
1 
 

Investigating Immediacy in Multiple Phase-change Single Case Experimental Designs 

Using a Variational Bayesian Unknown Change-Points Model 

 

Prathiba Natesan Batley 
University of North Texas, Denton, TX, USA 

 
Tom Minka 

Microsoft Research Cambridge, Cambridge, UK 
 

Larry Vernon Hedges 
Northwestern University, Evanston, IL, USA 

 

 

 

 

 

 

 

 

 

Accepted for publication in Behavior Research Methods 2020 

 

The research reported here was supported by the Institute of Education Sciences, U.S. 
Department of Education, through Grant R305D170041 to Northwestern University. The 
opinions expressed are those of the authors and do not represent views of the Institute or the U.S. 
Department of Education. 

 

 



2 
 

Abstract 

Immediacy is one of the necessary criteria to show strong evidence of treatment effect in 

single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no 

inferential statistical tool has been used to demonstrate or quantify it until now. We investigate 

and quantify immediacy by treating the change-points between the baseline and treatment phases 

as unknown. We extend Natesan and Hedges’ work to multiple phase-change (e.g. ABAB) 

designs using a Variational Bayesian (VB) unknown change-points model. VB was used instead 

of Markov chain Monte Carlo methods (MCMC) because MCMC cannot be used effectively to 

determine multiple change-points. Combined and individual probabilities of correctly estimating 

the change-points were used as indicators of accuracy of the algorithm. Unlike MCMC in the 

Natesan and Hedges’ (2017) study, VB was able to recover the change-points with high accuracy 

even for short time-series and in only a fraction of the time for all time-series lengths. We 

illustrate the algorithm with 13 real datasets. Advantages of the unknown change-points 

approach, Bayesian, and Variational Bayesian estimation for SCEDs are discussed. 
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Investigating Immediacy in Multiple Phase-change Single Case Experimental Designs 

Using a Variational Bayesian Unknown Change-Points Model 

Single case experimental designs (SCEDs) are a form of interrupted time series design 

where observations on a single subject (i.e. a single child, patient, or sampling unit) are measured 

repeatedly during a baseline phase and at least one intervention or treatment phase. They are 

widely used in education (e.g. Lambert, Cartledge, Hewrad, & Lo, 2006), psychology (e.g. Shih, 

Chang, Wang, & Tseng, 2014), and medicine (as n-of-1 designs, Gabler, Duan, Vohra, & 

Kravitz, 2011). President Obama’s State of the Union 2015 address emphasized personalized 

(precision) medicine initiatives. Subsequently, the National Institutes of Health established the 

precision medicine initiative cohort program. Based on credibility of evidence, the Oxford centre 

for evidence-based medicine ranked randomized n-of-1 trial evidence as level-1 evidence for 

treatment decision purposes (Howick et al., 2011). Given the increased interest in SCEDs, 

several agencies are setting methodological standards for SCEDs to ensure high quality causal 

inferences (e.g. American Speech-Language-Hearing Association, 2004; Cook et al., 2014; 

Kratochwill et al. 2013). The goal of most analyses in SCEDs is to show that the observations in 

the treatment phase are only a function of the treatment and that no alternate explanations exist.  

In SCEDs, no treatment is administered during the baseline phase and a treatment is 

administered during the treatment phase. The baseline and treatment phases are referred to as 

phases A and B, respectively. Visual analysis of a plot of observations over time is the most 

common SCED data analysis technique (Kratochwill et al. 2013). In SCEDs, evidence of 

treatment effect is demonstrated by establishing: (a) a stable pattern among the observations 

within each phase, (b) a difference in patterns of observations across phases, and (c) a change in 

the patterns of observations immediately following introduction or removal of treatment, which 
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is called immediacy. Establishing treatment effect in SCEDs also consists of showing three 

demonstrations of treatment effect along with absence of non-effects. Absence of non-effects is 

established by: (a) documenting the consistency of level, trend, and variability within phases, (b) 

documenting immediacy, proportion of overlap of observations across phases, and difference in 

the observed and predicted patterns of the observations, and (c) examining anomalies and 

external factors. Although establishing treatment effect using visual analysis alone may be easy 

for some data, this is not always the case. Difficulties may arise when: (a) immediacy is not 

possible due to the nature of the treatment, (b) errors are autocorrelated, and (c) the experimental 

effect size is not striking. 

Immediacy is one of the criteria for demonstrating strong evidence of treatment effect 

(Kratochwill et al., 2013). A rapid change in the observations across phases indicates an 

immediate effect. An immediate effect provides convincing inference that change in the outcome 

measure was due to manipulation of the independent variable.  When the treatment lacks 

immediacy, the researcher may not know whether the observations were solely a function of the 

treatment. Even though one knows when the administration of the treatment started or ended, one 

does not know when the treatment effect started or ended. Effect sizes computed by ignoring the 

lack of immediacy underestimate the treatment effect. Lack of immediacy in treatments that are 

expected to have immediacy compromises the internal validity of the design. However, no clear 

guidelines exist about decisively concluding the presence of immediacy. 

Improvement over the existing approach 

With the exception of Natesan and Hedges’ Bayesian unknown change-point model 

(BUCP, 2017), immediacy is usually established by computing the change in the mean or median 

levels between the last 3-5 observations in a phase and the first 3-5 observations in the 
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subsequent phase. In contrast, BUCP uses all data points to establish immediacy. Change-points 

are the time-points in the SCED where there is a change that is discerned by functionally 

different relationships between time and the outcome variable in the difference phases. In this 

confirmatory approach, BUCP is used to investigate and quantify immediacy in two-phase 

designs. This model confirms if a change has taken place where it is designed to happen. In the 

presence of immediacy and a clear treatment effect, the change-point posterior mode would be 

accurately estimated and the posterior standard deviation would be very small. Natesan and 

Hedges showed how analyzing the posterior of the change-point could be used to investigate and 

quantify immediacy in AB and multiple baseline designs (MBDs).  

However, AB designs cannot provide strong evidence of causality because they cannot be 

used to show three demonstrations of treatment effect, unless they are extended to multiple 

subjects as MBDs or replicated within a subject as multiple phase-change designs. Two-phase 

designs with only one participant have poor control of threats to internal validity because they do 

not account for other possible confounding effects that may explain treatment effect. A 

commonly used SCED is a multiple phase-change design (e.g. the ABAB design). Multiple 

phase-change designs contain at least two change-points. However, estimating multiple unknown 

change-points with small sample data with autocorrelation becomes quickly complicated. As a 

result, the popular Gibbs sampling algorithm will not compute efficiently for multiple phase-

change designs. This is because the change-points in a multiple change-point model are 

simulated one at a time from full conditional distributions rather than from the joint distribution 

(for more details about issues with this approach refer Chib, 1998). Because the draws from the 

posterior are not iid, the uncertainty in estimating a previous change-point affects the uncertainty 

in estimating subsequent change-points. As a result, wide credibility intervals will be obtained 



6 
 

for change-points. This approach renders the logic of confirming the presence of immediacy 

through investigating the standard errors of change points unusable. Therefore, there is a need to 

extend Natesan and Hedges’ confirmatory approach of quantifying immediacy to multiple phase-

change designs such as the ABAB, ABA’B, and ABCD designs using an alternate method.  

