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Abstract 

Although statistical practices to evaluate intervention effects in SCEDs have gained prominence 

in the recent times, models are yet to incorporate and investigate all their analytic complexities. 

Most of these statistical models incorporate slopes and autocorrelations both of which contribute 

to trend in the data. The question that arises is whether in SCED data that show trend, there is 

indeterminacy between estimating slope and autocorrelation because both contribute to trend and 

the data have limited number of observations. Using Monte Carlo simulation, we compared the 

performance of four Bayesian change-point models: (a) intercepts only (IO), (b) slopes but no 

autocorrelations (SI), (c) autocorrelations but no slopes (NS), and (d) both autocorrelations and 

slopes (SA). Weakly informative priors were used to remain agnostic about the parameters. 

Coverage rates showed that for the SA model either the slope effect size or the autocorrelation 

credible interval almost always erroneously contained 0 and the Type II errors were prohibitively 

large. Considering the 0-coverage and coverage rates of slope effect size, intercept effect size, 

mean relative bias, and second phase intercept relative bias, the SI model outperformed all other 

models. Therefore, it is recommended that researchers favour the SI model over the other three 

models. Research studies that develop slope effect sizes for SCEDs should consider the 

performance of the statistic by taking into account coverage and 0-coverage rates. These helped 

uncover patterns that were not realized in other simulation studies. We underline the need for 

investigating the use of informative priors in SCEDs. 

Keywords: Single-case designs; Markov Chain Monte Carlo (MCMC); Bayesian; interrupted 

time-series models. 

  



RUNNING HEAD: BAYESIAN SCEDs AND MODEL COMPLEXITY 

 
 

3 

Accurate Models vs Accurate Estimates: A Simulation Study of Bayesian Single-Case 

Experimental Designs  

Single-case experimental designs (SCEDs) involve manipulating an independent variable 

by applying an intervention to evaluate intervention effects by repeated, systematic 

measurements of an outcome variable (Horner et al. 2005; Kratochwill & Levin, 2014). Thus, 

SCEDs are forms of interrupted time-series designs, which are often used to evaluate 

intervention effects in various fields ranging from education (e.g. Lambert, Cartledge, Hewrad, 

& Lo, 2006), psychology (e.g. Shih, Chang, Wang, & Tseng, 2014), and medicine (as n-of-1 

designs, Gabler, Duan, Vohra, & Kravitz, 2011). The importance and necessity of SCEDs in 

experimental designs where randomization is often impossible or inappropriate (e.g. low 

incidence disabilities, rare diseases, comorbid health conditions) has been discussed at length in 

SCED literature (e.g. Gast & Ledford, 2014; Kratochwill et al. 2010; Kratochwill & Levin, 2014; 

Shadish, 2014).  

Often visual analyses are conducted to analyze SCED data. These analyses are 

supplemented with reporting phase means, medians, percentages, and effect sizes such as 

standardized mean differences or indices based on the amount of data overlap between phases 

(Parker, Hagan-Burke, & Vannest, 2007). Although visual analysis has definite advantages with 

analyzing SCED data, studies have shown that the presence of autocorrelation can confound the 

results of visual analysis. For instance, in data with autocorrelation, it is difficult to decompose 

patterns due to trends (slopes) versus patterns due to autocorrelated errors. Autocorrelation is 

almost impossible to detect by visual analysis alone (Kazdin, 2011; Thyer & Myers, 2011). The 

presence of autocorrelation increases Type I errors (Matyas & Greenwood, 1990) and decreases 

interrater reliabilities (Brossart, Parker, Olson, & Mahadevan, 2006) in visual analysis. In fact, 

Jones, Weinrott, and Vaughn (1978) found that in data with moderate-high autocorrelations, 

visual analysis results were reduced to nearly chance levels. Therefore, there is increasing 

emphasis for more objective methodologies for analyzing SCED data and determining causal 

inferences. Many organizations (American Speech-Language-Hearing Association, 2004; Cook, 

