, we 

generated predictive probabilities of missingness using a logistic model with Y 

predicting a binary missing data indicator. The intercept parameter was specified to 

create the desired amount of missing data, and the logistic slope was derived as a 

positive value (i.e., missingness rates increased with the values of Y) that produced a 

pseudo-R2 (McKelvey & Zavoina, 1975) equal to 0.50 (i.e., a very strong selection 

mechanism that would certainly induce bias when using listwise deletion). For X and Z, 

binary missing data indicators were first sampled from a binomial distribution with 

success rates equal to the predicted probabilities, and missing values were induced if 

the indicator score equaled 1.  
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Model Fitting 

Multiple imputations (i.e., both for factored regression imputation and just-

another-variable imputation based on fully conditional specification) were generated 

using version 3 of Blimp software package (Keller & Enders, 2021)1. For each 

replication, we generated 10,000 posterior draws after a 10,000 burn-in interval from a 

single chain. These values were chosen after assessing potential scale reduction factor 

diagnostics (Gelman & Rubin, 1992) from a sample of artificial data sets from various 

conditions, and we include simulation-specific convergence information in the online 

supplemental material (Section D). Ten imputations were generated by saving a data set 

after every 1,000th iteration following the burn-in period. We then used restricted 

maximum likelihood estimation (McNeish, 2017) with R and the lme4 package (Bates et 

al., 2021) to fit the analysis model from Equation 4 to each filled-in data set. All 

estimates and standard errors were pooled using the mitml R package (Grund, 

Robitzsch, & Lüdke, 2021). 

As discussed previously, the factored regression specification also generates 

Bayesian posterior summaries, and a major goal of this study is to evaluate Bayesian 

inference and compare it to gold standard factored imputation methods. Our 

simulation investigated both the joint model and sequential specification for the 

predictors. There is no reason to expect these methods to differ in this context, and our 

simulations confirmed that expectation. In the interest of space, we report the Bayesian 

results for the sequential specification because this approach accommodates the Yeo–

 
1 Similar model-fitting procedures are available in the R package mdmb (Robitzsch & 
Lüdtke, 2021). 
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Johnson (2000) transformation for skewed variables. The real data analysis example 

illustrates the joint model specification for predictors. 

As a consequence of adopting a Bayesian approach to multiple imputation, we 

must also invoke prior distributions for the parameters in the analysis model and the 

supporting predictors models. As noted earlier, we adopt noninformative (flat) priors 

for regression coefficients and grand means, and we use inverse gamma priors for the 

focal model's residual variance and the residual variances in the supporting predictor 

models. These choices are not nearly as consequential as the prior distribution for the 

level-2 covariance matrix of the random effects (the !! matrix in Equation 4); it is well 

documented that !! is sensitive to prior specifications (see Gelman & Hill, 2007, 

Chapters 13 and 17 for discussion), and this sensitivity is exasperated by a small 

number of level-2 sampling units. We investigated two common noninformative 

inverse Wishart priors. The first is more informative because it adds the number of 

matrix dimensions plus 1 to the degrees of freedom, and it adds an identity matrix to 

the sum of squares and cross-products. The second is less informative because it 

subtracts the same value from the degrees of freedom and adds nothing to the sum of 

squares and cross-products. The Blimp software refers to these options as "prior1" and 

"prior2", respectively. We also investigated the separation-type strategy described 

earlier that specifies unique priors on the individual random effect variances and their 

correlation. 

Outcome Measures 

For all five simulations, we focused on two outcome measurements: percent bias 

and confidence interval coverage. The latter was only calculated for the fixed effects 

estimates because the literature suggests that symmetric, normal-theory confidence 
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intervals are inappropriate for variance parameters (Maas & Hox, 2005; Snijders & 

Bosker, 2012). We defined percent bias as 

percent bias = (average estimate) − (true parameter)(true parameter) × 100 (18) 
and confidence interval coverage as 

95% C. I. coverage = (number of replications with population parameter in C. I.)(total number of replications) . (19) 
For Bayesian inference, the average estimate in the bias expression is the average 

posterior median, and coverage values were based on 95% credible intervals rather than 

confidence intervals. The posterior mean and mode could also be used, but we chose 

the median because it is the default point estimate in common software programs 

(Asparouhov & Muthén, 2010a; Gelman et al., 2015), and thus would be the summary 

most researchers would use in practice". These measures were calculated for all 

simulations and all condition within each simulation. As mentioned previously, 

complete-data estimates served as a baseline against which to compare other methods, 

as multilevel model parameters are not automatically free of bias. To facilitate 

interpretation, we used rules of thumb to assess the practical impact of bias and 

coverage; for percent bias the literature sometimes recommends that the bias should not 

exceed 10% (Kaplan, 1988), and we adopted Bradley's (1978) "liberal" criterion for 

coverage rates between 0.925 and 0.975. 

Results 

For all five simulations, we present a subset of results that illustrates the main 

findings. We focus on the 30% missing data condition because it would reveal each 

method's bias-inducing tendencies. For all simulations, the absolute values of the 

listwise deletion biases were consistently above 20%, suggesting that the missing at 
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random selection mechanism was strong enough to induce nonresponse bias if not 

handled appropriately. We include the complete set of simulation conditions, including 

the severely biased listwise deletion and just-another-variable results, in the online 

supplemental material (Section K through Section V). 

In the interest of space, we have presented the main findings of the simulation in 

tables, but we have also included trellis plots that we found helpful in deciphering the 

results. These plots are in Section B of the online supplemental material and provide a 

graphical depiction of the findings discussed throughout the results section. 

Simulation 1: Normally Distributed Predictors 

To streamline the presentation, we first identified the prior distribution that 

provided the best parameter recovery with Bayesian inference, and we then compared 

that "winner" to its multiple imputations estimates. The effect of prior distributions 

tends to be much less pronounced when analyzing filled-in data sets, so we sought to 

keep that aspect of the comparison constant.  

To begin, Table 1 gives the percentage bias values for the three different 

covariance matrix priors. The top half of the table illustrates the effects of varying the 

level-1 sample size while holding the level-2 sample size constant at J = 50, and the 

bottom half illustrates the effects of varying the level-2 sample size while holding the 

within-cluster sample size constant at nj = 15. Not surprisingly, the choice of prior was 

most impactful on the variance–covariance matrix estimates. The graphs show that the 

separation prior was consistently superior to the inverse Wishart priors, as the random 

intercept and slope variance estimates generally exhibited minimal bias less than 10% in 

absolute value. The notable exception occurred in the design cell with nj = 5 

observations per cluster and J = 50 level-2 units, where the random slope variance for 
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this prior was positively biased. The apparent downside of the separation prior is that 

covariance parameter estimates exhibited large negative bias values of about 30% (i.e., 

estimates closer to 0).2 We suspect that most researchers would view correlation bias as 

a reasonable tradeoff for getting good estimates of the variance components. As such, 

we focus on the separation prior going forward. As mentioned previously, the prior 

choice was much less noticeable when analyzing multiple imputations, so we sought to 

keep this aspect of the Bayes–imputation comparison constant. 

Turning to the comparison of Bayesian estimation (BAY; based on the separation 

prior) and factored regression multiple imputation (IMP; also based on the separation 

prior), the Simulation 1 rows of tables 2 and 3 give the percentage bias values for the 

regression slopes holding level-1 and level-2 constant, respectively. Complete-data 

estimates (CMP) are given as a comparison, as these represent a best-case scenario for 

restricted maximum likelihood estimation. The Bayesian and multiple imputation 

estimates generally tracked closely with the complete-data estimates. Turning to the 

level-2 covariance matrix, the Simulation 1 rows of tables 4 and 5 give the percentage 

bias values for the regression slopes holding level-1 and level-2 constant, respectively. 

The largest differences occurred in the design cell with nj = 5 observations per cluster 

and J = 50 level-2 units, where the complete-data estimates were more accurate. In most 

cases, there was very little difference between Bayesian estimation and multiple 

imputation. The notable exception was the covariance between the random intercepts 

and slopes, where the Bayes estimates exhibited greater bias. However, the tables do 

not tell the whole story, as Bayesian estimates of the covariance had dramatically 

 
2 The separation prior parameterizes the random effect structure as a correlation and two variances. 
To provide comparability with the other priors, the covariance was computed by multiplying the 
estimated correlation at each iteration by the square root of the product of the variances. 
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smaller mean squared errors (multiple imputation mean squared errors were generally 

25% to 50% larger). From a practical perspective, this means that the biased Bayesian 

estimates were closer to the true value, on average, despite their negative bias. 

