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Abstract 

Although immediacy is one of the necessary criteria to show strong evidence of a causal 

relation in SCDs, no inferential statistical tool is currently used to demonstrate it. We propose a 

Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. 

Unlike visual analysis that considers only 3-5 observations in consecutive phases to investigate 

immediacy, this model considers all data points. Immediacy is indicated when the posterior 

distribution of the unknown change-point is narrow around the true value of the change-point. 

This model can accommodate delayed effects. Monte Carlo simulation for a two-phase design 

shows that the posterior standard deviations of the change-points decrease with increase in 

standardized mean difference between phases and decrease in test length. This method is 

illustrated with real data. 
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Bayesian Unknown Change-Point Models to Investigate Immediacy in Single Case Designs 

Single case designs (SCDs) are widely used to test the effects of interventions/treatments 

in education (e.g. Lambert, Cartledge, Hewrad, & Lo, 2006), psychology (e.g. Shih, Chang, 

Wang, & Tseng, 2014), and medicine (as n-of-1 designs, Gabler, Duan, Vohra, & Kravitz, 2011).  

SCDs involve the repeated assessment of an outcome over time (i.e., a time series) within a case 

(which could be a child, a classroom, etc.), during one or more baseline phases and one or more 

treatment phases, where the experimenter controls the timing of the phases (Horner et al. 2005; 

Kratochwill & Levin, 2014).  Thus, SCDs are a form of interrupted time series design.  In many 

areas such as in research on treatments for low incidence disabilities (e.g. Autism spectrum 

disorders, moderate intellectual disability, schizoaffective disorder), it is difficult to assemble a 

substantial number of research subjects or implement a one-size-fits-all intervention. In these 

areas SCDs often provide a substantial part of the research evidence (e.g. Allen, Baker, 

Nuernberger, & Vargo, 2013; Lin & Chang, 2014; Neely, Rispoli, Camargo, Davis, & Boles, 

2013; Shih, C.-H., Chang, Wang, & Tseng, 2014; Shih, C. -H., Chiang, & Shih, C. T., 2015; 

Shih, C.-H., Wang, Chang, & Kung, 2012).  Decades of research experience has led to the 

development of considerable professional consensus on the methodological standards for SCDs. 

One example is the U.S. Department of Education’s What Works Clearinghouse Pilot Standards 

for single-case designs (Kratochwill et al. 2013).  Other examples include standards adopted by 

the American Speech-Language-Hearing Association (2004) and the Council for Exceptional 

Children (CEC) (Cook et al., 2014).  

Because variation over time is a central feature of SCDs, analyses of SCDs have typically 

involved visual analysis of a plot of observations over time.  Such plots are the standard format 

for reporting data and supporting data analysis in SCDs.  Visual analysis has focused on 



establishing that there is a stable pattern or functional relation among the observations in each 

phase and that there is a difference in the pattern of observations in baseline and treatment 

phases.  The baseline phase is the phase where no intervention or treatment is administered. 

Observations are generally taken during this phase to establish a pattern of trend and stability 

before the treatment is administered. This phase is indicated as phase A. The treatment phase is 

the phase where the treatment is administered and is indicated as phase B. Observations in the 

treatment phase are expected to be a function of the treatment effect on the dependent variable. 

The difference between the patterns in treatment and baseline phases is evidence of a treatment 

effect.  Often the differences in the patterns in baseline and treatment phases are striking, making 

treatment effects easy to identify.  However this need not always be the case.  When treatment 

effects are not striking, visual methods may lead to more ambiguous results.  

There has recently been increased interest in developing statistical methods for analyzing 

single case designs to provide additional analytic tools to supplement visual analysis for SCDs 

(e.g. Hedges, Pustejovsky, & Shadish, 2012, 2013; Moeyaert, Ferron, Beretvas, & Van den 

Noortgate, 2013; Shadish, et al, 2015; Shadish, Zuur, & Sullivan, 2014).   These developments 

include applications of multilevel modeling (e.g., Moeyaert, Ferron, Beretvas, & Van den 

Noortgate, 2013), semiparametric regression models (e.g., Shadish, Zuur, & Sullivan, 2014), and 

fully Bayesian analysis approaches (e.g., Rindskopf, 2014).   There have also been attempts to 

develop methods for estimating effect sizes from SCDs that would be comparable to the effect 

sizes estimated from more conventional between-subjects designs (e.g., Hedges, Pustejovsky, & 

Shadish, 2012, 2013). 

According to the WWC (Kratochwill et al., 2013), SCD analyses need to show three 

demonstrations of intervention effect along with no non-effects by (a) documenting the 



consistency of level, trend, and variability within phases, (b) documenting immediacy, 

proportion of overlap of observations across phases, and comparing the observed and predicted 

patterns of the observations, and (c) examining anomalies and external factors. All the 

aforementioned statistical approaches focus on answering questions pertaining to modeling SCD 

data to measure differences in trends and levels, and measures to quantify these differences. 

These measures satisfy one criterion for demonstrating strong evidence of causality in SCDs as 

prescribed by Kratochwill et al. (2013). However, no inferential statistical analytic tool has 

focused on demonstrating immediacy which is another important criterion for demonstrating 

strong evidence of causality in SCDs. 

We propose the Bayesian unknown change-point model to estimate and quantify 

immediacy in SCDs. To that end, the present study investigates the performance of Bayesian 

unknown change-point models in estimating and quantifying immediacy in SCDs with two 

phases. The simulation section of the study investigates the feasibility of the model in commonly 

occurring data conditions in SCDs including phase lengths, autocorrelations, and standardized 

mean difference between phases. The performance of the model informs us about its 

applicability to multiple baseline design data. The illustration section of the study applies the 

model to two real datasets to demonstrate the utility of the model. Bayesian inference of various 

parameters including constructing the region of practical equivalence (ROPE) is demonstrated. A 

sample code is provided in the appendix to facilitate the reader to use this model. 

We only consider a biphasic (two-phase) AB design in this study which is quasi-

experimental and is not adequate to show evidence of causality by itself. This is because the AB 

design shows only one demonstration of intervention effect. The multiple baseline design (MBD) 

where the timing of the intervention is staggered across multiple participants or the ABAB 



design which contains 4 phases are the commonly used designs that can provide strong evidence 

of causality. Nonetheless, this is the first step in investigating the feasibility of unknown change-

point models to investigate and quantify immediacy. This bi-phasic investigation avoids the 

effects of external factors on the accuracy of the estimates such as between person differences 

and the accuracy of previous change-points affecting the accuracy of subsequent change-points 

which may be expected in MBD and ABAB designs, respectively. Moreover, all SCDs are based 

on phase changes making the present investigation a necessary first step before extending to 

other complex designs. 

Immediacy 

Until now immediacy has been established through visual analysis and computing the 

change in the mean or median levels between the last three-to-five data points from phase 1 and 

the first three-to-five data points in phase 2 (Horner, Swaminathan, Sugai, & Smolkowski, 2012). 

The importance of immediacy depends on whether the researcher expects a gradual or a rapid 

shift in the dependent variable following the treatment. A delayed effect is generally considered 

a threat to internal validity because there is less convincing evidence that the change in the 

dependent variable was due to the manipulation of the independent variable. An inferential 

statistical tool that can demonstrate immediacy or delayed effect can be a valuable addition to the 

SCD researchers’ toolkit because it can add evidence to support internal validity. While current 

methods use only 3-5 data points per phase to establish immediacy, the Bayesian unknown 

change-point model uses all data points to establish immediacy.  