Buysse, Klingner, Landrum, McWilliam, Tankersley, & Test, 2014; Kratochwill, Hitchcock, 

Horner, Levin, Odom, Rindskopf, & Shadish, 2013) have worked on reaching professional 

consensus on the methodological standards for SCEDs. One such standard, the U.S. Department 
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of Education’s What Works Clearinghouse Pilot Standards for single-case designs (Kratochwill, 

Hitchcock, Horner, Levin, Odom, Rindskopf, & Shadish, 2010), advocates that researchers 

evaluate the difference in levels, trends, and variability across phases in order to meet evidence 

standards for SCEDs. Therefore, it is somewhat common to see models with intercepts and 

slopes for each phase and the same autocorrelation for all phases being fitted to single case 

experimental designs (Solomon, 2013). Multilevel model for SCEDs is an example of one such 

model (e.g. Baek & Ferron, 2013; Ferron et al., 2009; Ferron, Farmer, & Owens, 2010; van den 

Noortgate, & Onghena, 2003a, 2003b).  

However, it may not be wise to fit such complex models to short time-series data. We 

hypothesize that this is because it is difficult to separate how much of the trend in the data is due 

to autocorrelation and how much is due to slope (i.e. a continuous gain or fall in the outcome 

variable). When fitting complex models to small sample data that are commonly found in SCEDs 

we still do not know which parameters will be affected and to what extent they would be 

affected. The purpose of this simulation study is to investigate the performance of a two-phase 

interrupted time-series model with first-order autocorrelation in recovering the parameters of 

two-phase SCED data. We fit and compare four statistical models to SCED data with slopes and 

autocorrelations. The first model estimates slopes (commonly known as trends in SCED 

literature), intercepts (levels), and autocorrelations. The second model estimates only slopes and 

intercepts while assuming there is no autocorrelation. The third model estimates intercepts and 

autocorrelations assuming that any trend displayed by the data is due to autocorrelation and not 

slope. The fourth is the simplest model that estimates intercepts only and assumes that no trend is 

present, that is, there is no pattern due to autocorrelation or slope. We investigated which model 

best captures the data using diagnostics such as root mean squared errors (RMSEs) of the 

posterior means of slopes, intercepts, autocorrelations, and standard deviations; biases of slope 

and intercept effect sizes; coverage rates of the credible intervals (CI) of slopes, intercepts, and 

autocorrelations; and 0-coverage rates (that is, the percentage of CIs that contain 0) of slopes and 

autocorrelations. Bayesian estimation was used for all models because of its advantages with 

small sample data, especially SCEDs (e.g., Natesan Batley, 2020; Natesan Batley, Contractor, & 

Caldas, In Press; Natesan Batley, Minka, & Hedges, 2020; Natesan Batley, Shukla Mehta, & 

Hitchcock, 2020; Natesan, 2019; Natesan & Hedges, 2017; Rindskopf, 2014; Shadish, 2014; 



RUNNING HEAD: BAYESIAN SCEDs AND MODEL COMPLEXITY 

 
 

5 

Shadish, Rindskopf, Hedges, & Sullivan, 2013). Readers are directed to the aforementioned 

references for further discussion of the role and advantages of Bayesian in estimating SCEDs. 

Literature review 

In SCEDs, the intervention effect can manifest itself as change in level (Crosbie, 1995; 