 Although not displayed but available in the online supplemental material 

(Section B), the coverage results were somewhat unremarkable. Coverage values 

generally fell between 92.5% and 97.5% (Bradley's liberal criterion). When the ICC = 

0.50, Bayesian coverage values improved slightly as the number of level-2 units 

increased, but this trend was very subtle and likely wouldn't be considered practically 

significant. 

Simulation 2: Binary Level-2 Predictor 

Turning to Simulation 2, recall that the level-2 moderator was a binary dummy 

code with either a 50/50 or 80/20 split of 0s and 1s, respectively. The Simulation 2 rows 

of tables 2 to 5 provide the results for the two split conditions for the three estimators 

(complete-data, Bayesian, and factored multiple imputation). Table 2 and Table 3 

provide the percentage bias for the regression slopes, and Table 4 and Table 5 provide 

percentage bias for the level-2 covariance matrix parameters. 

The main new finding of this study is that the level-2 dummy code's lower-order 

effect was sensitive to the number of level-2 units, although the accuracy of !! was also 

dependent on the category proportions. When there was a 50/50 split between 

categories, factored regression imputation had acceptable estimates (approximately 10% 

bias) with 50 level-2 clusters and 25 level-1 units; however, larger level-2 sample sizes 

were needed to achieve the same reduction in bias when the categorical predictor had 

an 80/20 split of 0s and 1s. Importantly, the cross-level interaction effect was effectively 

unbiased in most cases. One notable finding on this cross-level interaction effect was the 
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ICC, where the cross-level interaction was particularly biased in the 80/20 split with 

ICC = 0.1 conditions. This effect was only unbiased in the largest level-2 sample size 

condition; however, to reiterate that this is for a 30% missing data rate at level-2 units 

with a rather extreme binary split. Random effect estimates were consistent with the 

first simulation, with nothing new to highlight. Finally, coverage values also largely 

mimicked the findings of Simulation 1, so we point interested readers to the online 

supplement. 

Simulation 3: Non-Normal Latent Means at Level-2 

For Simulation 3, the marginal distribution of the level-2 latent group means was 

a single degree of freedom chi-square that was rescaled to the desired mean and 

variance (0 and !!"# , respectively). The main purpose of this simulation was to 

investigate a misspecification where the normal distribution for ""$ in Equation 6 is 

applied to skewed and kurtotic latent group means. This misspecification is interesting 

to consider because there is currently no obvious solution to the problem. For example, 

the Yeo–Johnson transformation (Yeo & Johnson, 2000) that we consider in the next two 

simulations is appropriate for manifest variables, but no analog currently exists for non-

normal latent variables. Note that the level-2 moderator was normally distributed, as it 

was in the first simulation. 

Tables 2 to 5 give the percentage bias values for each estimator in the Simulation 

3 rows. The main new finding of this study is that non-normal latent means primarily 

impacted the interaction coefficient. Moreover, bias depended on the level-2 sample 

size, particularly in the ICC = 0.50 conditions. Although we know of no studies that 

have considered consistency properties in this context, the simulation results suggest 

that estimates might be consistent under this misspecification, as #%'s bias decreased as 



FACTORED REGRESSION WITH CROSS-LEVEL INTERACTIONS 
33 

the level-2 sample size increased; reading from left to right in Table 3, the estimates 

exhibited large biases when J = 25 that dropped below 10% when J = 200. Examining a 

wider range of level-2 sample sizes could identify the more precise point at which 

asymptotic properties take hold (if they do). Random effect estimates were consistent 

with the first two simulations, with nothing new to highlight. Finally, coverage values 

largely mimic the findings of Simulation 1, so we point interested readers to the online 

supplement. 

Simulation 4: Non-Normal Level-2 Predictor 

For Simulation 4, the marginal distribution of the level-2 moderator was a single 

degree of freedom chi-square that was rescaled to the desired mean and variance (0 and !!"# , respectively). The main purpose of this simulation was to investigate a 

misspecification where the normal distribution for Z in Equation 6 is applied to a 

skewed and kurtotic moderator. The Simulation 3 section of tables 2 to 5 give the 

percentage bias values for the three estimators. 

The main new finding of this study is that non-normality primarily impacted the 

moderator's lower-order slope, and the interaction coefficient generally exhibited little 

or no bias. The ICC again played a role, although this time bias values were largest in 

the ICC = 0.10 condition. The simulation results again suggest that estimates might be 

consistent under this misspecification, as "# 's bias decreased as the level-2 sample size 

increased; reading from left to right in Table 3, bias values dropped below 10% when J = 

50 and were effectively zero when J = 200. Random effect estimates were consistent 

with the first two simulations, with nothing new to highlight. Finally, coverage values 

largely mimic the findings of Simulation 1, so we point interested readers to the online 

supplement. 
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As discussed earlier, one advantage of using a sequential predictor model is that 

it is straightforward to accommodate non-normal continuous conditional distributions. 

In the single-level regression context, Lüdtke et al. (2020b) proposed the Yeo–Johnson 

(Yeo & Johnson, 2000) power transformation for non-normal data. We conducted a 

follow-up simulation that applied the Yeo–Johnson transformation to the non-normal 

level-2 variable. Importantly, these analyses are still misspecified because the Yeo–

Johnson transformation is tasked with approximating the true data-generating 

distribution, which is a chi-square. Our goal for this simulation is to mimic applied 

practice where a researcher, without knowledge of the true population distribution, 

would inappropriately apply a Yeo–Johnson transformation. Because the single degree 

of freedom chi-square distribution is arguably a worse-case scenario misspecification 

(skewness and excess kurtosis values were approximately 2.8 and 12), the follow-up 

simulations varied the shape of the moderator's distribution using chi-square variables 

with degrees of freedom values equal to 2 (skewness ≈ 2, kurtosis ≈ 6), 5 (skewness ≈ 

1.26, kurtosis ≈ 2.40), 10 (skewness ≈ .90, kurtosis ≈ 1.19), and 15 (skewness ≈ .73, 

kurtosis ≈ .79). For this simulation, we fixed the level-1 and level-2 sample sizes at 

values that exhibited the most bias, nj = 15 and J = 25. 

Figure 2 shows trellis plots of Bayesian estimation with and without the Yeo–

Johnson transformation (it is also possible to use multiple imputation with the 

transformation, but we exclude these results in the interest of space) and the tabular 

results are offered in the online supplemental (Section C). Although the bias values 

generally aren't very extreme to begin with, the figure shows that the Yeo–Johnson 

transformation did not reduce bias. In fact, percentage bias values for the 

transformation were somewhat larger than the untransformed results. We attribute this 
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seemingly counterintuitive finding to the fact that the level-2 sample size is very small 

at J = 254, which makes it difficult to estimate the shape parameter (e.g., even a single 

outlying observation could exert substantial influence on the transformation); therefore, 

a more informative prior on the shape parameter may be required.  

Simulation 5: Non-Normal Within-Cluster Variance 

For Simulation 5, recall that the distribution of the within-cluster residuals was a 

single degree of freedom chi-square that was rescaled to the desired mean and variance 

(0 and !!"# , respectively). The main purpose of this simulation was to investigate a 

misspecification where the within-cluster normal distribution in the top expression of 

Equation 6 is applied to a level-1 predictor with skewed and kurtotic within-cluster 

residuals. Tables 2 to 5 give the percentage bias values for each estimator in the 

Simulation 5 rows.  

The main new finding of this study is that within-cluster non-normality affected 

both the interaction coefficient and the random slope variance estimates; percentage 

bias values of 20% (in absolute value) were typical for the former, and the random slope 

bias values ranged between 80% to over 200%. Unlike Simulations 3 and 4, bias did not 

decrease as the sample size increased. To better understand the large random slope 

bias, we examined within-cluster regression of Y on X for several level-2 units. Because 

the missing data selection mechanism was defined such that higher Y values were more 

likely to have missing X observations, the bulk of missing values were in the sparsely 

populated upper tail of X's distribution. The scatterplots revealed that the deleted 

 
4 We also investigated the J = 50 condition and included this figure in Section I of the online 
supplemental material; however, the findings were essentially the same, and the regression 
slopes for the normal distribution model were unbiased in all conditions.  



FACTORED REGRESSION WITH CROSS-LEVEL INTERACTIONS 
36 

points had high leverage, flattening the within-cluster slopes. Replacing these values 

with less extreme imputations in the middle of the distribution (a consequence of the 

normality assumption) dramatically increased the within-cluster slopes and their 

variability. The online supplement (Section J) shows exemplar scatterplots that illustrate 

this point. 