The ABAB design is a commonly used multiple phase-change reversal/withdrawal 

design. Assume that the target variable is problem behavior of a child with Autism. Effective 

demonstration of experimental effect would be indicated by a clear difference in the functional 

relationships between the scores across the phases. Specifically, the child’s scores within the 

baseline phase (A1) would be larger than his scores in the treatment phase (B1). In an ABAB 

design, the treatment is withdrawn (A2) after B1 and then reintroduced (B2). Clear increase in 

problem behavior from B1 to A2 followed by a decrease in problem behavior from A2 to B2 are 

two additional distinct demonstrations of experimental effect. ABAB-type designs are referred to 

as withdrawal designs. In some designs, the treatment may not be completely withdrawn but 

replaced by another treatment, or serve as baseline for the next target behavior (changing 

criterion design). 

However, not all treatments are aimed at reverting to baseline behavior following 

withdrawal. Some treatments, especially in health, may aim for an improvement in the second 

baseline phase rather than reversal to the original baseline’s range of values. That is, studies may 

aim for a treatment effect that lasts even after the treatment phase is complete (Tate et al. 2013). 

Examples include improving communication skills, anger management techniques, and 

remediating gait dysfunction. Such a design would be an ABA’B design. Similarly, there are 

ABCD designs where the four phases may differ in their treatments.  
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Purpose 

The purpose of the present study is to examine the performance of a variational Bayesian 

unknown change-points model in investigating and quantifying immediacy in multiple phase-

change SCEDs. The first part of the study uses simulation to investigate the performance of the 

model for various data conditions. To this end, variational Bayesian (VB) method was used to 

estimate the parameters of an unknown change-point model with autocorrelated errors and 4 

phases for commonly occurring data conditions in SCED research. The number of time-points 

per phase, autocorrelations, and standardized mean difference effect sizes were varied to 

simulate different data conditions that would mimic real life SCED data (Shadish & Sullivan, 

2011). The goal of the present study was two-fold: (1) to test the feasibility of variational 

Bayesian in estimating the parameters of the 4-phase unknown change-point model with 

autocorrelations and (2) to identify the conditions that would be required to estimate the 

parameters of the said model so that SCED researchers can use the model to investigate 

experimental effects in SCEDs.  

In the second part, the feasibility of these models to real data is tested by fitting the model 

to 13 datasets from 6 ABAB studies published in the last five years. These allow researchers and 

practitioners to understand the efficiency of the algorithm under various data conditions and 

illustrate how the method can be applied to real data. We use VB estimation to overcome the 

challenges of the Gibbs sampler. The proposed method extends and differs from the one 

presented by Natesan and Hedges (2017) in three ways: (a) it estimates multiple change-points 

instead of 1 change-point, (b) it evaluates the accuracy of the change-points using probabilities 

rather than width of credibility intervals, and (c) it uses VB instead of MCMC to estimate the 

parameters. Although the width of credibility intervals can be obtained from the probabilities, we 
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chose to use probabilities of obtaining the correct combination of change-points as a diagnostic 

for our study. This is because we are interested in the correct estimate of the combination of 

change-points and not a single change-point alone. To our knowledge, this is the first inferential 

statistical method that can confirm immediacy in multiple phase-change designs. This study is 

also the first of its kind to apply VB to SCEDs. 

Quantitative Challenges in SCEDS 

SCED data are often autocorrelated and have only a few observations per case. For 

instance, 45.3% of the studies reviewed by Shadish and Sullivan (2011) had 5 or fewer points per 

phase. The presence of autocorrelation in SCEDs: (a) is impossible to detect through visual 

analysis (Kazdin, 2011), (b) increases Type I errors (Matyas & Greenwood, 1990), and (c) is 

associated with low interrater reliabilities (Brossart, Parker, Olson, & Mahadevan, 2006). 

Therefore, quantitative methods for SCEDs have been gaining momentum in the recent years 

(e.g. Hedges, Pustejovsky, & Shadish, 2012, 2013; Moeyaert, Ferron, Beretvas, & Van den 

Noortgate, 2013; Shadish, et al, 2015). However, autocorrelated errors violate the independence 

of observations assumption of most parametric and non-parametric statistics and result in biased 

estimates. Frequentist estimates of autocorrelation are negatively biased and have larger 

sampling errors for samples with less than 50 observations (Shadish, Rindskopf, Hedges, & 

Sullivan, 2013). Therefore, the researcher has to depend on large sample methods such as the 

maximum likelihood (ML). However, SCED sample sizes are too small to work well with ML.  

With the exception of Natesan and Hedges (2017), all quantitative developments in 

SCEDs assume that the observed variable truly belongs to the phase it is designed to belong. 

However, this may not always be the case, especially when latency is expected. Latency happens 

when a treatment takes time to take effect when administered or to stop taking effect when 
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removed. Although latency is not desirable in SCEDs, it may be expected in some cases due to 

the nature of the treatment and the outcome variable. For instance, a child diagnosed with 

Autism may not respond immediately to a certain therapy or a drug may take some time to 

excrete completely out of the human body. In such cases, one must ascertain gradual and/or 

delayed effects or account for these with appropriate analytic strategies to untangle these from 

long-term treatment effects (Duan, Kravitz, & Schmid, 2013). Our method can be used to 

evaluate immediacy, which is one aspect of the quantifying SCED findings via transparent, 

objective, and replicable procedures. 

Need for the Present Study 

Several types of SCEDs are used in practice. Maggin et al. (2011) reported that 

withdrawal designs such as ABAB are the most commonly used designs in SCEDs. The Institute 

of Education Sciences (IES) What Works Clearinghouse (WWC) Pilot Standards for single-case 

designs (Kratochwill et al., 2013) recommended showing three different demonstrations of the 

experimental effect at three different points in time within a single case or across different cases 

for successful demonstration of experimental effect. The single-case reporting guideline in 

behavioural interventions (SCRIBE) SCED reporting guidelines (Tate et al., 2016) also reiterated 

the advantages of multiple phase-change designs over two-phase designs. We can expect to see 

an increase in the use of multiple phase-change designs. Therefore, there is an immediate need 

for an inferential tool to investigate and quantify immediacy in multiple phase-change designs. 