Tryon, 1982) or change in trend (Crosbie, 1995; van den Noortgate & Onghena, 2003a, 2003b) 

or a combination of both (Baek & Ferron, 2013). Thus, there are many ways of detecting 

intervention effects in SCEDs. These may utilize single level or multilevel models. In the single 

level model framework, Campbell and Stanley (1966) and Mood (1950) recommended testing 

whether the first observation of the intervention phase lay in the confidence interval of the 

predicted or extrapolated value at that time-point assuming no intervention effect. If the true 

value of the first observation of the intervention phase lay in the confidence interval of the 

predicted value, a researcher may conclude that there was no intervention effect whereas 

intervention effect may be tentatively inferred if otherwise.  However, this procedure is weak 

because it does not make use of all data-points (Campbell & Stanley, 1966). Therefore, another 

option is to compare the intercepts and slopes of the regression lines of both phases. If the 

intercepts and slopes are the same, the null hypothesis that the treatment is not effective cannot 

be rejected (Campbell, 1967). Algina and Swaminathan (1977) showed that the test statistic for 

testing the intervention effect in single-group quasi-experimental time-series designs for linear 

trends follows the F-distribution. However, this is confounded by autocorrelation because the 

measurements are obtained on an individual across time. Ignoring autocorrelations will lead to 

biased parameter and standard error estimates, which in turn, hinders the validity of statistical 

inferences (Pankratz, 1983).   

All the aforementioned procedures ignore autocorrelation. Trend in data with 

autocorrelations leads to under or overestimated treatment effect sizes (West & Hepworth, 1991). 

The presence of autocorrelations biases error variances, confidence intervals, t values, and Type I 

error rates (Glass et al., 1975; Gottman, 1980; Gottman & Glass, 1978; McCain & McCleary, 

1979). Gottman and Glass (1978) showed that the Type I error of a t test with alpha level = 0.05, 

when the autocorrelation is 0.5 is 0.2584. Similarly, Hibbs (1974) concluded that the Type I error 

rate is inflated by 265% when the autocorrelation is 0.7. Huitema, McKean, and McKnight 

(1999) showed that ordinary least squares estimates of slopes have higher Type I errors for larger 
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values of positive autocorrelation especially for large sample sizes. This is because the variance 

of the slope is underestimated in the presence of positive autocorrelations. This in turn, affects 

the slope change parameters whose error rates were unacceptably high for autocorrelations 

greater than 0.20. Finally, positive autocorrelations were associated with higher Type I error 

rates for estimates of slope change than for estimates of level change. Therefore, Huitema, 

McKean, and McKnight (1999) concluded that large sample theory overestimates the harmful 

effects of autocorrelation of Type I error in small samples.  

Glass, Wilson, and Gottman (1972) adopted autoregressive (AR) and autoregressive 

integrated moving average (ARIMA) processes for testing intervention effects in time-series 

data. Simonton (1977) outlined a procedure for comparing the regression lines of an interrupted 

time-series model assuming first order autocorrelations. However, this procedure requires the 

number of individuals to be greater than the number of measurement occasions. Obviously, this 

requirement is almost impossible to fulfill in single-case experimental designs. Other researchers 

have suggested that a minimum of 50 observations is required to obtain sufficiently accurate 

estimates for a first-order autoregressive model (Box & Pierce, 1970; Glass, Willson, & 

Gottman, 1975; Ljung & Box, 1978). 

Huitema and McKean (2000) studied the two-phase interrupted time-series model and 

recommended that individual slopes and intercepts be estimated for each phase. However, this 

study was conducted in the absence of autocorrelation. McKnight, McKean, and Huitema’s 

(2000) double bootstrap method had a bias in autocorrelation estimate ranging from 0.018 to 0.2 

for a time-series length of 20. The bias decreased with increase in time-series length. However, 

SCED data are often even shorter in length. In fact, in a systematic literature review by Shadish 

and Sullivan (2011) of the SCED articles published in 2008, excluding alternating treatments 

design, only 54.7% of the 563 articles had more than 5 data-points in the baseline phase. The 

median number of total data-points in 809 studies was 20 and 90.6% had fewer than 50 data-

points in total. This leaves less than 25 data-points per phase if the designs only had two phases 

and even fewer data-points in designs with more than two phases. Approximately 70% of the 

studies had fewer than 30 data-points in all.  