Currently used statistical approaches assume that the change in the dependent variable 

takes place immediately where it was intended. But this may not necessarily be realistic in cases 

where there is a delayed effect.  A delayed effect happens when there is no change in the 



observations immediately following a phase change but rather a change after a time period. A 

washout effect is a special case of delayed effect when there is no change in the observations 

immediately following withdrawal of an intervention but rather a change after a time period. For 

instance, consider a treatment that takes an unknown time to create a change in the dependent 

variable (e.g. a drug that takes time to be absorbed into the body) and a design with a baseline 

phase followed by the treatment phase, such as an AB design. This is an example of a delayed 

effect. Until the treatment begins to have an effect, the first few observations in the treatment 

phase will not reflect the trajectory that occurs under treatment.  Instead, these first few 

observations still reflect the baseline trajectory.  Evaluating the treatment effect or computing 

effect sizes by considering these observations as being part of the trajectory produced by the 

treatment will be erroneous. A similar argument could be made about the first few baseline 

observations after a treatment phase (for example in an ABA design) if the treatment takes some 

time to “wear off” (such as a drug that needs time to be excreted from the body). This is an 

example of a washout effect. Here the first few baseline observations may still reflect the 

treatment trajectory, not the baseline trajectory. The exact delay times may not be known in 

advance and may vary across cases. As Duan, Kravitz, and Schmid (2013) noted, successful n-

of-1 trials must ascertain gradual and/or delayed effects or account for these with appropriate 

analytic strategies to untangle these from long-term treatment effect. To date, no inferential 

statistical method has been used to investigate or quantify immediacy which is a necessary 

criterion for strong evidence of causality in SCDs. Reporting inferential statistical evidence of 

immediacy can add to evidence of internal validity in SCDs.  

Let us consider the middle two phases of an ABAB data from Neely, Rispoli, Camargo, 

Davis, and Boles (2013) that is shown in Figure 1. The Bayesian unknown change-point model 



estimated the change-point to be at 8 in each of the 200,000 iterations after burning in the first 

10,000 iterations. The visual plot shows a possible delayed, effect from phase B1 to A2 and the 

mean difference between the three last and first points in phases 1 and 2, respectively is 27.67. If 

there were a delayed effect, the standardized effect size, 𝑑𝑑 would be 6.1. If a researcher ignores 

this possibility, the effect size would be 5.83 – an underestimation of the effect.  

INSERT FIGURE 1 ABOUT HERE 

The problem with ignoring the possibility of delayed effects is multi-fold. First, the 

validity of the data is threatened because the data no longer represent what they are defined to 

represent. Second, the effect size is misestimated. Third, this inaccurate estimation will in-turn 

affect meta-analyses. This is a significant drawback given that the purpose of some single-case 

designs such as n-of-1 trials is to ultimately meta-analyze and find patterns across studies. 

Finally, the reasons for delayed effects remain unexplored. 

Significance 

An unknown change-point model can help demonstrate immediacy which is a criterion 

for strong evidence of causality. A simple change-point model which is typically used in SCD 

where the intercepts and/or slopes are compared across phases cannot provide evidence of this. 

First, as outlined in the WWC standards (Kratochwill et al. 2013) immediacy is necessary to 

show strong evidence of causality in SCDs. By using the proposed model where the change-

point is assumed as unknown and later confirmed, SCD researchers will have a statistical tool 

that can confirm the immediacy of treatment effect using all the observations. This is the first 

known inferential approach that provides evidence of immediacy in SCDs. If there is lack of 

immediacy, researchers can investigate threats to internal validity such as implementation, and 



presence of delayed or gradual effects. They can also decide how the effect sizes can be adjusted 

to take into account gradual and delayed effects. 

Second, SCD typically has fewer time-points and many models of good fit may be 

possible in such a case with only slight variations in treatment time points. That is, one may be 

able to find significant differences in trends if one were to fit a model with baseline running up to 

time point t+1 or t-1. For instance, consider the popular example of an ABAB design from 

Lambert et al. (2006) shown in Figure 2. The middle panel overlays the line of best fit on the 

measurements. The dotted vertical lines show the end of each phase. If the researcher were not 

aware of the time-points of treatment, he/she may have fitted the model shown in the right panel 

to the data and still have found reasonable model fit for the data. The rightmost panel was 

formed by moving the first time point of the A2 phase to the B1 phase. In both fit scenarios the 

slopes and intercepts seem significantly different from their adjacent phases. For instance, in 

Figure 2 it is unclear if the dependent variable at the 15th time-point contains some amount of 

washout effect from the B1 phase or if it truly belongs to the A2 phase. The method proposed in 

the present study is recommended to determine and confirm if the estimated change-point is the 

same as the expected change-point. Only after this confirmation would further estimation of 

effect sizes between phases be valid. 

INSERT FIGURE 2 ABOUT HERE 

Problems with Commonly Used Statistical Analyses in SCDs 

Unfortunately, commonly used statistical analyses cannot be directly applied to SCD 

data. Statistical methods for SCDs are hampered by the relatively small amounts of data 

available on each case. In fact, inference is usually based on dozens rather than hundreds of 

observations. In their survey of 809 single-case designs published in 113 studies, Shadish and 



Sullivan (2008) found that 45.3% of the studies had 5 or less observations per phase. Linear 

change trajectories estimated from so few observations have considerable sampling uncertainty, 

even if the observations are independent.  Statistical estimation is made more complex by the 

fact that observations from the same case are not independent but are likely to exhibit an 

autocorrelation structure that has to be taken into account in the statistical analysis (Huitema, 

1985; Huitema & McKean, 1998, 2000).  Errors of SCD data are typically lag-1 autocorrelated 

or serially dependent over time with a lag-1 (Huitema, 1985; Huitema & McKean, 1998, 2000). 

That is, the error at time point 𝑡𝑡 + 1 is correlated with the error at time point 𝑡𝑡. This violates the 

assumption of most parametric and non-parametric statistics and results in biased estimates and 

inflated Type-I error rates (Shadish, Rindskopf, Hedges, & Sullivan, 2013). For time series with 

fewer than 50 points, the estimates of autocorrelation are negatively biased. Additionally, fewer 

time points are also plagued by larger sampling error problems. Autocorrelated errors means that 

there is some pattern between consecutive error terms, which manifests itself as a pattern 

between observed values. What makes it visually difficult to analyze is whether this pattern is 

because of a slope (i.e. change in the observed variable with time) or due to autocorrelated 

errors.  

When the observations have an autocorrelation structure (as in SCDs), the within-phase 

trajectories of change are even more uncertain (Brossart, Parker, Olson, & Mahadevan, 2006; 

Gorman & Allison, 1996). Complexities such as autocorrelation structure usually mean that 

exact small-sample frequentist methods are intractable and we are forced to rely on large sample 

methods (such as maximum likelihood).   Moreover, there are many different types of single case 

designs, each of which poses somewhat different analytic challenges (see, e.g., Shadish, et al, 

2015).   



The present study proposes a different analytic strategy to analyze SCDs.  Rather than 

fitting separate models to each phase of the design with the phases defined a priori, we fit linear 

models to each phase separately, but do not assume that the boundary between phases is known a 

priori.  We use a Bayesian model to let the data define the point where the change between 

phases occurs.  Such models have been applied successfully to study inflation (Koop & Potter, 

2004), water flooding (Zaman, Rahman, & Haddad, 2012), Alzheimer’s disease (Li, Dowling, & 

Chappell, 2015), menstrual cycle (Huang, Elliott, & Harlow, 2014), and climate variations 

(Beaulieu, Chen, & Sarmiento, 2012). In this paper we will discuss how the Bayesian unknown 

change-point model can be used to provide inferential statistical evidence of immediacy to 

supplement visual analysis and identify delayed effects.  

Unknown change-point models can be particularly advantageous in SCDs because it 

provides an objective procedure for dealing with a latent feature of the data: the actual point at 

which the trajectory of observations change.  This may be consistent with data that show delayed 

effects or may reflect no obvious change in systematic behavior related to the phases of the 

design.  Either way, by treating the change-point as an unknown we allow the data to speak for 

itself. It is important to note that Bayesian methods are exact, small sample statistical procedures.  