The proposed method can be applied in all cases of four phase designs because it assumes 

that the four phases are not related to each other. Subsequently, the parameters of the four phases 

(e.g. intercepts, slopes) are estimated independent of each other in the proposed algorithm. 

Therefore, the model in the present study can be applied to any SCED with four phases. 
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Establishing immediacy is an important criterion for demonstrating strong evidence of 

treatment effect in SCEDs (Kratochwill et al., 2013). This is because the researcher has more 

evidence to make a case that a change in the dependent variable is initiated by a change in the 

treatment condition. In addition to confirming immediacy, there is a need to quantify the 

evidence that confirms immediacy. According to AERA guidelines, the presence of an effect 

must be accompanied by an index of uncertainty of that effect (AERA, 2006). The proposed 

method can be a valuable addition to the SCED researchers’ toolkit because it both identifies and 

quantifies immediacy. Additionally, this quantification of immediacy sheds light on how reliable 

the slope and intercept estimates of the phases are. For instance, when there is lack of clear 

immediacy, slopes and intercepts will have wider credible intervals. 

The Unknown Change-points Model 

In an SCED with clear treatment effect, the dependent variable is expected to be a 

function of the phase to which it belongs (Natesan & Hedges, 2017). Therefore, in the presence 

of immediacy and treatment effect, a change in phase is reflected by the change in the function 

that maps the observation to its corresponding phase. In the present study, an intercept-only 

model is fitted to each phase where the boundary between the phases is assumed unknown a 

priori. The data define the change-points between the phases. Treatment effect is indicated based 

on the proximity between the estimated and true values of the change-points. By allowing the 

data to speak for themselves, this confirmatory approach investigates and quantifies the presence 

of immediacy or delayed effects in SCEDs.  

Several approaches to change-point models have been proposed in the last few decades. 

A least squares estimation approach (Bai, 1994, 1997), Bayesian analysis of Poisson distributed 

data (Raftery & Akman, 1986), Bayesian online change-point detection (Adams & McKay, 
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2007) extensions of BUCP to multiple unknown change-points using hidden Markov models, 

genetic algorithms, and annealing stochastic approximation, respectively by Chib (1998), Jann 

(2000), Jeong and Kim (2013), and Kim and Cheon (2011) are some examples. BUCPs have 

been applied in ecology (Thomson et al., 2010), marine biology (Durban & Pitman, 2011), 

hydrometeorology (Perreault, Bernier, Bobée, & Parent, 2000), signal processing (Punskaya et 

al., 2002), and stock data (Lin, Chen, & Li, 2012).  Recently Kim and Jeong (2016) developed an 

approach to change-point modeling in autocorrelated time-series where the number of change-

points is unknown.  Barry and Hartigan (1993), and Carlin, Gelfand, and Smith (1992) provide 

good background materials for Bayesian change-point problems. 

Bayesian Estimation 

Bayesian methods often outperform classical methods in particularly small samples, 

allow more probabilistic interpretation of statistics than classical methods, and can more easily 

accommodate model complexities such as using distributions that reflect the scale of the 

observed variable, modeling autocorrelations, and representing hierarchical data structure. 

Bayesian estimation works well with small sample data because it does not depend on 

asymptotic or large sample theory (Ansari & Jedidi, 2000; Gelman, Carlin, Stern, & Rubin, 

2004). This makes Bayesian particularly advantageous for SCEDs. Bayesian estimates a 

probability distribution for each parameter. This posterior distribution can be used to compute 

any summary statistic for the parameter of interest and its 95% highest density interval (HDI) 

can be directly interpreted as having 95% probability of containing the true value (Lynch, 2007). 

Posteriors of change-points with high probability mass at several time-points indicate weak 

evidence of treatment effect. Bayesian estimates of autocorrelation have the advantage of being 

more accurate than frequentist estimates. Frequentist confidence intervals of autocorrelation have 
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undercoverage (Shadish et al., 2013). Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013) 

provide a comprehensive discussion of Bayesian methods. 

Variational Bayesian 

Variational Bayesian (VB) is a type of Bayesian inference that is computationally more 

efficient than MCMC (e.g. Natesan, Nandakumar, Minka, & Rubright, 2016). For models having 

smooth and unimodal posterior distributions, the cost of Bayesian inference can be significantly 

reduced by making analytic approximations. VB (Beal & Ghahramani, 2003) inference is one 

such approach that consists of fitting a simple approximating family (such as Gaussian or 

Gamma) to the posterior distribution by minimizing Kullback-Leibler (KL) divergence.  KL 

divergence is a non-symmetric measure of the difference between the distributions (Kullback & 

Leibler, 1951). Computationally, the VB procedure visits each random variable in the model and 

incrementally improves its posterior approximation, repeating this for several iterations. Each 

step is similar in complexity to Gibbs sampling but instead of drawing thousands of samples, 

variational inference typically sweeps through the model a few dozen times before convergence. 

Beal and Ghahramani (2003) and Bishop (2006) are some good background materials in VB. 

The Infer.NET software program (Minka, Winn, Guiver, & Knowles, 2012) provides several 

options for performing KL divergence minimization. When compared to MCMC, which 

provides a technique to approximate the exact posterior using a set of samples, VB provides a 

locally-optimal, exact analytical solution to the posterior.   

Model and Notation 

A continuous, normally distributed dependent variable with no trend (slope) is considered 

in the simulation study. This can be extended to models with trend by estimating the slopes as 
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shown in the study 2 section which illustrates the algorithm with real data. This framework can 

be adapted for different variable and distribution types by modifying equations 1, 7, and 8. 

Consider the observed value at time 𝑦𝑦𝑡𝑡, which follows a normal distribution with the mean of 𝜇𝜇𝑡𝑡 

which is the expected value of the target behavior at time t and standard deviation of 𝜎𝜎𝜀𝜀 as shown 

in equation 1.  