To investigate the impact of the missing data selection mechanism, we ran a 

follow-up simulation that reversed the sign of the relationship between Y and X. This 

operation created a missing at random selection mechanism that retained values in the 

upper tail of X's distribution and instead removed values from the large peak at the low 

end of the distribution. The "Sim 5 Reversed" rows of tables 2 to 5 give the percentage 

bias from the follow-up simulation. Comparing the original data generation to the 

reversed relationship, one can see that the magnitude of the bias in both the cross-level 

interaction coefficient and random slope variance decreased drastically. In addition, the 

direction of the bias also changed from positive to negative. These results highlight that 

it is important to consider the functional form of the missing data mechanism when 

considering the impact of model misspecifications with asymmetrical distributions. 

Simulation 5 is another example where the Yeo–Johnson transformation could 

potentially mitigate the negative impact of non-normal data. Following the procedure 

from Simulation 4, we again performed follow-up simulations varied the shape of the 

within-cluster residual distribution using chi-square variables with degrees of freedom 

values equal to 2 (skewness ≈ 2, kurtosis ≈ 6), 5 (skewness ≈ 1.26, kurtosis ≈ 2.40), 10 

(skewness ≈ .90, kurtosis ≈ 1.19), and 15 (skewness ≈ .73, kurtosis ≈ .79). For this 

simulation, we again fixed the level-1 and level-2 sample sizes at values that might be 

typical in applied practice, nj = 15 and J = 50. To reiterate, these analyses are 
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misspecified because the Yeo–Johnson density only approximates the true data-

generating distribution. Again, our goal is to mimic a situation where a researcher 

would inappropriately apply this transformation without knowledge of the true 

population distribution.  

Figure 3 shows trellis plots of Bayesian estimation with and without the Yeo–

Johnson transformation (it is also possible to use multiple imputation with the 

transformation, but we exclude these results in the interest of space). The figure shows 

that the Yeo–Johnson transformation effectively reduced bias, especially for the fixed 

effects, where percentage values were generally below 10%. The transformation also 

improved estimates of the random slope variance, which exhibited bias values of 10% 

or lower when the residual distribution was a chi-square with 2 degrees of freedom 

(skewness ≈ 2, kurtosis ≈ 6). Unsurprisingly, bias associated with the untransformed 

results decreased as the chi-square distribution's degrees of freedom (and thus non-

normality) decreased. Considered as a whole, these results are encouraging given that 

Yeo–Johnson transformation was not the true data-generating function. We attribute the 

good performance of the Yeo–Johnson transformation in this simulation to the fact that 

the number of level-1 units is large, which improves the accuracy of the shape 

parameter. 

 
Real Data Example 

The data for the example are from an organizational study with nj = 6 employees 

nested within J = 105 workgroups or teams. The analysis features a construct known as 

leader–member exchange (employee–supervisor relationship quality) as a within-team 

predictor of employee empowerment, the effect of which is moderated by team-level 
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leadership climate (Aguinis et al., 2013; Chen et al., 2007). This interpretation is 

achieved by centering the predictor at iteratively-sampled latent group means. 

Although we did not investigate such a model in the simulations, we also include the 

leader–member exchange latent group means and their between-cluster interaction with 

the team-level moderator, and we use a self-reported biological sex dummy code (0 = 

female, 1 = male) and team-level cohesion rating as level-1 and level-2 covariates, 

respectively. 

!"#$%!&!" = '(# + )#"* + '($ + )$"*'+",!" − .%&'"* + (('.%&'" − .%&'"* + ()'/+0"12!" − .*%+&,-.* + (/'.%&'" − .%&'*'/+0"12!" − .*%+&,-.* + (0'+",!" − .%&'"*'/+0"12!" − .*%+&,-.* (20) 
+ (1'"1+!!"* + (2'/$ℎ!40$5"* + 6!" 

About 16.2% and 4.1% of the individual-level empowerment and leader–member 

exchange scores are missing, respectively, and 9.5% and 5.7% of the team-level climate 

and cohesion scores are missing.  

A joint specification for the predictors is ideally suited for a Bayesian analysis 

because the latent group means (Hamaker & Muthén, 2020; Lüdtke et al., 2008) and 

grand means are explicit model parameters in the supporting predictor models. The 

factorization for this approach is as follows. !("#$%&"', (#),*(+#,-",#,(",*%."/+%0) = 

(21) !("#$%&"' ∣ (#),*(+#,-",#,(",*%."/+%0 , (#) × *(+#,-") × !((#),*(+#,-",#,("∗,*%."/+%0) 
The asterisk superscript indicates that the sex dummy code appears as a latent response 

variable in the multivariate predictor distribution. Although treating a binary nominal 

predictor like biological sex as an ordinal latent response variable may seem odd, the 

multinomial probit model for multicategorical data is identical to the ordinal probit 
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model in this case (Goldstein et al., 2009). An even simpler parameterization treats the 

incomplete predictors as multivariate normal, conditional on the complete biological 

sex code.  

The strength of a sequential specification is that it accommodates some 

configurations of non-normal variables via the Yeo–Johnson transformation (Yeo & 

Johnson, 2000). We do not use it here because the latent group and grand means needed 

for centering are not byproducts of estimation. However, one could use the procedure 

to create non-normal multiple imputations and center at the manifest means of the 

imputed data. The most natural way to order variables in a sequential specification is 

by level, so the level-2 variables are factored last. !("#$%&"', (#),*(+#,-",#,(",*%."/+%0) = 

(22) 

!("#$%&"' ∣ (#),*(+#,-",#,(",*%."/+%0 , (#) × *(+#,-") ×	!(#,("∗ ∣ (#),*(+#,-",*%."/+%0) × !((#) ∣ *(+#,-",*%."/+%0) × !(*%."/+%0 | ∣ *(+#,-") × !(*(+#,-") 
 

In our experience, ordering predictors such that any transformed variables appear in 

one of the rightmost factorizations usually facilitates convergence, as does centering the 

non-normal variable at its median. 

We fit the above model using the same three prior distributions from the 

simulations. For multiple imputation, we created M = 100 filled-in data sets by saving 

the imputations every 200 iterations across two separate chains. We set the burn-in 

periods conservatively to 20,000 after inspecting the potential scale reduction factor 

(Gelman & Rubin, 1992) diagnostic from preliminary runs; the inverse Wishart priors 
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required a 5,000 iteration burn-in period, whereas the separation prior required closer 

to 10,000 initial cycles. We used Blimp 3 (Keller & Enders, 2021) to implement Bayesian 

estimation and model-based multiple imputation. After creating the multiple 

imputations, we centered the leader–member exchange scores at the imputed latent 

group means and centered all other variables at the grand means of the filled-in data 

sets. Finally, we used the R package mitml (Grund, Robitzsch, et al., 2021) to fit the 

random coefficient model to each data set and pool the resulting estimates and standard 

errors. The raw data and analysis scripts for the joint and sequential specifications are 

available on GitHub (https://github.com/blimp-stats/FACTORED-REGRESSION-WITH-CROSS-

LEVEL-INTERACTIONS). In addition, Section D of the online supplemental shows a Blimp 

script that implements the separation prior. The script also generates multiple 

imputations for a frequentist analysis along with estimates of the latent group means 

needed for centering. Interested readers can consult Keller and Enders (2022) for 

additional details about specific commands. 

Table 6 gives the posterior summaries for the three Bayesian analyses and 

factored regression multiple imputation results from the separation prior. The first two 

columns are inverse Wishart priors: the prior in the first column should be more 

informative because it adds to the data's degrees of freedom, whereas the prior in the 

second column should be less informative because it subtracts from it. Consistent with 

the simulation results, the choice of prior distribution had a noticeable impact on 

intercept and slope variances; differences in the intercept variance were between 

approximately 0.35 and 1.35 posterior standard deviation units, and differences in the 

slope variance were between 0.26 and 0.78 standard deviation units. It is important to 
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highlight that this example most aligns with the ICC = .10 and nj = 5 conditions, a 

situation where none of the priors and estimators were optimal.  

With a larger number of level-1 units, our simulation results would predict that 

the separation prior should produce superior estimates of the intercept and slope 

variance, but our results say much less about which method is "best" with this 

particular configuration. From a practical perspective, a researcher might approach this 

uncertainty by presenting a sensitivity analysis that considers the stability of the 

model's conclusions across different prior distributions. To facilitate such a comparison, 

Table 6 also reports Rights and Sterba (2019) effect sizes for the fixed effects, random 

intercepts, and random slopes; Blimp automatically reports these variance explained 

statistics with a Wishart prior, and the code in Section D of the online supplemental 

illustrates how to obtain these quantities with the separation prior. As one might expect, 

the variance explained by the fixed effects was virtually unaffected by the choice of 

prior, but the R2 statistics for the random effects were more variable; as a proportion of 

the total model-implied outcome variance, the random intercept variance estimates 

ranged from R2 = .013 to .038, and the random slope effect sizes ranged from R2 = .031 to 

.081. Gauging whether the effect size differences are meaningfully is somewhat 

subjective, but we believe these quantities convey the impact of the prior distributions 

on a more practical metric than the raw variance components. Online supplemental 

documents are an ideal vehicle for reporting alternate sets of results like those in Table 

6. 