There has been considerable effort in developing methods and effect sizes for SCED data 

with trend (e.g. Allison & Gorman, 1993; Center, Skiba, & Casey, 1985-86; Gorman & Allison, 
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1997; White, Rusch, Kazdin, & Hartmann, 1989). Researchers van den Noortgate and Onghena 

(2003a) discussed procedures for meta-analyses with linear trends. Parker, Vannest, and Davis 

(2011) developed a method to control positive baseline trend within data non-overlap. However, 

this procedure ignores the presence of autocorrelation and capitalizes on overlap indices, which 

are known to have many drawbacks in addition to ignoring the distances between data-points and 

being sensitive to outliers. Parker, Vannest, Davis, and Sauber (2011) developed an effect size 

that combined trend and autocorrelation in SCED data. Cobb and Shadish (2015) and Sullivan, 

Shadish, and Steiner (2015) used semi-parametric regression models to analyze SCED data with 

linear and non-linear trends. Beretvas and Chung (2008) used the difference in R2 (ΔR2) as an 

index of effect size, which is an indicator of change in both intercepts and slopes for single case 

designs with trends. Their results showed that ΔR2 has acceptable statistical properties only in the 

absence of autocorrelation and has poor performance in the presence of autocorrelation 

especially for few cases and few time-points. Specifically, for large values of autocorrelations, 

the Type I error rate, that is, rejecting the null that there is no intervention effect based on ΔR2 

was high. Whether this is because the autocorrelations ended up being estimated as slopes is 

unknown. Solanas, Manolov, and Onghenas' (2010) and Manolov and Solanas' (2009) model 

with slope and autocorrelations eliminates baseline trend from SCED data to estimate slope and 

level changes. However, they diagnosed the performance of the models only using biases, which 

do not shed light on whether the trend in the data was appropriately decomposed into 

autocorrelations and slopes. Without examining the interval estimates of slopes and 

autocorrelations, it is impossible to tell if there is an indeterminacy problem, that is, whether 

sometimes slope is estimated as autocorrelation and vice versa. This is important because 

autocorrelation is not considered as part of intervention effect whereas change in slopes is 

usually attributed to the intervention effect in SCEDs. In sum, although parametric approaches 

based on regression have great promise for meta-analysis of SCEDs, we are yet to know the full 

extent of their weaknesses and strengths. 

Although the performance of models that estimate trends and autocorrelations have been 

conducted using the multilevel modeling (MLM) framework, the present study is a development 

over these studies because they had some limitations. For instance, Ferron, Farmer, and Owens 

(2010) studied MLM for multiple baseline designs and compared different approaches to show 

that estimates and coverage rates improved with phase length and effect size. Similarly, Ferron, 
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Bell, Hess, Rendina-Gobioff, and Hibbard (2009) showed that although the treatment effect 

estimates were relatively accurate in the presence of autocorrelation, the point estimates were 

biased. However, the aforementioned studies (i.e. Ferron, Bell, Hess, Rendina-Gobioff, & 

Hibbard, 2009; Ferron, Farmer, & Owens 2010) are applicable to only to multiple baseline 

designs and required at least 8 participants for robust estimation of parameters. Moeyaert, Ugille, 

Ferron, Onghena, Heyvaert, Beretvas, & Van den Noortgate (2015) demonstrated multilevel 

meta-analysis of results from various types of SCEDs. Petit-Bois, Baek, Van den Noortgate, 

Beretvas, and Ferron (2016) conducted a simulation of meta-analysis of 10 or 30 studies and 

used sample sizes of 4 and 7. Thus, they had much larger data. Although Ugille, Moeyaert, 

Beretvas, Ferron, & Van den Noortgate (2012) showed that MLM can be applied to datasets with 

as few as 4 participants, and a time-series of length 10 series length per SCED study, this still 

places greater burden on the researcher in terms of data collection. This is because a minimum of 

3 participants and 5 data-points per phase are required to meet the WWC design standards. 