Thus Bayesian methods obviate the ambiguity accompanying the use of large sample methods 

(such as maximum likelihood estimation) on the usually small SCD datasets. Based on the nature 

of the design, multiple unknown change-points could be modeled and additional evidence of 

criterion that supports causality obtained every time the change point is estimated close to the 

true value. Variables such as participant identifier, treatment identifier, unknown number of 

change-points, etc. can be included in the unknown change-point model to accommodate all 

types of SCDs.  



Bayesian Statistical Methods 

We use Bayesian method to estimate the unknown change-point model. Bayesian 

estimation works well with small sample data because it does not depend on asymptotic or large 

sample theory (Ansari & Jedidi, 2000; Ansari, Jedidi, & Jagpal, 2000; Dunson, 2000; Scheines, 

Hoijtink, & Boomsma, 1999). Bayesian estimation provides complete distributional information 

about the parameter along with the credibility of each value the parameter can take (Kruschke, 

2013). That is, a parameter is not estimated as a single point estimate with an associated standard 

error of the estimate, but rather as a distribution with a probability value associated with each 

possible value for the parameter. This posterior density is proportional to the product of the 

likelihood of the data and the prior information about the parameters (Bayes’ theorem). The 

likelihood is the information contained in the data. Prior information can be systematically 

incorporated by examining results from other studies or through previous knowledge or be least 

informative or can be anywhere on this continuum.  

The posterior distribution can be used to compute any summary statistic for the parameter 

of interest. For instance, the standard deviation of the posterior for the change-point, to some 

extent, indicates the certainty of change in functional relationships between phases (more about 

this is discussed in the illustration section). Posteriors with high probability densities at several 

time-points do not support immediacy. 

The credibility interval or the highest density interval surrounding a Bayesian parameter 

estimate is more straightforward to interpret because it is part of a probability density function 

and has a shape associated with it (Gelman, Carlin, Stern, Dunson, Vehtari, & Rubin, 2013; 

Lynch, 2007). That is, a 95% credibility interval means that the probability that the true 

parameter value lies in this interval is 95%. For instance, consider the posterior density of 



standardized mean difference between phases 𝑑𝑑 obtained from Bayesian unknown change-point 

model which is given in the bottom panel of figure 2 for the delayed effect illustration. First, the 

95% credibility interval of 𝑑𝑑 has a truncated bell-shaped curve and is fairly wide [5.40, 10.21], 

but is nonetheless a large effect. This credibility interval can be used to test the region of 

practical equivalence (ROPE). Let us assume that the researcher specifies a ROPE of the effect 

size to be between 5 and 10, perhaps because these values are considered as “large” effects in the 

particular substantive area. Given that most of the values in the credibility interval of 𝑑𝑑 fall 

within this region, the hypothesis that the effect is large can be accepted. Of particular interest to 

SCD researchers is Shadish et al.’s (2013) finding that Bayesian estimates of autocorrelation 

were more accurate than frequentist estimates. They also showed that Bayesian credibility 

interval estimates of autocorrelation are more accurate than frequentist confidence intervals 

which have undercoverage. That is, fewer than the expected number of frequentist confidence 

intervals contain the true value of autocorrelation.  

Readers may refer to Kruschke (2011a, 2011b, 2013) for more details on ROPE and 

accepting the null hypothesis in Bayesian statistics. The Bayesian method is computationally 

intensive (involving large integrals). Therefore modern sampling methods such as the Gibbs 

sampler are used to estimate parameter values to circumvent tricky approximations to or 

sometimes even unsolvable integrals.  

Change-point Models 

There is vast literature surrounding developing approaches to change-point models. Bai 

(1994, 1997) presented a least squares estimation approach for change-point problems. Barry and 

Hartigan (1993) and Carlin, Gelfand, and Smith (1992) are good background materials for 

Bayesian change-point problems. Chib (1998), Jann (2000), Jeong and Kim (2013), and Kim and 



Cheon (2011) extended the Bayesian unknown change-point model to multiple unknown change-

points using hidden Markov models, genetic algorithms, and annealing stochastic approximation, 

respectively. Raftery and Akman (1986) presented an algorithm for Bayesian analysis of Poisson 

distributed data. Recent developments in this area include newer algorithms, extensions to the 

models, and applications. Adams and McKay (2007) extended change-point models to Bayesian 

online change-point detection. Bayesian unknown change-point models have been applied in 

various fields such as ecology (Thomson et al., 2010), marine biology (Durban & Pitman, 2011), 

hydrometeorology (Perreault, Bernier, Bobée, & Parent, 2000), and stock data (Lin, Chen, & Li, 

2012).  Recently Kim and Jeong (2016) developed an approach to change-point modeling in 

autocorrelated time-series where the number of change-points is unknown.  The current study is 

the first of its kind to apply Bayesian change-point models to single case designs.  

Model and Notation 

We investigate the performance of the Bayesian unknown change-point model in a 

simple case of AB design (i.e., one unknown change-point) using Monte Carlo simulation. We 

then extend it to multiple baseline design in the illustration section that follows. A continuous, 

normally distributed dependent variable with no trend (slope) is considered in the simulation 

study. This can be easily extended to models with trend by modelling slopes in the equations 

below. For count and proportion data, the model would have to be modified to reflect their 

distributions more accurately (e.g., Rindskopf, 2014). But distributional assumptions will not 

change the basic framework presented here and this framework can be adapted for different types 

of variables and distributions by modifying equations 1, 7, and 8. For instance, for count data 

equation 1 may be modified as a generalized linear model with logit function. The dependent 



variable may follow a binomial or a Poisson distribution depending on whether the count data 

has limits or not, respectively.  

Let us assume that the observed value at the first time point (𝑦𝑦𝑝𝑝1) in phase 𝑝𝑝 follows a 

normal distribution with the mean of 𝑦𝑦�𝑝𝑝1 and standard deviation of 𝜎𝜎𝜀𝜀 as shown in equation 1.  

 𝑦𝑦𝑝𝑝1 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝑦𝑦�𝑝𝑝1,𝜎𝜎𝜀𝜀2�.  (1) 

The predicted values in the following time points 𝑡𝑡 are distributed as: 

 𝑦𝑦𝑝𝑝𝑝𝑝|𝐻𝐻𝑝𝑝𝑝𝑝−1,Θ ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝑦𝑦�𝑝𝑝𝑝𝑝|(𝑝𝑝𝑝𝑝−1),𝜎𝜎𝑒𝑒2�.  (2) 

In equation 2, 𝐻𝐻𝑝𝑝𝑝𝑝−1 is the past history and Θ is the vector of parameters, 𝜎𝜎𝑒𝑒 is the white noise 

created by a combination of random error (𝜎𝜎𝜀𝜀2) and autocorrelation between adjacent time-points, 

𝜌𝜌. The relation between 𝜌𝜌,𝜎𝜎𝑒𝑒 , and 𝜎𝜎𝜀𝜀 is  

 𝜎𝜎𝑒𝑒 = 𝜎𝜎𝜀𝜀
�1−𝜌𝜌2

 . (3) 

The rest of the time series follow a linear procedure with lag-1 autocorrelated errors (e.g. Harrop 

& Velicer, 1985; Hedges, Pustejovsky, & Shadish, 2012, 2013; Swaminathan, Rogers, & Horner, 

2014; Velicer & Molenaar, 2012). The linear regression model and the serial dependency of the 

residual (𝑒𝑒𝑡𝑡) can be expressed respectively as, 

 𝑦𝑦�𝑝𝑝𝑝𝑝 = 𝛽𝛽0𝑝𝑝 and (4) 

 𝑒𝑒𝑝𝑝𝑝𝑝 = 𝜌𝜌𝑒𝑒𝑝𝑝𝑝𝑝−1 + 𝜀𝜀. (5) 

In equation 4, 𝑦𝑦�𝑝𝑝𝑝𝑝 is the predicted value of the target behavior at time t in phase p; 𝛽𝛽0𝑝𝑝 is the 

intercept of the linear regression model for phase p; 𝑒𝑒𝑝𝑝𝑝𝑝 is the error at time t for phase p; 𝜌𝜌 is the 

autocorrelation coefficient; and 𝜀𝜀 is the independently distributed error. Consider a design with 



only two phases: baseline and treatment. Let the time-points in the baseline phase be 1, 2, … , 𝑡𝑡𝑏𝑏 

and in the treatment phase be 𝑡𝑡𝑏𝑏+1, … , 𝑡𝑡𝑛𝑛. Then the intercept 𝛽𝛽0𝑝𝑝 can be modeled as: 

 𝛽𝛽0𝑝𝑝 =  � 𝛽𝛽01, if 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏
𝛽𝛽02, otherwise. (6) 

Equation 6 can be rewritten as: 

   𝛽𝛽0𝑝𝑝 =  𝛽𝛽01 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽02 ∗ (1 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑); 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑏𝑏 − 𝑡𝑡) . 