Discussion 

A large body of research supports the use of multiple imputation as a method to 

handle missing data. Despite being a mature methodology, methodologists have only 
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investigated and fine-tuned multiple imputation's ability to handle interactions and 

other nonlinear terms in the last decade. This is usually achieved with some type of 

factored regression specification that factorizes the joint distribution of the analysis 

variables into a primary part representing the analysis model of interest and a 

secondary part representing the distributions of the incomplete predictors. A growing 

body of recent research supports these methods (Bartlett et al., 2015; Enders et al., 2020; 

Erler et al., 2019; Grund, Lüdtke, & Robitzsch, 2021; Lüdtke et al., 2020a; Lüdtke et al., 

2020b; Zhang & Wang, 2017), and our study adds to this growing knowledge base. 

The first two simulations examined ideal circumstances where the model used to 

generate the data matched the true data-generating model. A major contribution of 

these studies is the focus on Bayesian inference with a novel separation strategy that 

imposes unique priors on the random effect variances and their correlation. This 

approach parameterizes the random intercepts and random slopes as correlated 

phantom latent variables following a specification described by Merkle and Rosseel 

(2018, p. 8), but it is conceptually equivalent to other separation priors suggested in the 

literature (Barnard et al., 2000; Liu et al., 2016). Overall, our simulations generally 

supported the separation prior in the multilevel context, as the strategy reduced the bias 

in the variance components relative to inverse Wishart priors. An apparent downside of 

the separation prior is that it systematically underestimates the correlation between the 

random intercepts and slopes, although the mean squared error of this parameter was 

substantially smaller than that of multiple imputation (i.e., Bayesian estimates were 

closer to the true value, on average, despite their bias).  

Another major contribution of the paper was the application of the Yeo–Johnson 

transformation to non-normal predictors. Both Simulations 3 and 4 investigated forms 
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of between-cluster non-normality. Simulation 3 considered the case where the level-1 

predictor's latent group means were non-normally distributed, and Simulation 4 

examined a non-normal level-2 predictor. In Simulation 3, non-normal latent means 

affected the recovery of the interaction slope coefficient, whereas the non-normal 

moderator in Simulation 4 primarily impacted the variable's lower-order slope. We also 

conducted a follow-up to Simulation 4 that considered the Yeo–Johnson transformation, 

but the procedure was ineffective at decreasing bias. We attribute this finding to the fact 

that the level-2 sample size was very small (J = 25 clusters), making it difficult to 

estimate the shape parameter accurately. It is also important to note that the 

transformation was misspecified, as it did not match the true data-generating function. 

Future studies should consider continuous non-normal variables generated via a Yeo–

Johnson transformation. 

Finally, Simulation 5 investigated a misspecification where the level-1 predictor's 

within-cluster residuals were non-normal. This type of non-normality had a rather 

catastrophic impact on the slope variance estimates, which were substantially 

overestimated. However, follow-up simulations revealed that this bias was largely due 

to the missing data process, which culled values from the sparse upper tail of the 

within-cluster distribution, as removing missing values from the distribution's dense 

lower tail dramatically reduced bias. This simulation also investigated the Yeo–Johnson 

transformation and found that it was generally effective, even though it only 

approximated the true data-generating function. This finding is important because it 

suggests that the procedure may hold promise for applied practice where the 

population distribution functions are virtually never known. 
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Considered as a whole, our simulations suggest that there is no reason to prefer 

Bayesian estimation to multiple imputation (or vice versa) because the two procedures 

are effectively equivalent (setting aside their important philosophical differences). That 

said, there may be practical reasons to choose one over the other. For example, Bayesian 

inference is arguably simpler because estimation happens in one stage rather than two, 

as required by multiple imputation. This is an important practical advantage that 

positions Bayesian estimation as a potential replacement for maximum likelihood 

estimation, another single-stage method that is not yet well-suited for these types of 

analysis problems. Although Bayesian estimation readily accommodates auxiliary 

variables as additional endogenous variables in the factored regression specification 

(Keller & Enders, 2022, Chapter 4), one might instead prefer multiple imputation 

because auxiliary variables can simply be added as additional covariates in the 

imputation model and ignored in the subsequent analysis phase (Lüdtke et al., 2020b). 

Frequentist analyses may also be more normative in some disciplines. 

The simulation studies had features that potentially limit their generalizability. 

First, we only investigated an analysis model with one predictor at level-1, one 

predictor at level-2, and a cross-level interaction between the predictors. The basic 

premise of our study could be expanded to other multilevel interaction effects (e.g., a 

within-cluster interaction involving a pair of level-1 variables; a between-cluster 

interaction involving the group means and the level-2 predictor; Preacher et al., 2010), 

nonlinear polynomials (e.g., quadratic models), or even combinations of both. Second, 

we focused on an analysis model where the dependent variable was complete and 

normally distributed. Future simulations could investigate categorical outcomes, as the 

factored regression procedure readily accommodates binary, ordinal, multicategorical, 
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and even count outcomes. Third, future studies could consider different forms of 

misspecifications (e.g., nonlinear relationships among predictors) and different types of 

missing data mechanisms. Simulation 5 underscores the importance of this future 

direction, as the deletion process we used produced a worse-case scenario that is 

virtually impossible to model correctly. Finally, future studies are needed that 

thoroughly investigate the application of the Yeo–Johnson transformation to multilevel 

models. Our study provided an initial foray into this topic, but more research is needed. 

In conclusion, the simulation results illustrate the flexibility and limitations of the 

factored regression specification for multilevel data with cross-level interaction effects. 

The five simulations illustrated instances where the method was largely robust to 

model misspecifications and revealed situations where it was vulnerable. At its worst, 

factored regression was still far superior to ad hoc methods such as just-another-

variable imputation (see online supplemental material). Consistent with the growing 

body of literature, this study offers broad support for factored regression models, but 

additional research is needed to understand its behavior, especially with non-normal 

continuous variables and the promising Yeo–Johnson transformation. 
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Tables

Table 1
Comparing the Posterior Medians Based on Priors with 30% Missing Data Rate for Simulation 1

L1 = 5; L2 = 50 L1 = 15; L2 = 50 L1 = 25; L2 = 50
ICC W1 W2 SEP W1 W2 SEP W1 W2 SEP
0.1 —0 ≠1.71 ≠0.57 ≠1.29 ≠1.19 ≠0.60 ≠0.97 ≠0.91 ≠0.47 ≠0.74

—1 ≠5.74 ≠7.23 ≠5.60 ≠0.50 ≠0.98 ≠0.96 0.01 ≠0.47 ≠0.63
—2 6.14 ≠10.06 ≠2.50 ≠5.21 ≠13.89 ≠7.26 ≠5.40 ≠10.04 ≠3.56
—3 ≠7.17 ≠15.15 ≠9.96 ≠1.99 ≠6.88 ≠3.20 ≠1.44 ≠5.27 ≠2.64
‡2

u0 ≠55.16 73.83 1.80 ≠22.98 28.61 1.66 ≠13.35 22.08 2.06
‡2

u1 ≠46.34 150.54 31.81 ≠34.72 45.68 3.67 ≠24.17 32.10 4.12
‡u0,u1 ≠70.03 ≠26.29 ≠79.73 ≠7.72 11.40 ≠46.06 5.08 19.40 ≠30.46
‡2

e 5.96 ≠2.55 ≠0.30 2.71 0.28 0.46 1.39 0.28 0.19
0.5 —0 ≠1.31 ≠0.17 ≠0.89 ≠0.99 ≠0.34 ≠0.80 ≠0.95 ≠0.43 ≠0.83