 𝑦𝑦𝑡𝑡 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜇𝜇𝑡𝑡,𝜎𝜎𝜀𝜀2).  (1) 

In SCEDs the errors of the data are typically considered to be lag-1 autocorrelated (Huitema, 

1985; Huitema & McKean, 1998, 2000). It is of interest to note that although autocorrelations of 

errors are modeled in SCED data they are never interpreted and are considered only as a 

nuisance parameter. Consider an ABAB design with 4 phases, that is, 3 phase changes at times 

𝑖𝑖1, 𝑖𝑖2,𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖3, and a total of 𝑇𝑇 time-points. The predicted value 𝑦𝑦�𝑡𝑡 at time point t can be modeled 

as, 

 𝑦𝑦�𝑡𝑡 = 𝜌𝜌𝑟𝑟𝑡𝑡−1 + 𝛽𝛽0𝑝𝑝, (2) 

where 𝜌𝜌 is the autocorrelation, 𝑟𝑟𝑡𝑡−1is the residual at time 𝑡𝑡 − 1, and 𝛽𝛽0𝑝𝑝 is the intercept of the 

linear regression model for phase 𝑝𝑝 the time-point 𝑡𝑡 belongs to. If 𝑝𝑝ℎ𝑐𝑐𝑡𝑡 represents the phase 

change at a given time-point 𝑡𝑡, that is, it equals 1 if 𝑡𝑡 denotes the start of a new phase and 0 

otherwise, the residual is modeled for P phases as: 

 𝑟𝑟𝑡𝑡−1 = �
𝑔𝑔𝑝𝑝, 𝑖𝑖𝑖𝑖 𝑝𝑝ℎ𝑐𝑐𝑡𝑡 = 1

𝑦𝑦𝑡𝑡−1 − 𝑦𝑦�𝑡𝑡−1, 𝑖𝑖𝑖𝑖 𝑝𝑝ℎ𝑐𝑐𝑡𝑡 = 0 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (3) 

 𝑔𝑔𝑝𝑝 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 �0, 𝜎𝜎𝜀𝜀2

(1−𝜌𝜌2)� ;𝑝𝑝 = 1, . . ,𝑃𝑃. (4) 
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Equation 4 gives the relationship between autocorrelation, the variance of the random error (𝜎𝜎𝜀𝜀2) 

and the white noise created by the combination of autocorrelation and random error (e.g. Natesan 

& Hedges, 2017). The intercepts 𝛽𝛽0𝑝𝑝 at time t are modeled as: 

 
  𝛽𝛽0𝑝𝑝 =  �

𝛽𝛽01, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑖𝑖1             
𝛽𝛽0(𝑗𝑗+1), 𝑖𝑖𝑖𝑖 𝑖𝑖𝑗𝑗 < 𝑡𝑡 ≤ 𝑖𝑖𝑗𝑗+1
𝛽𝛽0𝑃𝑃, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒          

; 𝑗𝑗 = 1, 2 
(5) 

The following priors were used: 

 𝜎𝜎𝜀𝜀~𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(1, 1) (6) 

 𝜌𝜌 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0, 100); 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 (−1, 1) (7) 

 𝛽𝛽0𝑝𝑝~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0, 100);𝑝𝑝 = 1, … ,𝑃𝑃 (8) 

The priors are weakly informative. All change-points were specified to be sampled from discrete 

uniform distributions ranging from time-point 1 to 𝑇𝑇 and then ordered. In equation 9, cat stands 

for categorical distribution. The term 𝑖𝑖𝑝𝑝 would indicate one of the P-1 change-points based on 

the probabilities given in equation 10. In this case, there is equal probability of the time-point 

being any of the change-points. 

 𝑖𝑖𝑝𝑝~ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑝𝑝);𝑝𝑝 = 1, … ,𝑃𝑃 − 1  (9) 

 𝑝𝑝𝑝𝑝 =  �
1
𝑇𝑇

,
1
𝑇𝑇

, … ,
1
𝑇𝑇
� ; 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑝𝑝𝑝𝑝) = 𝑇𝑇 (10) 

 𝑖𝑖1 < 𝑖𝑖2 < 𝑖𝑖3 (11) 

The ordered constraints in equation 11 are modeled as loops in Infer.NET. When the estimated 

values of 𝑖𝑖1, 𝑖𝑖2,𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖3 are the same as the true value, that is, when the correct combination of 

these parameters has the highest probability in the marginal posterior, we can say that we have 

some evidence of immediacy. Note that immediacy can only be indicated and not confirmed. 
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Method 

To perform Bayesian inference in this model, the method starts by enumerating all 

possible combinations of change-point locations. The number of change-points is assumed 

known.  For each combination, variational inference was run to get approximate posteriors for 

the parameters (𝜌𝜌,𝜎𝜎𝜀𝜀2,𝛽𝛽0𝑝𝑝) as well as an approximate value for the marginal likelihood. The 

Infer.NET software library (Minka et al., 2014) was used to perform these computations. VB 

implementation in Infer.NET is similar to the implementation of syntax in popular Bayesian 

software programs such as JAGS. Because the prior is uniform, the marginal likelihood is 

proportional to the marginal probability of the change-point locations. Therefore, we take the set 

of marginal likelihoods just computed and normalize them to get the marginal posterior over the 

change-point locations. These probabilities of the combinations of change-points obtained and 

the marginal posteriors can be used to make inferences about immediacy. If the correct 

combination of change-points is estimated as having the maximum probability, sufficient 

evidence can be deemed for immediacy.  

Study 1: Simulation 

Three phase lengths (𝑙𝑙 =  5, 8,𝑎𝑎𝑎𝑎𝑎𝑎 10 time-points per phase), four standardized mean 

difference values (𝑑𝑑 =  1, 2, 3, 5), and four autocorrelation values (𝜌𝜌 = 0, 0.2, 0.5, 0.8) were 

simulated based on commonly occurring values in single case studies (Maggin, O’Keefe, & 

Johnson, 2011; Shadish & Sullivan, 2011). Although some autocorrelation is always present in 

SCED data, the autocorrelation value of 0 was added as a reference point to see how presence of 

autocorrelation affects accuracy of estimates. One hundred datasets were generated for each 

combination of conditions resulting in 4800 datasets in a fully crossed 3 × 4 ×  4 design. The 
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intercepts of the baseline phases were set to 0 and the treatment phases computed as 𝜎𝜎𝜎𝜎, where 

the standard deviation within each phase 𝜎𝜎 = 0.2.  

Diagnostics and Interpretation 

The accuracy of the algorithm was examined using average probability weighted norm 

(APWN), average probability of obtaining the accurate combination (𝑝̅𝑝), and the combinations 

with highest average probabilities. If in the 𝑟𝑟𝑟𝑟ℎ replication 𝒑𝒑𝒓𝒓 is the vector of true values of 

change-points and 𝒒𝒒𝒓𝒓 is the vector of change-point estimates, and Pr(𝒒𝒒𝒓𝒓) is the probability of 𝒒𝒒𝒓𝒓 

where within a given replication ∑ Pr(𝒒𝒒𝒓𝒓) = 1𝑞𝑞𝑟𝑟 , then the APWN over 𝑅𝑅 replications is given 

by: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑅𝑅
�� Pr(𝒒𝒒𝒓𝒓)‖𝒒𝒒𝒓𝒓 − 𝒑𝒑𝒓𝒓‖

𝒒𝒒𝒓𝒓

𝑅𝑅

𝑟𝑟=1

 (12) 

In formula 12, ‖𝒒𝒒𝒓𝒓 − 𝒑𝒑𝒓𝒓‖ refers to the norm or the positive length between the two vectors. 