(7) 

The step function returns the value 0 if the argument is negative and 1 otherwise. Therefore the 

indicator variable (called dummy here) is assigned a value of one if the time-point is in the 

baseline phase and a value of zero otherwise. In a regular change-point model, 𝑡𝑡𝑏𝑏 is known while 

in the unknown change-point model 𝑡𝑡𝑏𝑏 is an estimated parameter.  

Usually a complex method is used to work around the if-else executable statement with 

varying intercept values depending on the phases, which themselves are unknown (e.g. Harring, 

Cudeck, & du Toit, 2006). This requires that the researcher knows the order of the relationship 

between the slopes in the two phases (i.e. whether the slope of phase 1 is greater than the slope 

of phase 2). This order will inform whether the intersection point of the two lines can be 

classified as a maxima or a minima of the values. Obviously the method will not work when 

there are only level differences but no slopes modeled such as the one we consider. There is a 

more straightforward solution using the step function in software programs such as JAGS (Just 

another Gibbs sampler, Plummer, 2003) and BUGS (Bayesian using Gibbs sampler, Lunn, 

Spiegelhalter, Thomas, & Best, 2009). BUGS and JAGS parametrize the normal distribution in 

terms of the precision 𝜏𝜏 = 1/𝜎𝜎2, rather than variance. We will parametrize using variance 

instead of precision in order to keep the statistical notation common to Bayesians and non-



Bayesians. Appendix A contains a sample dataset and code in R that calls JAGS to fit a Bayesian 

unknown change-point model. 

Sampling Algorithm 

The Gibbs sampler is one of the most frequently used Markov chain Monte Carlo 

(MCMC) methods in Bayesian estimation (Albert, 1992; Gelfand & Smith, 1990; Geman & 

Geman, 1984). Assuming that the researcher is unaware of the phase the observation belongs to, 

let us consider a time-series SCD data 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑛𝑛) such that the functional relationships 

between the dependent and the independent variables differ based on the phase. In other words, 

 𝑦𝑦𝑡𝑡 =  � 𝜃𝜃1 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏 ,
𝜃𝜃2 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, (8) 

where the parameters 𝜃𝜃1 and 𝜃𝜃2 are the mean levels of the dependent variable 𝑦𝑦𝑡𝑡 in phases 1 and 

2, respectively. Parameters 𝜃𝜃1, 𝜃𝜃2, 𝑡𝑡𝑏𝑏 need to be estimated. In equation 8, 𝜃𝜃1 = 𝑔𝑔(𝛽𝛽01,𝜎𝜎𝜀𝜀 , 𝜌𝜌) and 

𝜃𝜃2 = 𝑔𝑔(𝛽𝛽02,𝜎𝜎𝜀𝜀 ,𝜌𝜌). In the parameter vector Θ = (𝛽𝛽01,𝛽𝛽02,𝜎𝜎𝜀𝜀 ,𝜌𝜌, 𝑡𝑡𝑏𝑏) all parameters are 

independent a priori. The posterior distribution 𝜋𝜋(Θ|𝑌𝑌) can be obtained using the Gibbs sampler. 

A generic Gibbs sampler follows an iterative process. Consider the parameter vector 

(𝛽𝛽01,𝛽𝛽02,𝜎𝜎𝜀𝜀 , 𝜌𝜌, 𝑡𝑡𝑏𝑏). Assign a set of starting values, 𝑆𝑆 to the vector at step 0 of the iteration. Let 

the iteration be indexed using the variable 𝑗𝑗.  

Step 1: Set 𝑗𝑗 =  𝑗𝑗 +  1 

Step 2: Sample (𝛽𝛽01
𝑗𝑗 �𝛽𝛽02

𝑗𝑗−1,𝜎𝜎𝜀𝜀
𝑗𝑗−1, 𝑡𝑡𝑏𝑏

𝑗𝑗−1,𝜌𝜌𝑗𝑗−1,𝑌𝑌� 

Step 3: Sample (𝛽𝛽02
𝑗𝑗 �𝛽𝛽01

𝑗𝑗 ,𝜎𝜎𝜀𝜀
𝑗𝑗−1, 𝑡𝑡𝑏𝑏

𝑗𝑗−1,𝜌𝜌𝑗𝑗−1,𝑌𝑌� 

Step 4: Sample (𝜎𝜎𝜀𝜀
𝑗𝑗|𝛽𝛽01

𝑗𝑗 ,𝛽𝛽02
𝑗𝑗 , 𝑡𝑡𝑏𝑏

𝑗𝑗−1,𝜌𝜌𝑗𝑗−1,𝑌𝑌) 

Step 5: Sample (𝑡𝑡𝑏𝑏
𝑗𝑗 |𝛽𝛽01

𝑗𝑗 ,𝛽𝛽02
𝑗𝑗 ,𝜎𝜎𝜀𝜀

𝑗𝑗 , 𝜌𝜌𝑗𝑗−1,𝑌𝑌) 



Step 6: Sample (𝜌𝜌𝑗𝑗|𝛽𝛽01
𝑗𝑗 ,𝛽𝛽02

𝑗𝑗 ,𝜎𝜎𝜀𝜀
𝑗𝑗 , 𝑡𝑡𝑏𝑏

𝑗𝑗 ,𝑌𝑌) 

Step 7: Sample (𝑌𝑌�𝑗𝑗|𝛽𝛽01
𝑗𝑗 ,𝛽𝛽02

𝑗𝑗 ,𝜎𝜎𝜀𝜀
𝑗𝑗 , 𝑡𝑡𝑏𝑏

𝑗𝑗 ,𝜌𝜌𝑗𝑗 ,𝑌𝑌), where 𝑌𝑌�𝑗𝑗 is the vector of predicted values of 𝑌𝑌 at the 

jth iteration 

Step 8: Return to step 1. 

Method 

Simulation 

A simulation study was conducted to test the performance of the unknown change-point 

model with uninformative to relatively less informative priors. The generating values of the 

parameters (effect size 𝑑𝑑, standard deviation 𝜎𝜎, and autocorrelation 𝜌𝜌) were selected based on the 

most commonly occurring parameters in SCD studies (Maggin, O’Keefe, & Johnson, 2011; 

Shadish & Sullivan, 2008). Maggin et al.’s (2011) study was based on 68 single-case design 

studies published between 1985 and 2009. Shadish and Sullivan’s (2008) study was based on 

809 single-case designs published in 113 studies in the year 2008 in 21 journals. Data was 

generated based on equations 1-8. The intercepts of the two phases were 1, 2, 3, or 5 standard 

deviations (𝜎𝜎) apart. This standardized mean difference will be referred to as 𝑑𝑑. Two 

autocorrelation values (𝜌𝜌 = .2, .5) and three phase lengths (𝑙𝑙 =  5, 8, 10) were considered. Both 

the treatment and the baseline phases had an equal number of time points. The standard deviation 

within each phase was 𝜎𝜎 = 0.2. The simulation study followed a fully crossed 2 × 3 × 4 factorial 

design.  

One hundred datasets were generated for each condition resulting in 2400 datasets. The 

sufficiency of the number of replications was determined based on several procedures including 

ones described by Carsey and Harden (2014), and Koehler, Brown, and Haneuse (2009). First, 



the estimates converged to stationarity 100% of the time in the simulated and in the real datasets. 