—1 ≠4.77 ≠6.31 ≠5.59 ≠0.85 ≠1.22 ≠2.02 ≠0.25 ≠0.42 ≠1.06
—2 ≠7.49 ≠14.93 ≠9.78 ≠5.16 ≠10.60 ≠4.66 ≠5.52 ≠9.25 ≠3.45
—3 ≠8.15 ≠14.49 ≠7.78 ≠2.89 ≠7.97 ≠3.88 ≠2.64 ≠7.27 ≠3.89
‡2

u0 ≠5.54 18.72 2.70 ≠1.12 16.82 3.34 ≠0.58 16.86 3.89
‡2

u1 ≠43.29 145.05 28.64 ≠44.37 46.06 0.75 ≠26.78 32.53 2.06
‡u0,u1 ≠30.03 ≠8.50 ≠60.09 ≠6.90 14.38 ≠34.67 ≠6.18 13.81 ≠26.67
‡2

e 4.50 ≠0.46 0.07 2.28 0.24 0.49 0.99 0.10 0.13

L1 = 15; L2 = 25 L1 = 15; L2 = 50 L1 = 15; L2 = 200
ICC W1 W2 SEP W1 W2 SEP W1 W2 SEP
0.1 —0 ≠1.93 ≠0.82 ≠1.53 ≠1.19 ≠0.60 ≠0.97 ≠0.11 0.03 ≠0.07

—1 ≠1.09 ≠1.69 ≠1.12 ≠0.50 ≠0.98 ≠0.96 0.27 ≠0.24 ≠0.27
—2 ≠6.63 ≠20.61 ≠11.32 ≠5.21 ≠13.89 ≠7.26 ≠2.85 ≠3.99 ≠1.84
—3 ≠5.43 ≠12.29 ≠6.67 ≠1.99 ≠6.88 ≠3.20 ≠0.02 ≠1.46 ≠0.55
‡2

u0 ≠35.20 73.85 4.25 ≠22.98 28.61 1.66 ≠5.78 6.06 0.49
‡2

u1 ≠38.79 117.92 11.26 ≠34.72 45.68 3.67 ≠15.42 8.72 0.29
‡u0,u1 ≠32.83 28.12 ≠63.38 ≠7.72 11.40 ≠46.06 8.15 5.08 ≠14.57
‡2

e 2.88 ≠0.01 0.33 2.71 0.28 0.46 0.86 0.10 0.09
0.5 —0 ≠1.92 ≠0.57 ≠1.37 ≠0.99 ≠0.34 ≠0.80 ≠0.07 0.11 ≠0.04

—1 ≠2.43 ≠2.86 ≠3.28 ≠0.85 ≠1.22 ≠2.02 0.10 ≠0.03 ≠0.37
—2 ≠4.55 ≠12.80 ≠4.76 ≠5.16 ≠10.60 ≠4.66 ≠0.43 ≠1.74 0.01
—3 ≠7.47 ≠13.93 ≠7.38 ≠2.89 ≠7.97 ≠3.88 0.96 ≠0.64 0.48
‡2

u0 ≠5.23 41.92 7.63 ≠1.12 16.82 3.34 ≠0.05 3.84 0.85
‡2

u1 ≠44.45 117.75 6.93 ≠44.37 46.06 0.75 ≠14.15 9.71 0.10
‡u0,u1 ≠18.46 24.99 ≠53.71 ≠6.90 14.38 ≠34.67 ≠1.62 3.55 ≠10.93
‡2

e 2.74 0.49 0.71 2.28 0.24 0.49 0.66 0.13 0.18

Note: The values are percent bias (Equation 18) for all parameters in Simulation 1 and compare the
inverse Wishart with df = d + 1 prior (W1), the inverse Wishart with df = d ≠ 1 prior (W2), and the
separation prior (SEP). The top half of the table varies level-1 sample size holding level-2 sample size at
50, and the bottom half of the table varies level-2 sample size, holding level-1 at 15. Percent bias values
with a magnitude greater than 10% are bolded.
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Table 2
Percent Bias by Level-1 Sample Sizes for Regression Slopes with 30% Missing Data Rate

L1 = 5; L2 = 50 L1 = 15; L2 = 50 L1 = 25; L2 = 50
ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 —1 ≠0.93 ≠5.65 ≠5.60 0.06 ≠0.95 ≠0.96 ≠0.19 ≠0.69 ≠0.63
—2 4.08 ≠2.11 ≠2.50 ≠3.24 ≠7.43 ≠7.26 ≠0.97 ≠3.74 ≠3.56
—3 ≠1.91 ≠9.73 ≠9.96 ≠0.52 ≠2.84 ≠3.20 0.27 ≠3.02 ≠2.64

0.5 —1 ≠0.03 ≠5.63 ≠5.59 ≠0.20 ≠2.04 ≠2.02 ≠0.22 ≠1.11 ≠1.06
—2 ≠1.25 ≠9.10 ≠9.78 ≠0.85 ≠4.75 ≠4.66 0.22 ≠3.74 ≠3.45
—3 0.82 ≠8.26 ≠7.78 ≠0.90 ≠4.10 ≠3.88 ≠1.72 ≠3.74 ≠3.89

Sim 2 0.1 —1 0.50 ≠3.23 ≠3.27 0.00 ≠1.93 ≠1.94 0.38 ≠0.98 ≠0.95
50/50 —2 8.81 ≠12.89 ≠11.70 0.67 ≠19.34 ≠19.26 ≠0.78 ≠18.82 ≠18.83

—3 ≠0.04 0.25 ≠0.22 ≠0.36 ≠1.17 ≠1.10 ≠0.71 ≠1.29 ≠1.24
0.5 —1 ≠0.31 ≠4.47 ≠4.50 0.15 ≠1.78 ≠1.78 0.08 ≠1.62 ≠1.58

—2 ≠0.51 ≠12.61 ≠13.48 ≠1.24 ≠14.12 ≠13.69 1.03 ≠10.53 ≠11.13
—3 0.26 ≠0.32 ≠0.15 ≠0.35 ≠1.25 ≠0.98 0.08 0.34 0.25

Sim 2 0.1 —1 1.16 ≠2.55 ≠2.53 ≠0.31 ≠1.56 ≠1.56 0.35 ≠0.56 ≠0.57
80/20 —2 8.79 ≠23.20 ≠21.21 ≠3.47 ≠34.49 ≠33.82 ≠0.51 ≠29.41 ≠29.33

—3 ≠7.13 ≠39.49 ≠38.88 2.65 ≠15.10 ≠15.50 ≠2.70 ≠15.83 ≠13.80
0.5 —1 ≠0.30 ≠5.33 ≠5.45 0.09 ≠1.78 ≠1.77 0.36 ≠1.24 ≠1.25

—2 1.17 ≠20.03 ≠20.12 0.22 ≠21.94 ≠21.66 0.39 ≠18.87 ≠18.64
—3 ≠1.44 ≠17.07 ≠15.60 ≠0.97 ≠7.70 ≠7.66 ≠1.42 ≠3.74 ≠3.55

Sim 3 0.1 —1 ≠0.11 ≠3.45 ≠3.13 ≠0.06 ≠1.06 ≠0.93 0.03 0.29 0.38
—2 0.86 ≠9.91 ≠9.41 0.53 0.12 ≠0.37 ≠1.45 ≠3.40 ≠3.20
—3 1.01 ≠11.62 ≠11.74 0.71 ≠5.22 ≠5.33 0.37 ≠3.61 ≠3.57

0.5 —1 0.42 ≠5.88 ≠5.73 ≠0.15 ≠2.42 ≠2.49 ≠0.14 ≠1.53 ≠1.59
—2 ≠1.05 ≠3.70 ≠3.42 2.03 ≠4.05 ≠3.79 ≠1.99 ≠7.19 ≠6.88
—3 ≠2.07 ≠52.24 ≠51.65 2.85 ≠15.97 ≠17.67 ≠3.31 ≠24.72 ≠24.20

Sim 4 0.1 —1 ≠0.50 ≠4.77 ≠4.73 0.10 ≠0.58 ≠0.52 ≠0.08 0.22 0.29
—2 2.51 ≠14.01 ≠15.00 ≠1.31 ≠9.07 ≠8.94 ≠0.40 ≠5.40 ≠4.95
—3 ≠1.84 ≠12.85 ≠11.70 0.18 ≠3.19 ≠3.16 ≠0.45 ≠2.99 ≠2.98

0.5 —1 0.05 ≠4.92 ≠4.97 ≠0.56 ≠1.96 ≠1.96 0.26 0.42 0.46
—2 0.87 ≠5.52 ≠5.87 1.82 ≠1.37 ≠1.62 ≠0.78 ≠2.88 ≠3.09
—3 0.11 ≠4.49 ≠5.00 ≠0.88 ≠1.73 ≠1.72 0.08 1.32 0.96

Sim 5 0.1 —1 0.47 6.89 6.74 ≠0.27 12.21 12.12 ≠0.41 13.09 13.02
—2 0.13 ≠14.32 ≠14.81 0.25 ≠3.83 ≠3.67 ≠1.00 ≠3.88 ≠4.54
—3 ≠3.41 3.33 3.64 2.17 31.36 31.30 0.02 29.34 29.31