APWN weights the distance between the estimated and true values with the probability of 

obtaining them, while 𝑝̅𝑝 (pbar) considers only the probability of correctly estimating the true 

values. APWN is an unbounded statistic, is a combination of distance and probability, and 

depends on the phase length, in addition to the other quantities in formula 12. The probability of 

the estimates along with the distance between the true and the estimated values are both 

important in determining the accuracy of the estimate, which is the reason for using APWN. If 

the probability of a combination is high and the discrepancy between the combination of 

estimates and the true values (‖𝑞𝑞𝑟𝑟 − 𝑝𝑝𝑟𝑟‖) is high, APWN will be large indicating poor estimates. 

If either the probability or the discrepancy is low, APWN will be smaller indicating better 

estimates. Thus, smaller values of APWN are more desirable, indicating more accurate estimates. 

The fraction of datasets in a given condition where the true values of the change-points were 



17 
 

estimated was also computed as a diagnostic. Root mean squared errors and average standard 

errors were also computed for the autocorrelations and intercept estimates. Thirteen ANOVAs 

were conducted with APWN, 𝑝̅𝑝, and fraction correct, and RMSEs and average standard errors of 

intercepts and autocorrelations as the dependent variables, respectively. The independent 

variables in the ANOVAs were 𝑑𝑑, 𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌. The eta-squared effect sizes from the ANOVAs were 

used to understand the pattern of the accuracy of the estimates with change in the data 

conditions. Coverage rates could not be computed because VB estimates standard errors and not 

the credible intervals. 

Results 

The results of the simulation and the eta-squared effect sizes from independent ANOVAs 

for the change-point diagnostics are reported in Tables 1 and 2, respectively. The correct 

estimates of change-points had the maximum average probability for all conditions except when 

the standardized mean difference 𝑑𝑑 = 1 for autocorrelations less than 0.8. Even in cases where 

an incorrect combination was estimated with maximum average probability, the probability of 

the correct combination was very close to the maximum average probability (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 <

 .005).  In all other cases, the correct change-point combinations had the highest average 

probability of being estimated. APWN decreased very slightly with 𝜌𝜌 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙 but decreased 

substantially with increase in 𝑑𝑑. The average probability 𝑝̅𝑝 and fraction of datasets with correct 

change-point estimates both increased with increase in 𝑑𝑑 (i.e. standardized mean difference) but 

decreased with 𝜌𝜌 (i.e. autocorrelation). Although phase length did not have a high effect size on 

APWN, 𝑝̅𝑝, and fraction correct, there seems to be an interaction between phase length and d. For 

phase lengths of 8 or more, 𝑝̅𝑝 and fraction correct increased drastically when d increased from 3 

to 5 while APWN decreased with increase in d. Standardized mean difference explained the 
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maximum variation in APWN, 𝑝̅𝑝, and fraction correct as seen in Table 2. Variation in 

autocorrelation explained medium variance in APWN, while all other main and two-way 

interaction effects were low-medium on APWN and almost negligible on 𝑝̅𝑝 and fraction correct. 

These trends are clear from the interaction plots in Figure 1. Although the model seems to 

require a large effect size, the correct change-point combination was identified for most data 

conditions indicating that immediacy can be identified even for datasets with effect sizes as small 

as 2 standard deviations apart.  

TABLES 1-4 AND FIGURE 1 

RMSEs and average standard errors of the autocorrelation and intercept estimates by 

condition are shown in Table 3. The corresponding effect sizes from the ANOVAs are shown in 

Table 4. Variance in RMSE of autocorrelations was explained the most by the true value of 

autocorrelation, phase length, and their interaction as shown in Figure 1. Autocorrelation RMSE 

decreased with increase in phase length and decrease in true autocorrelation value. Average 

standard error of autocorrelation, and of all intercept estimates decreased with increase in phase 

length as expected. Although RMSEs of the intercepts was explained by most of the data 

conditions, all these RMSEs varied only to the second decimal place. Therefore, these are not 

interpreted.  

Study 2: Real data applications 

We analyzed 13 datasets from 6 ABAB design studies published between the years 2012 

and 2015 (Allen, Baker, Nuernberger, & Vargo, 2013; Lin & Chang, 2014; Neely, Rispoli, 

Camargo, Davis, & Boles, 2013; Shih, et al., 2014; Shih, C. -H., Chiang, & Shih, C. T., 2015; 

Shih, C.-H., Wang, Chang, & Kung, 2012). The dependent variables in these studies included: 

challenging behavior, percentage of intervals of academic engagement, number of occurrences of 
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correct moves, rate of collaborative walking, number of correct responses per session, and rate of 

collaborative pointing for children with Autism, and problem behavior for a woman with dual 

diagnosis of moderate intellectual disability and schizoaffective disorder. The number of time-

points per phase ranged from 3 to 21 across these studies. Of the 13 datasets analyzed, 11 sets of 

change-point estimates had 98-100% probability of being estimated accurately. The estimation 

took less than 3 seconds for each dataset. The set of change-point estimates from one dataset 

(Shih et al., 2012) had 92.98% accuracy, while a different set of change-points were estimated to 

be 99.4% accurate for another dataset (Nealy et al., 2013). We discuss these probabilities, their 

interpretation, and the reasons for the inaccurate estimates. We fit the same unknown change-

points model with intercepts for all datasets considering the dependent variable to be intervally-

scaled. Upon visual inspection, we decided that this is a reasonable model to be fit for all data for 

illustration purposes.  

Consider the data for subject 1 from Shih et al, (2012) as shown in Figure 2. The true 

values of change-points are at 8, 26, and 33. The corresponding estimates for all parameters are 

shown in Table 5. The only probable values for change-points were estimated to be at 8, 26, and 

33. The pattern is also clear from the data. The standard error of the intercepts range from 0.289 

to 0.498.  The posterior densities of the change-points had only a single probable value. Both 

change-point estimates and their accuracy (probability) show support for immediacy. 

FIGURE 2, TABLE 5 HERE 

Consider the estimates of subject 2 from the same study whose plot and posteriors are 

shown in Figures 3a and 3b, respectively. Although the probability value for the change-point 

estimates and the individual probability for 8 being the first change-point is only 0.93, the 

probability of every other change-point estimate being the first change-point is less than 2%. 
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Similarly, the probability of 26 and 33 being the second and third change-points is greater than 

99.5% as seen in Table 5. This shows strong evidence of immediacy and that the changes indeed 

occurred at the time-points they were designed to take place. The standard errors of intercepts 

range from 0.22-0.37 and that of autocorrelation is 0.11.  