Coverage rate of change-point credibility intervals was computed for the first 50 replications and 

compared against coverage for all the 100 replications. Coverage rate is the rate of credibility 

intervals that contain the true parameter value. They ranged from 94% to 100% and differed only 

up to 2% in 5 of the 24 conditions. Otherwise they stayed the same across 50 and 100 

replications. We tested the Monte Carlo percent bias of the posterior mode estimates of the 

change-points (𝜙𝜙�𝑅𝑅𝑏𝑏) across the replications as defined in equation 9. If 𝑀𝑀𝑟𝑟�  and 𝑀𝑀 are the 

estimated posterior mode and true value of the change-point for the 𝑟𝑟𝑟𝑟ℎ replication, respectively, 

then for a total of 𝑅𝑅 replications, 

 𝜙𝜙�𝑅𝑅𝑏𝑏 =  1
𝑅𝑅
∑ 𝑀𝑀𝑟𝑟 � −𝑀𝑀

𝑀𝑀
× 100 𝑅𝑅

𝑟𝑟=1 . (9) 

The Monte Carlo percent biases of the posterior modes were stable after 50 replications 

for most conditions and after 75 replications for all conditions. The average of the posterior SDs 

of the change-point differed from the standard deviation of the modes of the change-point from -

1.78 to 0.44 with no particular direction of bias. The similarity of the values suggest the 

sufficiency of the estimator. Similarly, the average posterior SD of the intercept estimates ranged 

from 0.08 to 0.20 which was close to the population SD.  

Priors 

Generating values and prior distributions for the parameters are given in Table 1. Given 

the small sample size nature of SCDs, the choice of prior plays an important role in the posterior 

density estimate. A hierarchical prior distribution was used for the intercepts (𝛽𝛽01,𝛽𝛽02 in 

equations 4 and 6). This allows the parameters of the priors to be estimated from the data rather 

than specifying them to have subjective information (Efron & Morris, 1975; Gelman, 2006; 



James & Stein, 1960). The intercepts of both phases were independent of each other. The 

intercepts were drawn from normal distributions with means simulated from a normal 

distribution with mean 0 and standard deviation 100, and variances simulated from an inverse 

gamma distribution with shape parameter 1. Gelman and Hill (2007) advocated using a 

noninformative uniform prior on the standard deviation with the upper limit sufficiently large 

relative to data. Therefore the upper limit on the standard deviation of the intercepts was 500 

times the true population standard deviation. The relatively informative inverse gamma (1, 1) 

distribution was used for variance because Gelman (2006) cautioned against the use of very low 

values such as .01 and .001 for the gamma prior which lead to improper posteriors. The limited 

sample size in SCD data will only further worsen this situation.  

de Vries and Morey (2013) suggested a beta prior on autocorrelation with shape 

parameters 𝛼𝛼 =  0 and 𝛽𝛽 >  1, preferably  𝛽𝛽 = 5 in order to keep the prior sufficiently vague. 

However, this places higher probability density towards 0. In order to reflect the generating 

autocorrelation values, a uniform distribution with limits from −1 to 1 was used as the prior for 

autocorrelation. This is vaguer than the prior suggested by de Vries and Morey (2013) and 

captures all possible mathematical values of autocorrelation. The change-point had a relatively 

uninformative uniform discrete prior distribution with equal probability of falling between 

3 and (𝑇𝑇 − 2). This range was chosen because at least 3 data points are required to identify a 

pattern in each phase. This also reflects the standards for single case designs which requires at 

least 3 data points per phase (Kratochwill et al., 2013). Following Swaminathan, Rogers, and 

Horner (2014) and de Vries and Morey (2013), error variance and autocorrelation was assumed 

equal across phases.  

 



Diagnostics and Interpretations 

Four parallel chains were run with starting values independently generated for each chain 

from the prior distribution. Convergence was checked using two convergence diagnostics: the 

multivariate potential scale reduction factor (MPSRF, Brooks & Gelman, 1998) and 

Heidelberger and Welch’s convergence diagnostic (1983). The package RunJAGS (Denwood, 

2013) conveniently runs parallel chains and iterates the model estimates until convergence. In 

order to compare the performance (i.e., accuracy of estimates, time taken till convergence) of the 

unknown change-point model (Model 1), a piecewise model was estimated where the change-

point was specified (Model 2). Both models together took between 109 and 390 seconds to run 

until convergence. Means, standard deviations, modes, and 95% credibility intervals of the 

change-point posterior distributions were obtained. Root mean square errors (RMSEs) of the 

posterior mean and mode, mean posterior standard deviation (MPSD), and bias of the posterior 

mode of the change-point were computed. Because the change-point is discrete the posterior 

mode was considered. The posterior means of change-points may often not be measured discrete 

time-points and are heavily influenced by extreme values. What is of importance here is how 

often the change-point was accurately estimated. Posterior mode is that quantity.  

Three individual ANOVAs were run with MPSD, and RMSE of the posterior mean and 

posterior mode of the change-point as dependent variables. The independent variables were 

𝑑𝑑,𝜌𝜌, and 𝑙𝑙. It should be noted that although phase length is an independent variable in the 

ANOVAs, the phase length was perfectly correlated with the range of the prior distribution of the 

change-point. That is, longer phase lengths contain more data-points, which mean more 

information. However this is accompanied by a less informative prior where more data-points 

with low but equal probabilities are possible candidates for change-point. Therefore, the increase 



in the information contributed by longer phase lengths is countered by the less informative prior 

specification. This makes it difficult to distinguish which part of the effect was due to phase 

length and which part due to the range of the prior.  

Results 

Study 1: Simulation 

Overall trends from ANOVAs. Eta-squared effect sizes from independent ANOVAs are 

reported in Table 2. RMSEs and MPSDs decreased with increase in both standardized mean 

difference between the phases and phase length (Figure 3). Standardized mean difference (𝑑𝑑) 

explained the maximum variation in RMSE of means (45.54%) and modes (65.59%), and 

MPSDs (71.93%) of change-point estimates. MPSD was largest when 𝑑𝑑 =  1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙 =  10. This 

is because smaller differences between phases makes it difficult to discern patterns clearly. In 

data with longer phase lengths this is further compounded by the prior that places very low but 

equal probabilities on several data-points as possible candidates for change-point. That is, there 

are 16 possible values the change-point can take in a dataset with phase length 10. This is 

because according to WWC standards there need to be at least 3 observations per phase. Each of 

these have a probability of 1
16

 for being the change-point. This is more spread out when 

compared to data with phase length 5 which will have 6 possible candidates each with 

probability of 1
6
 for being the change-point. Again, the effect of phase length on the posterior 

standard deviation (17.21%), and the RMSE of mean (34.13%) and mode (18.53%) cannot be 

separated from the effect of the range of the uniform prior specified for the change-point. It is a 

well-known fact that prior has larger effect on the posterior for small samples. But the lack of 



information due to sample size is compensated by the information samples with large population 

effect size.  

INSERT FIGURES 3 AND 4, AND TABLE 2 ABOUT HERE 

Credibility Intervals and Posteriors. Credibility intervals of the change-points for 

phase length of 5 are shown in Figure 4. The credibility intervals for other phase lengths 

followed the same pattern. When both standardized mean difference and phase length were 

small, most credibility intervals spanned the entire prior distribution range. The original data plot 

is shown for one case with large posterior standard deviations (top left) and one case with small 

posterior standard deviations (top right, Figure 5). Both cases have large immediacy indices. We 

define the immediacy index as the mean difference between the first and last three observations 

of the dependent variable in the baseline and treatment phases, respectively. It may seem that 

both large immediacy index and clarity of the distinct data pattern between phases contribute to a 

narrow CI, that is, more certainty in the estimate. However, no clear statistical pattern emerged 

from using the immediacy index as a variable that explains the variation in the uncertainty of the 

change-point estimate. It should be noted that the immediacy index is only a function of six 

consecutive data-points, whereas the effect size is a summary of all data. Therefore, this result is 

not surprising. The posterior plots of these two cases are shown in the bottom panel of the figure.  