0.5 —1 0.01 ≠1.13 ≠1.23 ≠0.07 4.78 4.54 0.19 7.34 7.22
—2 ≠1.09 ≠10.40 ≠10.45 ≠0.35 ≠9.53 ≠9.40 0.26 ≠8.96 ≠8.63
—3 ≠1.76 2.08 2.27 ≠0.21 17.52 17.89 ≠0.43 18.80 18.52

Sim 5 0.1 —1 ≠0.30 1.00 1.63 0.23 ≠0.75 ≠0.54 0.15 ≠0.75 ≠0.61
Reversed —2 1.54 ≠1.73 ≠1.74 1.54 2.81 2.68 0.68 4.04 4.06

—3 ≠0.53 ≠13.69 ≠13.41 0.29 ≠12.41 ≠12.19 ≠0.19 ≠12.84 ≠12.82
0.5 —1 0.31 3.80 4.09 0.26 3.07 3.17 0.27 3.08 3.15

—2 ≠0.03 ≠4.35 ≠4.34 0.48 ≠1.92 ≠2.03 ≠0.63 ≠2.76 ≠2.93
—3 0.02 ≠7.26 ≠7.49 ≠0.32 ≠9.90 ≠9.88 0.14 ≠10.36 ≠10.24

Note: The values are percent bias (Equation 18) for the regression coefficients as a function of level-1
sample size while holding level-2 sample size constant for complete data estimates (CMP), bayesian es-
timation (BAY), and factored regression imputation (IMP). Percent bias values with a magnitude greater
than 10% are bolded.
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Table 3
Percent Bias by Level-2 Sample Sizes for Regression Slopes with 30% Missing Data Rate

L1 = 15; L2 = 25 L1 = 15; L2 = 50 L1 = 15; L2 = 200
ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 —1 0.28 ≠1.15 ≠1.12 0.06 ≠0.95 ≠0.96 0.06 ≠0.25 ≠0.27
—2 ≠0.12 ≠10.67 ≠11.32 ≠3.24 ≠7.43 ≠7.26 ≠1.13 ≠1.80 ≠1.84
—3 0.31 ≠6.65 ≠6.67 ≠0.52 ≠2.84 ≠3.20 0.21 ≠0.53 ≠0.55

0.5 —1 0.03 ≠3.27 ≠3.28 ≠0.20 ≠2.04 ≠2.02 0.35 ≠0.39 ≠0.37
—2 1.55 ≠4.42 ≠4.76 ≠0.85 ≠4.75 ≠4.66 0.12 0.01 0.01
—3 ≠0.70 ≠6.86 ≠7.38 ≠0.90 ≠4.10 ≠3.88 0.78 0.55 0.48

Sim 2 0.1 —1 0.09 ≠2.85 ≠2.82 0.00 ≠1.93 ≠1.94 0.02 ≠0.50 ≠0.49
50/50 —2 ≠2.45 ≠34.46 ≠34.55 0.67 ≠19.34 ≠19.26 0.22 ≠7.98 ≠8.06

—3 0.32 0.26 0.06 ≠0.36 ≠1.17 ≠1.10 0.00 ≠0.70 ≠0.74
0.5 —1 0.05 ≠3.35 ≠3.53 0.15 ≠1.78 ≠1.78 0.01 ≠0.28 ≠0.30

—2 ≠1.93 ≠21.54 ≠22.93 ≠1.24 ≠14.12 ≠13.69 1.23 ≠2.87 ≠2.91
—3 ≠0.01 0.27 0.57 ≠0.35 ≠1.25 ≠0.98 0.25 ≠0.45 ≠0.39

Sim 2 0.1 —1 0.07 ≠2.02 ≠2.04 ≠0.31 ≠1.56 ≠1.56 0.05 ≠0.24 ≠0.24
80/20 —2 ≠5.24 ≠46.66 ≠45.80 ≠3.47 ≠34.49 ≠33.82 ≠0.11 ≠11.15 ≠10.83

—3 2.64 ≠22.89 ≠23.14 2.65 ≠15.10 ≠15.50 ≠0.27 ≠8.50 ≠8.01
0.5 —1 0.48 ≠3.41 ≠3.34 0.09 ≠1.78 ≠1.77 0.15 ≠0.35 ≠0.39

—2 ≠7.39 ≠38.77 ≠37.67 0.22 ≠21.94 ≠21.66 1.07 ≠6.26 ≠6.39
—3 ≠3.01 ≠6.27 ≠6.42 ≠0.97 ≠7.70 ≠7.66 ≠0.14 ≠1.45 ≠1.12

Sim 3 0.1 —1 ≠0.91 ≠2.82 ≠2.64 ≠0.06 ≠1.06 ≠0.93 0.01 0.53 0.59
—2 2.09 ≠10.49 ≠10.26 0.53 0.12 ≠0.37 0.26 7.57 7.56
—3 1.60 ≠9.38 ≠8.89 0.71 ≠5.22 ≠5.33 0.10 2.49 2.39

0.5 —1 ≠0.43 ≠4.71 ≠4.74 ≠0.15 ≠2.42 ≠2.49 0.23 ≠0.03 ≠0.04
—2 1.76 ≠11.29 ≠11.36 2.03 ≠4.05 ≠3.79 ≠0.10 4.67 4.57
—3 1.96 ≠34.66 ≠36.51 2.85 ≠15.97 ≠17.67 2.26 ≠7.33 ≠7.61

Sim 4 0.1 —1 ≠0.27 ≠2.00 ≠2.23 0.10 ≠0.58 ≠0.52 0.27 0.39 0.41
—2 ≠0.93 ≠14.00 ≠14.27 ≠1.31 ≠9.07 ≠8.94 0.54 0.94 0.80
—3 0.82 ≠6.61 ≠7.33 0.18 ≠3.19 ≠3.16 0.29 ≠1.41 ≠1.46

0.5 —1 ≠0.13 ≠3.35 ≠3.31 ≠0.56 ≠1.96 ≠1.96 0.17 0.45 0.39
—2 ≠0.62 ≠6.62 ≠6.60 1.82 ≠1.37 ≠1.62 ≠0.75 0.46 0.68
—3 0.34 ≠6.24 ≠6.49 ≠0.88 ≠1.73 ≠1.72 ≠0.57 1.24 1.41

Sim 5 0.1 —1 ≠0.60 7.08 6.88 ≠0.27 12.21 12.12 ≠0.11 16.20 16.17
—2 2.26 ≠5.39 ≠4.82 0.25 ≠3.83 ≠3.67 0.37 ≠2.30 ≠2.51
—3 ≠0.96 15.93 16.57 2.17 31.36 31.30 0.42 31.69 31.95

0.5 —1 0.15 2.16 1.96 ≠0.07 4.78 4.54 ≠0.05 8.17 8.10
—2 ≠1.61 ≠14.79 ≠14.64 ≠0.35 ≠9.53 ≠9.40 ≠0.62 ≠6.77 ≠6.71
—3 0.65 11.10 11.43 ≠0.21 17.52 17.89 ≠0.08 21.93 21.82

Sim 5 0.1 —1 ≠0.73 ≠0.89 ≠0.67 0.23 ≠0.75 ≠0.54 0.05 ≠1.14 ≠1.02
Reversed —2 0.88 ≠1.34 ≠1.17 1.54 2.81 2.68 0.44 4.66 4.58

—3 ≠0.30 ≠13.88 ≠13.83 0.29 ≠12.41 ≠12.19 ≠0.29 ≠12.43 ≠12.31
0.5 —1 ≠0.02 3.50 3.59 0.26 3.07 3.17 0.04 2.81 2.83

—2 0.10 ≠4.68 ≠4.64 0.48 ≠1.92 ≠2.03 0.17 ≠0.55 ≠0.51
—3 ≠1.64 ≠8.53 ≠8.34 ≠0.32 ≠9.90 ≠9.88 0.43 ≠9.70 ≠9.62

Note: The values are percent bias (Equation 18) for the regression coefficients as a function of level-2
sample size while holding level-1 sample size constant for complete data estimates (CMP), bayesian es-
timation (BAY), and factored regression imputation (IMP). Percent bias values with a magnitude greater
than 10% are bolded.
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Table 4
Percent Bias by Level-1 Sample Sizes for Variance Parameters with 30% Missing Data Rate

L1 = 5; L2 = 50 L1 = 15; L2 = 50 L1 = 25; L2 = 50
ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 ‡2
u0 7.82 ≠1.36 1.80 0.42 ≠2.25 1.66 ≠0.04 ≠2.13 2.06