Let us consider the change-point estimates that were inaccurate (Table 5). The data and 

the posterior plots are given in Figures 4a and 4b, respectively. The probability of the set of 

change-points and each change-point is more than 99%. The first and the third change-points 

were accurately estimated but the second data-point was estimated to be 13 instead of 12. Closer 

inspection of the data plot sheds light on why this is the case. The observed values at time points 

12 and 13 are much closer (3% difference) than the values at 13 and 14 (15% difference). There 

is a possible washout effect from the treatment in this case and therefore indication of lack of 

immediacy. That is, the treatment effect possibly lingered on even after the treatment was 

stopped. 

FIGURE 4 HERE 

Discussion 

The present study demonstrates how the variational Bayesian unknown change-points 

model could be used to investigate and quantify immediacy in SCED data for multiple phase-

change designs. VB estimates in the present study were better than the MCMC estimates in 

Natesan and Hedges’ because unlike in the latter study phase length had a very small effect on 

the accuracy of the estimates in our study. This means even conservatively researchers need only 

five data-points per phase to estimate the change-points with accuracy as long as the 

standardized mean difference effect size was at least 2. However, accuracy does improve with 

increase in effect size. This is a major improvement over the Natesan and Hedges (2017) study 
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which required eight data points per phase but for a simpler model with only 2 phases (AB 

model). There are several advantages to the method we presented: (a) It is an inferential 

statistical tool that can be used to investigate and quantify immediacy in multiple phase-change 

designs, which are commonly-used SCEDs; (b) Bayesian methods allow the user to examine the 

shape of the posterior distribution of the change-points. These help provide a clearer evaluation 

of the quality of the estimates because the researcher has more information about the probability 

of each value the change-point can take; (c) By treating the change-points as unknown, the 

researcher can remain objective, allow the data to speak for themselves, and confirm the 

presence of treatment effect. This is also useful to identify presence and length of delayed 

effects; (d) The model can be modified to accommodate other distribution types, data types, 

functional relationships between time and the dependent variable, and additional explanatory 

variables; (e) By using VB, the amount of time taken to estimation is reduced to a fraction of 

what would be taken by commonly used Bayesian software programs such as BUGS (Lunn, 

Spiegelhalter, Thomas, & Best, 2009) and JAGS (Plummer, 2003); and (f) The model is a one-

stop shop for simultaneously estimating all the associated parameters in the model such as the 

intercepts and slopes of the phases, effect sizes, and autocorrelations.  

Although the simulation results show high accuracy when the data have standardized 

difference between the phases of 5 or higher, we believe this model shows promise in terms of 

still estimating the correct combination of change-points even for effect sizes of 2 with a phase 

length of 5. We acknowledge that an effect size of 5 places a heavy demand on the data. 

However, requiring only 5 data-points per phase for a complex model such as this is still a 

significant advantage.  



22 
 

Strong treatment effect is indicated when the change-point posterior mode is accurately 

estimated, and the distribution is narrow and clearly unimodal. Inaccurate estimates, as in Dan’s 

case, may indicate possible washout or lag effect. This can be a valuable tool for treatments and 

interventions that are effective but do not have immediacy. A posterior distribution with large 

variance but surrounding the true value indicates weak treatment effect and possible lack of 

immediacy. A posterior distribution with large variance but with most of the probability mass 

concentrated around the true value indicates moderate to strong treatment effect depending on 

the shape of the posterior.   

To our knowledge, the present study is the first of its kind to apply VB estimation to 

SCEDs. VB generally trades in accuracy for speed. However, the approximation by VB was 

negligible. For two-phase models, Natesan and Hedges (2017) recommended a standardized 

mean difference of at least 3 to detect immediacy. For practical purposes, the correct 

combination is still chosen even with standardized mean difference as little as 2. This means 

practitioners can still be able to show some evidence of immediacy for smaller effect sizes. 

However, given the complexity of the model, larger effect sizes do improve accuracy. The 

multiple phase-change model considered in the present study has 3 latent change-point variables 

and is therefore more complicated than the bi-phasic model which has 1 latent change-point 

variable. The bi-phasic Bayesian model took about 3 minutes to run whereas the VB model took 

up to 3 seconds to run. These data indicate that VB is a viable and efficient method to be used in 

SCEDs.  

However, we do not declare that the model presented in this study is the ideal solution for 

SCED data analysis. First, the model places heavy demand on the data such as requiring an effect 

size of at least 5 for high accuracy of estimation. Second, it is unclear how the priors have 
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affected the estimates. Although we used weakly informative priors, the estimates might be 

improved by using more informative priors especially in small sample cases such as these. This 

is an avenue for further research. Third, we were unable to compare these estimates with MCMC 

because of convergence issues in the latter. Therefore, we are unable to declare these estimates 

as being superior to MCMC, although we can note that this model is more feasible than its exact 

MCMC counterpart. Finally, there is a learning curve associated with implementing VB for 

estimating the parameters of an unknown change-points model. Still readers can access the 

program by downloading the zip folder in the supplemental material. The program is currently 

set to run 4 phase models for continuous data. Extensions of the script to accommodate these 

other models will be released pending investigation of the corresponding algorithms.  
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Table 1 
Diagnostics of Change-points from the Simulation 

𝑙𝑙 𝜌𝜌 𝑑𝑑 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝̅𝑝 𝑚𝑚𝑚𝑚𝑚𝑚_𝑝̅𝑝**  Highest prob locs*  f(correct) 

       𝑒𝑒(𝑖𝑖1) 𝑒𝑒(𝑖𝑖2) 𝑒𝑒(𝑖𝑖3)   
5 0 1 6.148 0.003◊ 0.003◊  5 11 13  0.02 
  2 5.127 0.04       0.21 
  3 3.213 0.222       0.56 
  5 0.424 0.81       0.90 
 0.2 1 6.079 0.003 0.004  8 12 15  0.03 
  2 5.112 0.046       0.13 
  3 3.341 0.218       0.46 
  5 0.507 0.798       0.89 
 0.5 1 5.856 0.007 0.008  5 8 10  0.02 
  2 5.011 0.054       0.10 
  3 3.643 0.196       0.36 
  5 0.844 0.728       0.85 
 0.8 1 5.253 0.023       0.04 
  2 4.825 0.08       0.14 
  3 4.081 0.169       0.30 
  5 1.79 0.56       0.67 
8 0 1 8.407 0.002 0.002  14 15 24  0.01 
  2 5.064 0.063       0.24 
  3 1.766 0.328       0.58 
  5 0.147 0.867       0.96 
 0.2 1 8.579 0.002 0.003  3 17 24  0.01 
  2 5.815 0.055       0.20 
  3 2.627 0.298       0.53 
  5 0.206 0.844       0.95 
 0.5 1 8.56 0.002 0.008  8 16 20  0.01 
  2 6.819 0.044       0.11 
  3 4.232 0.225       0.47 
  5 0.674 0.754       0.84 
 0.8 1 7.805 0.02       0.04 
  2 7.085 0.078       0.10 
  3 5.841 0.188       0.27 
  5 2.897 0.481       0.57 