INSERT FIGURE 5 ABOUT HERE 

For case 1, the 95% credibility interval of the change-point ranged from 3 to 18 which is 

the range of the prior. The mode and the mean of the change-point were 10 and 10.387, 

respectively. In this case although the immediacy index is not small, there is overlap between the 

values in the baseline and treatment phases. That is, most values in the baseline phase seem 

candidates for the treatment phase as well. Therefore it seems reasonable that the algorithm has 



larger uncertainty associated with the change-point estimate in this case. The posterior plot of the 

change-point sheds more light on the probabilities associated with each possible time point in 

this interval. In this posterior distribution the true value seems the most likely candidate for the 

change-point, but the distribution has two other frequently occurring values because of this 

overlap in values between phases. This shows that in addition to the posterior mean, mode, and 

standard deviation, researchers will benefit by examining the shape of the posterior. The 

posterior distribution of case 2shows that except for the mode, there is close-to-zero probability 

associated with integer values from 3 to 18 in this posterior. The mean, mode, 2.5th and 97.5th 

percentiles of this distribution are all 5. This is clear evidence for 5 as the change-point. 

The immediacy index was highly negatively correlated with the posterior standard 

deviation of the change-point estimate (𝑟𝑟 = −.67). The posterior standard deviation was almost 

zero for large immediacy index values. Autocorrelation values had a very small impact on the 

estimates. The distance between the RMSEs of the mode and the mean decreased with increase 

in the standardized difference between phases. The RMSE of mode was smaller than that of the 

mean when 𝑑𝑑 ≥ 3.  

Effects of Autocorrelation and Phase Length. The accuracy of the intercept estimates 

for both unknown and known change-point models and both phases increased with decrease in 

autocorrelation and increase in phase length. Mean posterior standard deviation of the intercept 

estimates for both models and both phases increased with increase in autocorrelation and 

decrease in phase length. The mean posterior standard deviations of the first and second 

intercepts between the two models were about .27 and .53 standard deviations apart, 

respectively. The posterior means of the intercepts for both phases and autocorrelations were less 

than .017 standard deviations apart between the unknown and the known change-point models.  



Study 2: Application of Bayesian unknown change-point model to real data 

Multiple baseline design is an extension of the AB design where the treatment is 

administered to different participants at different time points. This design allows at least three 

demonstrations of the treatment effect, which is a required criterion to meet evidence standards 

for SCDs (Kratochwill et al., 2010). An example data from Laski, Charlop, and Schreibman 

(1988) is shown in figure 6. We analyzed this multiple baseline data using the Bayesian 

unknown change-point model presented above. The parameter estimates are given in tables 3, 4, 

and 5. Except for cases 1, 3, and 7 the change-points were estimated with good accuracy as seen 

from their posterior distributions in figure 7a. This indicates support for immediacy effect. 

Visual analysis shows immediacy for all cases except case 8. The mean difference between the 

first and last three observations of phases 2 and 1, respectively were 19-48 points for all cases 

except case 8. There is considerable overlap for cases 7 and 8, some overlap for case 1, and a one 

point overlap for case 4. For case 1, although the mean difference is 28, there is doubt about 

whether change happened because of the treatment or because of autocorrelation between points 

4 and 5. In the Bayesian analysis, although the mode of case 1 is correctly estimated to be 4, the 

probability mass around time-point 3 cannot be ignored. This is because the model takes the 

pattern of all the observations into account. Similarly there is considerable overlap in the values 

of the observations in baseline and treatment phases for case 7.  This may have led to larger 

uncertainty in the change-point estimate. Case 8 had smaller overlap and yet had accurate 

estimates. This was probably due to the large immediacy index. Note that Laski at el. (1988) did 

not examine immediacy. 

Figure 7b shows the posteriors of 𝑑𝑑 for each case. The 𝑑𝑑 values indicate simple 

standardized mean differences after removing autocorrelation, that is, the mean difference was 



standardized using 𝜎𝜎𝜀𝜀. None of the 95% credibility intervals for effect sizes contained 0, but the 

2.5th percentile of the effect size for case 7 was very close to 0. In addition to the considerable 

overlap between observations, the small effect size value in case 7 may have also impacted its 

change-point estimate. Laski at el.’s (1988) conclusion that the treatment effect was lowest in 

case 7 was based on descriptive statistics. That is, they only examined the difference in the 

averages between the phases and therefore could not make inferential comparisons.  

If the ROPE for strong effect size is built between 3 and 6, the null hypothesis can be 

accepted for cases 2, 3, 4, and 5 because 95% of the posterior density falls within this region. 

The variance of the distribution from which the intercepts were drawn had a mean of 3185.2 with 

95% credibility interval ranging from 1492 to 6073. A standard deviation of 56.4 may be 

considered large, but the range of observed values in the baseline phase ranged from 0 to 81.91 

and in the intervention phase ranged from 27.67 to 92.15. The standard deviation had to be wide 

enough to accommodate such a wide range of values.  The 2.5th and the 97.5th percentiles of the 

within person standard deviations ranged from 4.04 to 10 and was much smaller than the 

between person standard deviation.  

INSERT FIGURES 6, 7a, and 7b, AND TABLES 3 - 5 ABOUT HERE 

Recommendations for Interpretation 

Based on the results of the present study, here are our recommendations for practitioners 

who wish to implement this method for their own data. The two questions the method answers 

are: Is there evidence of immediacy? If yes, how strong is this evidence? In addition to visual 

analysis, the posterior distributions of the change-points should be examined to confirm 

immediacy. Immediacy is supported when the change-point posterior mode is estimated to be 

near the change-point, and the distribution is narrow and clearly unimodal. Delayed effects or 



lack of immediacy is indicated when the mode is estimated to be at any other data point with a 

narrow posterior. A posterior distribution with large variance but close to the true value may 

indicate lack of immediacy and possible gradual effect. However, the shape of the posterior 

needs to be examined before concluding so. Note that when using a categorical prior, it is not 

uncommon to obtain a large standard deviation for the posterior when the effect is moderate or 

low. This is because the estimates can only jump from one discrete time point to another. So 

jumping from time-point 7 to 8 will result in larger posterior standard deviation than jumping 

from 7 to 7.5.  

We have illustrated building a ROPE around the effect size. This can be extended to 

change-points as well. In cases where a delayed or gradual effect is expected, a region of 

practical equivalence (ROPE) may be built around the change-point to check for probabilities of 

credible values in this region. The credibility interval of the change-point is tested so the 

researcher can determine which of the credible values in this interval fall within the ROPE. 

When most of the values fall within the ROPE the null hypothesis that the change in the 

dependent variable takes place within the region of when the intervention is expected to have an 

effect is accepted. Immediacy of the treatment effect is indicated when the null is accepted for a 

ROPE that contains only one value, that is, the true change-point value. The possibility of 

accepting the null rather than failing to reject the null is an especially attractive feature of 

Bayesian statistics that SCD researchers would benefit from.  

Discussion 

The present study demonstrates how Bayesian unknown change-point models can be 

used to evaluate SCD data for a simple AB-design and multiple baseline design. There are 

several advantages to this method: (a) So far immediacy has only been confirmed using visual 



analysis. The method presented here is the first inferential statistical method that can be used to 

confirm and evaluate immediacy; (b) Unlike visual analysis, the method identifies immediacy 

using all observations to find patterns within phases. In addition to identifying immediacy, the 

proposed method quantifies immediacy in cases where change between phases is unclear, 

gradual, or delayed; (c) The use of Bayesian methods allows the researcher to examine the shape 

of the posterior distribution in addition to its descriptive statistics. This gives a clearer evaluation 

of the quality of the estimates; (d) For treatments with predicted delays, ROPE can be 

systematically built around the expected immediacy effect of the treatment. The researcher has 

the possibility of accepting the null that the change-point indeed occurred where it was expected 

to occur; and (e) The model presented can be modified to accommodate other distribution types, 

data types, functional relationships between time and the dependent variable, and add 

explanatory variables. 