‡2
u1 9.20 22.74 31.81 ≠0.98 ≠0.25 3.67 0.66 0.06 4.12

‡u0,u1 ≠3.10 ≠40.13 ≠79.73 ≠1.55 ≠13.89 ≠46.06 ≠0.84 ≠6.21 ≠30.46
0.5 ‡2

u0 ≠0.45 ≠2.18 2.70 ≠0.31 ≠1.31 3.34 0.19 ≠0.59 3.89
‡2

u1 5.55 20.07 28.64 ≠0.83 ≠1.97 0.75 0.40 ≠0.92 2.06
‡u0,u1 ≠0.44 ≠30.06 ≠60.09 0.46 ≠12.00 ≠34.67 ≠2.94 ≠10.08 ≠26.67

Sim 2 0.1 ‡2
u0 6.21 ≠3.96 ≠1.77 ≠0.38 ≠2.97 0.56 ≠0.01 ≠1.49 2.67

50/50 ‡2
u1 8.59 21.46 28.70 ≠1.66 ≠2.22 0.98 ≠0.53 ≠0.67 3.13

‡u0,u1 ≠8.22 ≠54.42 ≠85.39 ≠0.23 ≠29.30 ≠56.05 ≠0.77 ≠21.74 ≠41.83
0.5 ‡2

u0 ≠1.31 ≠3.17 1.64 0.34 ≠0.26 4.40 0.35 ≠0.22 4.30
‡2

u1 4.44 15.08 21.05 0.44 ≠0.29 1.13 1.29 1.42 3.88
‡u0,u1 ≠0.34 ≠46.70 ≠70.22 2.58 ≠23.53 ≠42.47 1.96 ≠16.88 ≠32.61

Sim 2 0.1 ‡2
u0 6.40 ≠3.12 ≠1.46 ≠0.42 ≠3.12 0.46 0.16 ≠2.02 1.89

80/20 ‡2
u1 10.41 19.64 27.95 ≠1.42 ≠3.91 ≠0.46 ≠0.68 ≠2.75 0.88

‡u0,u1 ≠5.45 ≠49.13 ≠82.92 0.09 ≠17.83 ≠49.76 ≠1.19 ≠14.19 ≠36.92
0.5 ‡2

u0 ≠1.07 ≠3.99 0.75 0.25 ≠0.61 3.89 0.35 ≠1.07 3.43
‡2

u1 5.12 13.60 19.27 0.76 ≠2.07 ≠0.71 1.19 ≠1.61 1.39
‡u0,u1 1.00 ≠41.83 ≠68.65 2.56 ≠17.53 ≠39.25 1.89 ≠13.51 ≠30.09

Sim 3 0.1 ‡2
u0 9.05 3.11 6.99 0.55 ≠1.49 2.08 ≠0.60 ≠1.82 2.41

‡2
u1 9.25 22.17 30.68 0.16 0.04 4.35 0.85 ≠0.59 3.50

‡u0,u1 ≠6.94 ≠33.69 ≠78.30 ≠1.39 ≠11.78 ≠46.18 0.67 ≠4.36 ≠29.92
0.5 ‡2

u0 1.01 1.05 5.50 0.27 1.51 6.00 ≠0.11 0.40 4.73
‡2

u1 9.23 26.57 35.47 0.68 ≠0.90 1.95 ≠1.01 ≠4.40 ≠1.81
‡u0,u1 4.29 ≠28.20 ≠57.91 1.96 ≠11.85 ≠34.70 ≠0.91 ≠9.98 ≠28.22

Sim 4 0.1 ‡2
u0 9.22 2.94 5.79 0.86 ≠1.62 2.53 ≠0.57 ≠1.27 3.12

‡2
u1 11.00 28.78 35.85 ≠0.15 3.29 7.66 0.41 6.52 11.10

‡u0,u1 ≠8.88 ≠40.13 ≠78.28 ≠0.81 ≠5.47 ≠38.74 1.08 2.89 ≠22.79
0.5 ‡2

u0 ≠0.92 ≠1.28 3.49 ≠0.05 0.17 5.01 0.83 1.44 6.03
‡2

u1 7.88 28.86 37.96 ≠0.73 2.73 5.54 ≠0.96 5.06 8.82
‡u0,u1 0.28 ≠25.15 ≠56.27 ≠3.47 ≠7.51 ≠30.34 1.41 3.23 ≠15.24

Sim 5 0.1 ‡2
u0 3.17 ≠7.39 ≠1.27 1.73 ≠3.98 ≠0.07 ≠0.17 ≠2.33 2.48

‡2
u1 7.71 223.33 245.80 2.43 148.17 161.26 ≠0.68 121.42 133.39

‡u0,u1 ≠10.92 68.50 ≠22.70 1.78 75.41 18.74 0.04 76.54 36.27
0.5 ‡2

u0 ≠0.50 ≠5.46 ≠1.01 0.62 ≠2.73 1.64 ≠0.43 ≠3.20 1.11
‡2

u1 9.63 110.63 127.61 1.02 77.82 84.33 0.63 69.30 75.51
‡u0,u1 ≠1.01 ≠16.68 ≠48.27 2.14 6.58 ≠17.64 ≠2.15 12.14 ≠8.45

Sim 5 0.1 ‡2
u0 0.60 1.42 4.21 ≠0.30 ≠0.08 3.90 ≠0.89 ≠0.32 3.90

Reversed ‡2
u1 7.04 0.55 14.58 0.22 ≠19.40 ≠14.30 ≠0.48 ≠22.25 ≠17.79

‡u0,u1 ≠7.21 24.20 ≠50.38 0.09 14.05 ≠24.98 ≠0.79 11.89 ≠14.61
0.5 ‡2

u0 ≠0.78 ≠0.09 4.20 0.97 3.06 7.68 ≠0.63 1.13 5.64
‡2

u1 7.91 1.77 14.36 0.42 ≠16.06 ≠11.70 ≠0.10 ≠17.73 ≠13.78
‡u0,u1 0.91 12.31 ≠30.77 ≠0.91 9.48 ≠14.55 0.23 10.34 ≠8.14

Note: The values are percent bias (Equation 18) for the random effect variance parameter as a function
of level-1 sample size while holding level-2 sample size constant for complete data estimates (CMP),
bayesian estimation (BAY), and factored regression imputation (IMP). Percent bias values with a magni-
tude greater than 10% are bolded.
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Table 5
Percent Bias by Level-2 Sample Sizes for Variance Parameters with 30% Missing Data Rate

L1 = 15; L2 = 25 L1 = 15; L2 = 50 L1 = 15; L2 = 200
ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 ‡2
u0 1.36 ≠3.68 4.25 0.42 ≠2.25 1.66 0.18 ≠0.46 0.49

‡2
u1 1.22 2.32 11.26 ≠0.98 ≠0.25 3.67 ≠0.65 ≠0.71 0.29

‡u0,u1 ≠4.98 ≠21.74 ≠63.38 ≠1.55 ≠13.89 ≠46.06 0.59 ≠2.56 ≠14.57
0.5 ‡2

u0 ≠0.46 ≠2.20 7.63 ≠0.31 ≠1.31 3.34 0.06 ≠0.26 0.85
‡2

u1 2.44 ≠0.69 6.93 ≠0.83 ≠1.97 0.75 0.55 ≠0.28 0.10
‡u0,u1 1.24 ≠22.35 ≠53.71 0.46 ≠12.00 ≠34.67 1.08 ≠3.99 ≠10.93

Sim 2 0.1 ‡2
u0 0.76 ≠3.69 3.68 ≠0.38 ≠2.97 0.56 ≠0.26 ≠0.63 0.25

50/50 ‡2
u1 2.29 2.57 11.07 ≠1.66 ≠2.22 0.98 ≠0.26 ≠1.00 ≠0.18

‡u0,u1 ≠3.90 ≠41.23 ≠73.50 ≠0.23 ≠29.30 ≠56.05 0.59 ≠10.21 ≠20.99
0.5 ‡2

u0 ≠0.92 ≠2.72 7.18 0.34 ≠0.26 4.40 0.38 0.37 1.48
‡2

u1 ≠0.76 ≠0.84 4.91 0.44 ≠0.29 1.13 0.57 ≠0.37 ≠0.25
‡u0,u1 ≠2.55 ≠39.59 ≠65.18 2.58 ≠23.53 ≠42.47 0.08 ≠7.52 ≠14.34