10 0 1 8.616 0.001 0.002  10 25 30  0.00 
  2 4.274 0.078       0.20 
  3 1.164 0.412       0.56 
  5 0.087 0.921       0.94 
 0.2 1 9.161 0.001 0.003  10 25 30  0.01 
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  2 5.755 0.059       0.20 
  3 1.976 0.369       0.49 
  5 0.136 0.887       0.93 
 0.5 1 9.212 0.004 0.006  10 20 28  0.01 
  2 7.606 0.048       0.11 
  3 4.522 0.25       0.39 
  5 0.685 0.795       0.88 
 0.8 1 9.85 0.025       0.05 
  2 9.16 0.076       0.12 
  3 7.654 0.165       0.23 
  5 3.317 0.568       0.68 

Note: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑝̅𝑝 is the average probability of the combination with the highest probability. * 
Only incorrect combinations are shown, blanks refer to accurately estimated combinations. 
**𝑚𝑚𝑚𝑚𝑚𝑚_𝑝̅𝑝 =  𝑝̅𝑝 for correct combinations and therefore not shown. ◊𝑝̅𝑝 = 0.0027;𝑚𝑚𝑚𝑚𝑚𝑚_𝑝̅𝑝  =
0.0032. f(correct) represents the fraction of datasets with correct change-point estimates 
for a given condition 
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Table 2 
Eta-squared of Change-point Diagnostics in Percentages from the 
ANOVAs 
Factor APWN 𝑝̅𝑝 fraction(correct) 
𝑙𝑙 3.84 0.35 0.02 

𝜌𝜌 7.36 1.96 3.71 

𝑑𝑑 76.19 93.33 92.65 

𝜌𝜌 × 𝑑𝑑 4.01 3.59 3.06 

𝑙𝑙 ×  𝜌𝜌 3.85 0.20 0.18 

𝑙𝑙 × 𝑑𝑑 3.64 0.33 0.14 
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Table 3: 
RMSE and Average SE of Parameter Estimates from Simulation 
True values  RMSE  Average SE 
𝑙𝑙 𝜌𝜌 𝑑𝑑  𝜌𝜌 𝛽𝛽01 𝛽𝛽02 𝛽𝛽03 𝛽𝛽04  𝜌𝜌 𝛽𝛽01 𝛽𝛽02 𝛽𝛽03 𝛽𝛽04 
5 0 1  0.17 0.03 0.06 0.03 0.01  0.19 0.13 0.09 0.09 0.07 
  2  0.14 0.02 0.02 0.05 0.01  0.19 0.09 0.08 0.09 0.08 
  3  0.14 0.01 0.02 0.01 0.02  0.19 0.09 0.08 0.09 0.08 
  5  0.13 0.00 0.02 0.00 0.02  0.20 0.09 0.09 0.09 0.09 
 0.2 1  0.32 0.02 0.06 0.02 0.01  0.19 0.13 0.08 0.09 0.07 
  2  0.27 0.03 0.08 0.00 0.02  0.19 0.12 0.08 0.09 0.08 
  3  0.28 0.02 0.02 0.01 0.02  0.20 0.09 0.08 0.08 0.08 
  5  0.27 0.00 0.02 0.01 0.02  0.20 0.09 0.09 0.09 0.09 
 0.5 1  0.54 0.00 0.11 0.03 0.01  0.19 0.13 0.08 0.08 0.07 
  2  0.52 0.02 0.10 0.02 0.02  0.20 0.13 0.08 0.08 0.08 
  3  0.50 0.01 0.06 0.02 0.03  0.20 0.10 0.08 0.09 0.08 
  5  0.48 0.01 0.03 0.00 0.04  0.20 0.09 0.09 0.09 0.09 
 0.8 1  0.78 0.01 0.14 0.00 0.03  0.20 0.16 0.08 0.08 0.07 
  2  0.75 0.00 0.16 0.02 0.05  0.20 0.14 0.08 0.08 0.08 
  3  0.74 0.01 0.13 0.05 0.04  0.20 0.13 0.08 0.09 0.08 
  5  0.71 0.00 0.11 0.02 0.05  0.20 0.12 0.09 0.09 0.09 

8 0 1  0.12 0.02 0.03 0.01 0.03  0.16 0.09 0.07 0.08 0.06 
  2  0.09 0.02 0.03 0.00 0.03  0.16 0.07 0.07 0.07 0.07 
  3  0.10 0.01 0.01 0.01 0.01  0.16 0.07 0.07 0.07 0.07 
  5  0.09 0.00 0.01 0.00 0.01  0.16 0.07 0.07 0.07 0.07 
 0.2 1  0.24 0.02 0.04 0.01 0.03  0.16 0.08 0.07 0.07 0.06 
  2  0.20 0.01 0.05 0.00 0.03  0.16 0.08 0.07 0.07 0.07 
  3  0.19 0.00 0.01 0.01 0.01  0.16 0.07 0.07 0.07 0.07 
  5  0.18 0.00 0.01 0.00 0.02  0.16 0.07 0.07 0.07 0.07 
 0.5 1  0.44 0.00 0.09 0.03 0.04  0.16 0.09 0.07 0.07 0.07 
  2  0.38 0.03 0.08 0.03 0.05  0.16 0.09 0.07 0.07 0.07 
  3  0.35 0.01 0.03 0.01 0.04  0.16 0.09 0.07 0.07 0.07 
  5  0.33 0.00 0.02 0.00 0.03  0.16 0.07 0.07 0.07 0.07 
 0.8 1  0.58 0.00 0.15 0.06 0.06  0.16 0.11 0.07 0.07 0.07 
  2  0.55 0.01 0.15 0.06 0.06  0.16 0.10 0.07 0.07 0.07 
  3  0.52 0.02 0.15 0.06 0.07  0.16 0.11 0.07 0.07 0.06 
  5  0.47 0.01 0.12 0.01 0.09  0.15 0.10 0.07 0.07 0.06 