Fewer than 63% of the studies reviewed by Shadish and Sullivan (2011) had 20 or more data-

points in total. What the present study solves is a much more basic problem when considering 

any multiphase design for one participant using the simpler, single level model where MLM is 

not applicable. The advantage of our approach is that the findings from our study are applicable 

to a wider set of SCEDs such as the ABAB design, changing criterion design, the multiple 

baseline design, or the alternating treatments design. Moreover, although some of the above-

mentioned studies examined the coverage rates of autocorrelations, none of them examined 0-

coverage of autocorrelation. Examining 0-coverage is important because it tells us if the 

estimated value of autocorrelation is incorrectly computed as 0 (i.e., being non-existent). On the 

contrary coverage rates only tell us if the true value is contained in the interval estimate. 

In data that exhibit both slopes and autocorrelations, a model that neglects slope is 

expected to produce strongly autocorrelated residuals (Shadish, Rindskopf, & Hedges, 2008). 

This may be because the pattern in the data due to the slopes is estimated as the pattern in the 

data due to autocorrelation. Thus, Simonton (1979) questioned the specific advantages that 

accrue from augmented complexity in short time-series data. Huitema, McKean, and McKnight 

(1999) also seconded this opinion and asked if complex approaches are necessary while 

modeling dependency structure of observations in time-series designs. Specifically, the question 

remains as to whether it is prudent to fit models with slopes and intercepts that vary by phase and 
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an autocorrelation that is common to all phases for SCED data, which are short time-series data, 

let alone develop effect sizes, and multi-level models. Simpler models generally have greater 

statistical power and are simpler to interpret. However, the sensitivity of these models to 

violation of assumptions such as independence of observations needs to be studied further before 

they can be recommended for general use. This forms the impetus for the present study.  

Models 

A continuous, normally distributed dependent variable with slope and autocorrelation 

was considered as the outcome variable in the present study. Four single level Bayesian models 

were fitted to the data as shown in Table 1. These models varied based on whether slopes and 

autocorrelations were estimated in the model or not. 

INSERT TABLE 1 ABOUT HERE 

Model 1 (Intercepts, slopes and autocorrelations - SA model): The SA model estimates 

intercepts, slopes, and autocorrelations. Consider a SCED with two phases: baseline and 

treatment. Let the time-points in the baseline phase be 1, 2, … , 𝑡𝑡𝑏𝑏 and in the treatment phase be 

𝑡𝑡𝑏𝑏+1, … , 𝑡𝑡𝑛𝑛. Let us assume that the observed value at the first time point (𝑦𝑦𝑝𝑝1) in phase 𝑝𝑝 follows 

a normal distribution with the mean of 𝑦𝑦�𝑝𝑝1 and standard deviation of 𝜎𝜎𝜀𝜀 as shown in equation 1.  

 𝑦𝑦𝑝𝑝1 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝑦𝑦�𝑝𝑝1,𝜎𝜎𝜀𝜀2�.  (1) 

The predicted values in the following time points 𝑡𝑡 are distributed as: 

 𝑦𝑦𝑝𝑝𝑝𝑝|𝐻𝐻𝑝𝑝𝑝𝑝−1,Θ ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝑦𝑦�𝑝𝑝𝑝𝑝|(𝑝𝑝𝑝𝑝−1),𝜎𝜎𝑒𝑒2�.  (2) 

In equation 2, 𝐻𝐻𝑝𝑝𝑝𝑝−1 is the past history and Θ is the vector of parameters, 𝜎𝜎𝑒𝑒 is the white noise 

created by a combination of random error (𝜎𝜎𝜀𝜀2) and autocorrelation between adjacent time-points, 

𝜌𝜌. The SA model and the serial dependency of the residual (𝑒𝑒𝑝𝑝) can be expressed as, 