The results of the simulation study show that a standardized mean difference of 3 or 

larger (computed ignoring the autocorrelation) was necessary for a reasonably accurate change-

point estimate. The posterior standard deviations decreased drastically with increase in 

standardized mean difference. In fact, the entire 95% credibility interval for the change-point of 

most datasets with large standardized mean difference and phase length ≥ 8 was a single time-

point, which was the true value of the change-point. Although requiring at least 8 data points per 

phase may seem high, it is not unreasonable in SCD research because 54.7% of the studies 

reviewed by Shadish and Sullivan (2008) had more than 5 points per phase.  However, only 20% 

of the 62 effect sizes reviewed by Shadish and Sullivan (2008) had an effect size of 3 or more. 

This could be countered by having longer phase lengths and specifying more conservative priors 

based on previous research. Most importantly, the benefits of collecting three extra points per 



phase in order to facilitate the analysis presented in our study make the efforts worthwhile. We 

considered an intercept-only model which means the model can only detect sudden changes 

following the treatment effect. When treatment effects are more gradual or vary with time, slopes 

must be modeled. This is an avenue for future research.  

The prior distribution impacted the interval widths of the estimates. In the present study 

we used uninformative, naïve uniform (categorical) priors for the change-point. We could not 

separate out how much of the variation in RMSE was due to the prior and how much was due to 

phase length. This is because longer phase lengths imply more data and therefore more 

information. But longer phase lengths also mean less informative prior. So it is unclear how 

much the data compensated for the ‘uninformativeness’ of the prior. Prior choice is especially 

important given the small sample nature of SCDs. Although we did not test the impact of prior 

choice on the estimates, we can speculate based on research (e.g. Natesan, Nandakumar, Minka, 

& Rubright, 2016) that using very vague priors [e.g. 𝑁𝑁(0, 1000)] instead of the hyperpriors we 

used could lead to less accurate estimates and severe shift in the scales. Given that the intercepts 

of the two phases are independently estimated, this may also affect the accuracy of the change-

point estimate.  

Depending on the treatment, the design, and other information (e.g. from other published 

studies, meta-analyses), priors may be specified more systematically. For instance, if previous 

research shows that the participant will take 5 days to begin responding to the treatment, the 

probability of the time point being the change-point can be specified to range from time-point 8 

to 𝑡𝑡 − 2, if there are 𝑡𝑡 time points. This allows for the WWC standards that there need to be at 

least three time points per phase. Therefore, if the treatment were administered even as early as 

the third time point change would be observed only beginning the eighth time point. 



Nonetheless, the naïve priors that we used yielded good estimates for the Laski et al. (1988) data. 

A wider discussion is needed on how to show evidence of causality when a delayed effect is 

expected due to the nature of the treatment. For example, it is not uncommon for a drug to take 

effect or a child to take time to respond to an intervention. Concluding that these interventions do 

not have causal effects solely based on immediacy may indicate following a very rigid 

framework of rules that does not acknowledge the nature of different treatments.  

Rindskopf (2014) noted that Bayesian methods are likely to become the preferred method 

of analysis for SCDs. This is because Bayesian methods work well with small sample data, are 

robust to several distributional assumptions, and allow a more comprehensive understanding of 

the statistical estimates through posterior analyses and region of practical equivalence (ROPE) 

tests. For instance, when count data or proportion data are used as dependent variables, non-

linear models such as generalized linear models may be used to model the data. Generalized 

linear models are large sample procedures—that is, their properties are guaranteed to hold only 

in large samples.  In contrast, Bayesian methods yield exact small sample results.  Therefore, 

investigating Bayesian unknown change-point models for count and proportion data is a natural 

extension. The most advantageous aspect of Bayesian statistics that is of particular interest to 

SCD researchers is the credibility interval, which allows direct probabilistic interpretation of a 

statistical estimate (Gelman, Carlin, Stern, Dunson, Vehtari, & Rubin, 2013). Bayesian 

methodology is a relatively new territory for most SCD researchers. Therefore, learning 

Bayesian methods can be challenging.  

It is worth noting that the time taken for estimation in the Bayesian analysis increases 

with increase in model complexity. For instance, the two models together took up to 5 minutes to 

run. However, this is a small price to pay for the additional information obtained from Bayesian 



analysis. Gast and Ledford (2014) reiterated the need for statistical techniques that are applicable 

to many types of SCD data, used by practitioners with little training, valid, reliable, and sensitive 

to change in SCD research. We believe that the method we presented in this study is one such 

technique. 

JAGS was used to fit the model in this study. JAGS and BUGS (OpenBUGS and 

WinBUGS) use the same format and are more integrated into R. They involve the same ease of 

implementation and are easier for people already familiar with R. Stan (20016), a newer 

Bayesian software program requires the model to be defined in a more prescriptive manner and 

is supposed to be more efficient than JAGS. However, Stan would require more programming 

skills than JAGS and BUGS.  

The presented method only considered equal phase lengths. Although logically we do not 

foresee unequal phase lengths to affect the accuracy of the estimates, this cannot be known for 

certain. We did not consider models with slopes or other types of functional relationships 

between the independent and the dependent variable across phases. Multiple phase change 

designs such as ABAB designs are frequently used in SCDs because their setup can help show 

three demonstrations of treatment effect, in accordance with WWC guidelines. Extending the 

current study to multiple phase change designs would require investigating the performance of 

multiple unknown change-points model. Another avenue for research is developing an effect size 

that takes into account the accuracy of the change-point estimate. SCD researchers would greatly 

benefit from a study that recommends a course of effect sizes and other measures in studies with 

gradual or delayed effects.  
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Table 1 
Generating Values and Prior Distributions for the Parameters 
Parameters Meaning Prior Distributions Generating values 

𝛽𝛽01 Intercept of baseline 
phase 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑚𝑚𝑚𝑚1, 𝑠𝑠𝑠𝑠1) 
𝑚𝑚𝑚𝑚1 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0, 100) 
𝑠𝑠𝑠𝑠12 ~ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(1, 1) 

1 

𝛽𝛽02 Intercept of treatment 
phase 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑚𝑚𝑚𝑚2, 𝑠𝑠𝑠𝑠2) 
𝑚𝑚𝑚𝑚2 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0, 100) 
𝑠𝑠𝑠𝑠22 ~ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(1, 1) 

1 −  𝜎𝜎𝜎𝜎 

𝜎𝜎 Standard deviation of y 
within a phase 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0.1, 5) 0.2 

𝑡𝑡𝑏𝑏 Change-point where 
baseline phase ends 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐) 

𝑐𝑐 = (0, 0,
1

𝑇𝑇 − 4
,

1
𝑇𝑇 − 4

, … , 0, 0) 
5, 8, 10 

𝜌𝜌 Autocorrelation 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(−1, 1) 0.2, 0.5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 
Eta-squared in Percentages 

Sources RMSE-mean RMSE-mode Mean.SD 
d 45.54 65.59 71.93 

rho 2.92 2.74 0.23 
length 34.13 18.53 17.21 

d × length 15.37 11.70 9.65 
rho × length 1.23 1.21 0.65 

d × rho 0.08 0.09 0.15 
 



 

 

 

 

Table 3 
Parameter Estimates for Laski et al. (1988) 