10 0 1  0.11 0.02 0.01 0.01 0.01  0.15 0.09 0.07 0.07 0.06 
  2  0.09 0.01 0.00 0.01 0.00  0.15 0.07 0.06 0.06 0.06 
  3  0.09 0.00 0.01 0.00 0.01  0.15 0.06 0.06 0.06 0.06 
  5  0.08 0.00 0.01 0.00 0.01  0.15 0.06 0.06 0.06 0.06 
 0.2 1  0.21 0.02 0.01 0.00 0.01  0.15 0.08 0.07 0.07 0.06 
  2  0.17 0.01 0.02 0.01 0.01  0.15 0.08 0.06 0.06 0.06 
  3  0.17 0.00 0.01 0.01 0.01  0.15 0.06 0.06 0.06 0.06 
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  5  0.16 0.00 0.01 0.00 0.01  0.15 0.06 0.06 0.06 0.06 
 0.5 1  0.36 0.01 0.08 0.06 0.01  0.14 0.09 0.07 0.06 0.07 
  2  0.32 0.03 0.06 0.01 0.00  0.14 0.09 0.06 0.06 0.06 
  3  0.30 0.01 0.02 0.00 0.00  0.14 0.07 0.06 0.06 0.06 
  5  0.27 0.00 0.02 0.01 0.02  0.14 0.06 0.06 0.06 0.06 
 0.8 1  0.49 0.03 0.11 0.03 0.01  0.14 0.08 0.07 0.06 0.06 
  2  0.44 0.01 0.13 0.03 0.02  0.14 0.10 0.06 0.06 0.06 
  3  0.44 0.02 0.14 0.02 0.00  0.14 0.10 0.06 0.06 0.06 
  5  0.37 0.01 0.09 0.01 0.05  0.13 0.07 0.06 0.06 0.06 
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Table 4: 
Eta-squared values in Percentages from ANOVAs of RMSEs and Average SEs  

 RMSE  Average SE 
Factor 𝜌𝜌 𝛽𝛽01 𝛽𝛽02 𝛽𝛽03 𝛽𝛽04  𝜌𝜌 𝛽𝛽01 𝛽𝛽02 𝛽𝛽03 𝛽𝛽04 

𝑙𝑙 13.00  4.99  33.41  98.12 47.00 92.13 88.03 80.92 
𝜌𝜌 80.72  78.38 27.64 35.55   22.47    
𝑑𝑑  34.02 9.45 16.16 3.20   16.34   5.17 

𝜌𝜌 × 𝑑𝑑  34.32 4.10 15.50 7.29   5.30    
𝑙𝑙 ×  𝜌𝜌 4.30 16.00  12.46 8.90       
𝑙𝑙 × 𝑑𝑑     6.22   5.23   9.99 

Note: Only values above 4% are reported. 
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Table 5 
Estimates from Shih et al. (2012) and Neely et al. (2013) 

 Change-points Prob Autocorrelation nP  Intercept 1  Intercept 2  Intercept 3  Intercept 4 
 1 2 3  Mean SE   Mean SE  Mean SE  Mean SE  Mean SE 

Sub 1 8 26 33 1.000 0.789 0.089 0.375  0.174 0.464  16.720 0.305  1.312 0.498  18.820 0.289 
Sub 2 0 8 26 0.001 0.753 0.086 0.553  0.000 100.000  0.089 0.388  5.452 0.256  4.358 0.208 

 0 8 33 0.000 0.694 0.095 0.525  0.000 100.000  0.094 0.409  3.991 0.228  5.911 0.255 
 0 26 33 0.002 0.794 0.082 0.591  0.000 100.000  3.737 0.201  0.721 0.396  5.914 0.230 
 7 26 33 0.000 0.505 0.110 0.623  0.114 0.433  5.048 0.260  0.659 0.433  5.908 0.254 
 8 26 32 0.000 0.429 0.114 0.603  0.108 0.422  5.494 0.280  0.505 0.489  5.532 0.259 
 8 26 33 0.930 0.471 0.112 0.845  0.105 0.351  5.493 0.233  0.650 0.376  5.907 0.221 
 8 26 34 0.000 0.471 0.123 0.608  0.105 0.414  5.492 0.274  1.586 0.414  5.824 0.267 
 8 26 35 0.001 0.491 0.113 0.641  0.104 0.400  5.492 0.265  1.689 0.377  6.000 0.265 
 8 26 42 0.000 0.608 0.101 0.637  0.097 0.385  5.482 0.254  2.917 0.270  6.696 0.327 
 8 27 33 0.000 0.356 0.127 0.584  0.111 0.437  5.128 0.282  0.572 0.506  5.905 0.275 
 9 26 33 0.005 0.426 0.122 0.678  0.726 0.375  5.538 0.271  0.639 0.426  5.906 0.250 
 10 26 33 0.008 0.414 0.118 0.691  0.871 0.353  5.688 0.278  0.637 0.423  5.906 0.249 
 11 26 33 0.020 0.404 0.118 0.717  1.044 0.331  5.895 0.283  0.636 0.417  5.906 0.245 
 12 26 33 0.007 0.418 0.119 0.690  1.314 0.321  6.017 0.297  0.638 0.423  5.906 0.248 
 13 26 33 0.015 0.461 0.115 0.719  1.507 0.298  6.255 0.298  0.648 0.409  5.907 0.240 
 14 26 33 0.001 0.547 0.115 0.650  1.906 0.293  6.128 0.317  0.665 0.418  5.908 0.244 
 15 26 33 0.001 0.520 0.109 0.654  1.929 0.285  6.304 0.333  0.661 0.420  5.908 0.246 
 16 26 33 0.002 0.516 0.109 0.671  2.046 0.273  6.582 0.346  0.660 0.416  5.908 0.243 
 17 26 33 0.005 0.578 0.107 0.707  2.246 0.251  7.015 0.348  0.673 0.396  5.909 0.232 

CB-Dan 5 12 17 0.005 -0.298 0.169 0.018  61.230 3.160  14.740 2.663  43.950 3.160  13.680 3.160 
 5 13 16 0.000 -0.189 0.171 0.012  61.370 3.953  15.810 3.119  48.710 5.122  18.730 3.606 
 5 13 17 0.994 -0.352 0.171 0.032  61.170 2.361  15.710 1.857  48.340 2.648  13.630 2.361 
 5 13 18 0.000 -0.200 0.205 0.012  61.340 3.941  15.800 3.107  42.230 3.941  13.930 4.413 
 5 14 17 0.000 -0.074 0.206 0.012  61.530 4.066  19.230 3.025  48.200 5.262  13.850 4.066 
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Figure 1: Interaction Plots of APWN, fraction correct, 𝑝̅𝑝(avg_prob), and rho RMSE with 
𝑑𝑑, 𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌   
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Figure 2: Data for Subject-1 from Shih et al. (2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Variational Bayesian Change-Points Model for Multiple Phase-change SCEDs 

40 
 

 

 

 

Figure 3a: Data from Subject-2 from Shih et al. (2012) 

 

Figure 3b: Posteriors of the change-points for Subject-2 
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Figure 4a: Data for Dan’s challenging behavior from Neely et al. (2013) 

 

Figure 4b: Posteriors of change points for Dan’s challenging behavior from Neely et al. (2013) 

 

 