Sim 2 0.1 ‡2
u0 1.85 ≠2.03 5.44 ≠0.42 ≠3.12 0.46 ≠0.23 ≠0.73 0.12

80/20 ‡2
u1 2.81 0.30 8.86 ≠1.42 ≠3.91 ≠0.46 ≠0.24 ≠1.13 ≠0.35

‡u0,u1 ≠0.88 ≠27.59 ≠67.43 0.09 ≠17.83 ≠49.76 0.53 ≠6.04 ≠17.26
0.5 ‡2

u0 ≠0.80 ≠2.98 6.72 0.25 ≠0.61 3.89 0.39 ≠0.03 1.08
‡2

u1 ≠0.80 ≠2.86 2.11 0.76 ≠2.07 ≠0.71 0.58 ≠1.04 ≠0.74
‡u0,u1 ≠1.29 ≠34.59 ≠61.76 2.56 ≠17.53 ≠39.25 0.08 ≠6.40 ≠13.60

Sim 3 0.1 ‡2
u0 2.81 ≠2.94 4.63 0.55 ≠1.49 2.08 ≠0.10 1.47 2.40

‡2
u1 2.04 1.88 10.41 0.16 0.04 4.35 0.29 1.75 2.87

‡u0,u1 ≠1.48 ≠17.94 ≠63.52 ≠1.39 ≠11.78 ≠46.18 0.86 2.46 ≠10.50
0.5 ‡2

u0 0.66 0.48 10.14 0.27 1.51 6.00 0.12 1.78 2.84
‡2

u1 1.31 ≠1.58 4.18 0.68 ≠0.90 1.95 0.69 1.97 2.44
‡u0,u1 0.72 ≠25.34 ≠57.16 1.96 ≠11.85 ≠34.70 0.16 2.38 ≠5.76

Sim 4 0.1 ‡2
u0 0.75 ≠4.32 3.31 0.86 ≠1.62 2.53 0.68 0.31 1.33

‡2
u1 1.50 7.77 17.32 ≠0.15 3.29 7.66 ≠0.49 6.31 7.41

‡u0,u1 ≠0.15 ≠16.93 ≠59.89 ≠0.81 ≠5.47 ≠38.74 0.01 4.28 ≠7.93
0.5 ‡2

u0 ≠0.05 ≠0.94 9.03 ≠0.05 0.17 5.01 0.15 1.15 2.27
‡2

u1 2.10 6.51 14.63 ≠0.73 2.73 5.54 0.39 6.90 7.58
‡u0,u1 3.00 ≠14.12 ≠47.28 ≠3.47 ≠7.51 ≠30.34 0.35 6.58 ≠1.35

Sim 5 0.1 ‡2
u0 ≠0.71 ≠8.08 ≠0.63 1.73 ≠3.98 ≠0.07 0.63 ≠0.92 0.51

‡2
u1 3.94 150.32 174.09 2.43 148.17 161.26 0.56 138.54 142.54

‡u0,u1 ≠0.91 58.82 ≠16.59 1.78 75.41 18.74 0.77 99.54 79.53
0.5 ‡2

u0 ≠1.68 ≠5.46 3.81 0.62 ≠2.73 1.64 0.28 ≠2.77 ≠1.77
‡2

u1 3.36 90.37 106.83 1.02 77.82 84.33 0.30 74.43 75.84
‡u0,u1 0.64 ≠6.76 ≠42.94 2.14 6.58 ≠17.64 1.36 24.10 15.68

Sim 5 0.1 ‡2
u0 0.97 ≠1.67 6.01 ≠0.30 ≠0.08 3.90 0.36 4.58 5.86

Reversed ‡2
u1 0.90 ≠17.45 ≠7.62 0.22 ≠19.40 ≠14.30 0.51 ≠20.39 ≠18.51

‡u0,u1 1.79 9.16 ≠44.36 0.09 14.05 ≠24.98 2.18 26.66 12.73
0.5 ‡2

u0 ≠0.17 2.62 12.24 0.97 3.06 7.68 ≠0.06 1.62 2.68
‡2

u1 0.38 ≠16.02 ≠7.58 0.42 ≠16.06 ≠11.70 0.59 ≠16.36 ≠15.24
‡u0,u1 ≠6.38 2.95 ≠33.91 ≠0.91 9.48 ≠14.55 0.96 14.29 6.94

Note: The values are percent bias (Equation 18) for the random effect variance parameter as a function
of level-2 sample size while holding level-1 sample size constant for complete data estimates (CMP),
bayesian estimation (BAY), and factored regression imputation (IMP). Percent bias values with a magni-
tude greater than 10% are bolded.
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Table 6 

Bayesian and Multiple Imputation Results from the Real Data Analysis Example 

  Bayesian Prior Specification   

  Wishart 1 Wishart 2 Separation  Imputation 

Parameter Med. SD Med. SD Med. SD  Est. SE 

Intercept !! 26.78 0.84 26.73 0.87 26.77 0.83  26.74 0.86 

LMXw !" 0.66 0.08 0.66 0.08 0.66 0.08  0.66 0.08 

LMXb !# 0.11 0.34 0.15 0.31 0.12 0.32  0.08 0.34 

Climate !$ 0.20 0.06 0.20 0.06 0.20 0.06  0.20 0.05 

LMXw × Climate !% 0.04 0.02 0.04 0.02 0.04 0.02  0.04 0.02 

LMXb × Climate !& –0.05 0.08 –0.03 0.07 –0.05 0.08  –0.06 0.08 

Male code !' 1.70 0.33 1.70 0.33 1.72 0.33  1.69 0.33 

Cohesion !( 0.21 0.16 0.20 0.17 0.21 0.16  0.22 0.17 

Intercept Var. ")!#  0.39 0.30 0.81 0.54 0.28 0.24  0.42 — 

Covariance ")!)" –0.04 0.10 –0.07 0.15 0.002 0.06  -0.06 — 

Slope Var. ")"#  0.20 0.08 0.19 0.09 0.22 0.07  0.19 — 

Residual Var. "*# 11.96 0.86 12.01 0.90 12.07 0.88  12.05 — 

Rights and Sterba (2019) R2 Effect Sizes 

Fixed effects # .310 .038 .304 .039 .301 .039  .305 — 

Intercept Var. ")!#  .019 .014 .038 .025 .013 .011  .021 — 

Slope Var. ")"#  .081 .028 .073 .033 .097 .031  .076 — 

Note. Bayes estimates were based on the posterior median (Med.) and posterior standard 

deviation (SD). Imputation estimates (Est.) and standard errors (SE) were based on 100 

imputations using the separation specification. 
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Figures

Figure 1

Path Diagram of a Multilevel Model With a Separation Prior Specification
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(A) Inferential Model
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(B) Working Model

Note: Panel A is the path diagram of the inferential model corresponding to Equation 4. Panel B is the
path diagram of the working model with a level-2 latent phantom variable (D). Parameters ⁄1, ⁄2, ‡2ú

u0 ,
and ‡2ú

u1 are deterministically computed based on the equations given in the online supplemental material.
Conjoining paths represent the deterministic multiplication of the variables.
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Figure 2

Bias for Bayesian Estimation with Varying Degrees of non-normal Level-2 Moderator
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Note: Trellis plots displaying percentage bias values from Bayesian estimation with a Yeo-Johnson transfor-
mation (⇥) applied to a level-2 predictor with varying degrees of non-normality. Complete-data estimates
(•) from restricted maximum likelihood and Bayesian estimation without the transformation (—) are shown
as a comparison. The within-cluster sample size is 15 and the number of level-2 clusters is 25. Values are
truncated to ±30 bias. The sample sizes were chosen based on the conditions with observed bias.
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Figure 3

Bias for Bayesian Estimation with Varying Degrees of non-normal Level-1 Residual

df = 1 df = 2 df = 5 df = 10 df = 15

ICC
=

0.10
ICC

=
0.50

�30�20�10 0 10 20 30 �30�20�10 0 10 20 30 �30�20�10 0 10 20 30 �30�20�10 0 10 20 30 �30�20�10 0 10 20 30

�0

�1

�2

�3

�2
u0

�2
u1

�u0,u1

�2
e

�0

�1

�2

�3

�2
u0

�2
u1

�u0,u1

�2
e

Percent Relative Bias

Note: Trellis plots displaying percentage bias values from Bayesian estimation with a Yeo-Johnson transfor-
mation (⇥) applied to a level-1 predictor with varying degrees of within-cluster non-normality. Complete-
data estimates (•) from restricted maximum likelihood and Bayesian estimation without the transformation
(—) are shown as a comparison. The within-cluster sample size is 15 and the number of level-2 clusters is
50. The separation prior was used for both methods. Values are truncated to ±30 bias. The sample sizes
were chosen based on the conditions with observed bias.