  Baseline Phase  Treatment Phase 
Sub Param L95 Mdn U95 M SD  L95 Mdn U95 M SD 

1 𝛽𝛽0𝑝𝑝 17.16 30.22 40.16 29.39 6.37  55.17 59.79 64.17 59.74 2.29 
2  27.48 35.04 42.65 34.99 3.85  72.64 78.75 84.38 78.64 3.25 
3  -6.01 2.99 12.55 3.26 4.67  39.05 49.56 58.46 49.22 4.90 
4  14.23 20.12 25.88 20.13 2.97  52.05 59.10 66.51 59.22 3.66 
5  28.99 38.11 46.10 37.90 4.36  73.05 81.77 89.98 81.62 4.31 
6  54.45 59.27 64.25 59.24 2.46  78.55 83.07 87.46 83.07 2.26 
7  49.88 62.11 72.67 61.69 6.15  67.49 74.14 81.65 74.37 3.58 
8  36.67 50.04 59.63 49.23 6.04  68.82 80.05 99.09 81.64 7.95 
1 𝑡𝑡𝑏𝑏 3 4 4 3.58 0.51       
2  5 5 5 4.99 0.12       
3  7 8 9 7.88 0.82       
4  10 10 10 10.00 0.02       
5  7 7 7 7.00 0.03       
6  7 7 7 7.04 0.23       
7  3 4 14 6.16 3.91       
8  11 11 11 11.01 0.16       
1 𝜎𝜎𝑒𝑒 6.99 8.83 10.00 8.69 0.91       
2  7.36 9.05 10.00 8.90 0.81       
3  8.33 9.50 10.00 9.37 0.52       
4  8.95 9.72 10.00 9.62 0.34       
5  8.02 9.36 10.00 9.22 0.61       
6  3.98 6.19 9.14 6.37 1.36       
7  7.86 9.28 10.00 9.14 0.66       
8  8.75 9.65 10.00 9.55 0.39       
1 𝜌𝜌 -0.89 -0.47 0.02 -0.45 0.23       
2  -0.46 -0.15 0.18 -0.14 0.17       
3  -0.62 0.11 0.69 0.06 0.36       
4  -0.39 -0.06 0.27 -0.06 0.17       
5  -0.08 0.24 0.59 0.25 0.17       
6  -0.41 -0.17 0.08 -0.17 0.13       
7  -0.27 0.10 0.49 0.10 0.19       
8  -0.08 0.35 0.87 0.37 0.25       

Note. Sub = Subject, Param = Parameter, Mdn = Median, M = Mean; L95 = 2.5th percentile, U95 = 
97.5th percentile 



Table 4 
Parameter estimates for Laski et al. (1988) that varied between phases 

Sub Param Baseline Phase  Treatment Phase 
  L95 Mdn U95 M SD  L95 Mdn U95 M SD 

1 𝛽𝛽0𝑝𝑝 17.41 30.64 40.84 29.71 6.36  55.35 59.87 64.27 59.80 2.28 
2  27.19 35.04 42.32 35.00 3.82  72.90 78.70 84.72 78.53 3.69 
3  -5.75 3.10 12.93 3.39 4.68  39.55 49.57 58.93 49.26 4.93 
4  14.11 20.16 25.73 20.13 2.95  52.30 59.16 66.66 59.28 3.65 
5  29.59 38.25 46.48 38.06 4.30  73.39 81.72 90.03 81.64 4.23 
6  54.47 59.29 64.24 59.25 2.44  78.52 83.10 87.38 83.07 2.23 
7  50.11 62.00 72.71 61.62 6.08  67.60 74.10 81.80 74.31 3.63 
8  36.41 49.73 59.75 48.91 6.16  68.99 80.27 101.04 82.09 8.51 
1 𝜇𝜇 16.78 30.16 41.37 29.52 6.84  53.39 59.70 65.48 59.58 3.61 
2  26.27 35.02 43.70 34.91 4.67  71.30 78.67 85.52 78.48 4.23 
3  -6.17 3.03 13.89 3.29 5.26  38.59 49.47 60.11 49.14 5.64 
4  13.03 20.13 27.13 20.07 3.93  51.04 59.09 67.58 59.12 4.64 
5  28.24 37.88 47.20 37.72 5.13  72.50 81.59 90.87 81.37 5.16 
6  52.79 59.25 65.50 59.09 3.75  76.57 82.98 88.70 82.85 3.79 
7  49.16 61.95 73.32 61.54 6.67  65.94 73.77 82.39 73.92 4.75 
8  35.47 50.13 60.59 49.15 6.75  67.65 80.28 98.77 81.38 8.14 

Note. Sub = Subject, Param = Parameter, Mdn = Median, M = Mean; L95 = 2.5th percentile, U95 = 
97.5th percentile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 
Parameter estimates for Laski et al. (1988) that were fixed between phases 
Sub 𝑑𝑑 estimates  𝜎𝜎𝜀𝜀 estimates 

 L95 Mdn U95 M SD Mo  L95 Mdn U95 M SD Mo 
1 2.05 3.46 5.11 3.52 0.79 3.36  6.98 8.84 10.00 8.69 0.91 9.43 
2 3.55 4.92 6.49 4.96 0.77 4.85  7.36 9.05 10.00 8.90 0.80 9.55 
3 3.44 4.96 6.37 4.91 0.73 4.98  8.32 9.49 10.00 9.36 0.53 9.77 
4 3.08 4.06 5.10 4.07 0.51 4.01  8.94 9.71 10.00 9.62 0.34 9.87 
5 3.46 4.73 6.20 4.76 0.70 4.71  8.02 9.36 10.00 9.22 0.62 9.70 
6 2.08 3.87 5.79 3.91 0.97 3.77  4.04 6.19 9.18 6.36 1.35 5.88 
7 0.03 1.37 2.82 1.39 0.71 1.35  7.87 9.28 10.00 9.14 0.66 9.66 
8 1.37 3.16 6.11 3.41 1.27 2.82  8.78 9.66 10.00 9.55 0.39 9.85 
 𝜌𝜌 estimates  𝑡𝑡𝑏𝑏 estimates 

1 -0.89 -0.47 0.01 -0.45 0.23 -0.48  3 4 4 3.59 0.51 4 
2 -0.47 -0.15 0.16 -0.15 0.16 -0.15  5 5 5 4.99 0.15 5 
3 -0.64 0.12 0.70 0.08 0.36 0.22  7 8 9 7.89 0.83 7 
4 -0.38 -0.06 0.28 -0.06 0.17 -0.07  10 10 10 10.00 0.02 10 
5 -0.09 0.24 0.58 0.24 0.17 0.23  7 7 7 7.00 0.03 7 
6 -0.41 -0.17 0.09 -0.16 0.13 -0.17  7 7 7 7.04 0.24 7 
7 -0.27 0.09 0.49 0.10 0.19 0.09  3 4 14 6.14 3.90 3 
8 -0.07 0.36 0.87 0.38 0.25 0.32  11 11 11 11.01 0.15 11 
 𝜎𝜎𝜇𝜇2 estimates        

all 1492.
00 

3185.
20 

6073.
90 

3456.
40 

1328.
00 

2843.
50 

       

Note. 𝜎𝜎𝜇𝜇2 is the between-person variance, Sub = Subject, Param = Parameter, Mdn = Median, M = Mean, Mo = 
Mode, L95 = 2.5th percentile, U95 = 97.5th percentile, 

 

 

 



 

 
Figure 1. Dan’s challenging behavior data and posterior distribution of effect size from Neely 

et al. (2013) 
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Figure 2. ABAB design data from Lambert et al. (2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
RMSE vs Mean RMSE vs Mode RMSE vs MPSD 

Figure 3. Interaction plots of RMSEs of mean and mode, and MPSD 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 95% credibility intervals for phase length = 5 as a function of effect size 𝑑𝑑 and 
autocorrelation  𝜌𝜌 



Large posterior SD Small posterior SD 

  
Case 1: 𝑑𝑑 = 1,𝜌𝜌 = 0.5 Case 2: 𝑑𝑑 = 2,𝜌𝜌 = 0.5 

  
Figure 5. Plots and change-point posteriors of two cases 
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Figure 6. Multiple baseline data from Laski et al. (1988) 
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Figure 7a. Posterior densities of change-points for Laski data  Figure 7b. Posterior densities of 𝑑𝑑 for Laski data 

 

 