 
𝑦𝑦�𝑝𝑝𝑝𝑝 = �

𝛽𝛽11 + 𝛽𝛽21𝑡𝑡 + 𝜀𝜀 + 𝜌𝜌𝑒𝑒𝑝𝑝𝑝𝑝−1, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏
𝛽𝛽12 + 𝛽𝛽22(𝑡𝑡 −  𝑡𝑡𝑏𝑏) + 𝜀𝜀 + 𝜌𝜌𝑒𝑒𝑝𝑝𝑝𝑝−1, 𝑛𝑛𝑡𝑡ℎ𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 and 

(3) 

 𝑒𝑒𝑝𝑝𝑝𝑝−1 = 𝜌𝜌𝑒𝑒𝑝𝑝𝑝𝑝−2 + 𝜀𝜀. (4) 

In equation 3, 𝑦𝑦�𝑝𝑝𝑝𝑝 is the probability of the predicted value of the dependent variable at time 𝑡𝑡 in 

phase 𝑝𝑝;  𝛽𝛽11 and 𝛽𝛽21 are the intercept and slope of the linear regression model for phase 1, 

respectively; 𝛽𝛽12 and 𝛽𝛽22 are the intercept and slope of the linear regression model for phase 2, 
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respectively; 𝑒𝑒𝑝𝑝𝑝𝑝 is the error at time 𝑡𝑡 in phase 𝑝𝑝; 𝜌𝜌 is the autocorrelation coefficient which stays 

the same across both phases; and 𝜀𝜀 is the independently distributed error. The standard 

deviations of 𝑒𝑒, 𝜀𝜀,𝑎𝑎𝑛𝑛𝑎𝑎 𝜌𝜌 are related as shown in equation 5.  

 𝜎𝜎𝑒𝑒 = 𝜎𝜎𝜀𝜀
�1−𝜌𝜌2

 . (5) 

The intercept and slope 𝛽𝛽1𝑝𝑝 and 𝛽𝛽2𝑝𝑝 can be modeled as: 

 𝛽𝛽𝑖𝑖𝑝𝑝 =  � 𝛽𝛽𝑖𝑖1, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏
𝛽𝛽𝑖𝑖2,𝑛𝑛𝑡𝑡ℎ𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒, (6) 

where the terms refer to intercepts when 𝑖𝑖 = 1 and slopes when 𝑖𝑖 =  2. Intercept effect size 

𝐸𝐸𝐸𝐸1 was defined as the standardized mean difference between the two phases as given in 

equation 7. Slope effect size 𝐸𝐸𝐸𝐸2 was defined as the difference between the estimated value at 

the mid-point of the intervention phase assuming and not assuming an intervention effect as 

shown in equation 8. If 𝑡𝑡𝑖𝑖 is the number of time-points in the intervention phase, then: 

 𝐸𝐸𝐸𝐸1 =  𝛽𝛽12− 𝛽𝛽11
𝜎𝜎𝜀𝜀

  and (7) 

 𝐸𝐸𝐸𝐸2 =  �𝛽𝛽12 + (𝑡𝑡𝑏𝑏 + 𝑝𝑝𝑖𝑖
2

)𝛽𝛽22� − �𝛽𝛽11 + (𝑡𝑡𝑏𝑏 + 𝑝𝑝𝑖𝑖
2

)𝛽𝛽21� . (8) 

Model 2 (Intercepts and autocorrelations but no slopes – NS model): The NS model assumes 

that any trend in the data is due to autocorrelation and not a slope parameter. Thus, the 𝛽𝛽21 and 

𝛽𝛽22terms are dropped or equal zero in equations 3 and 6 and only intercepts and autocorrelations 

are estimated. Thus, equation 3 becomes 

 
𝑦𝑦�𝑝𝑝𝑝𝑝 = �

𝛽𝛽11 + 𝜀𝜀 + 𝜌𝜌𝑒𝑒𝑝𝑝𝑝𝑝−1, 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏
𝛽𝛽12 + 𝜀𝜀 + 𝜌𝜌𝑒𝑒𝑝𝑝𝑝𝑝−1, 𝑛𝑛𝑡𝑡ℎ𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 and 

(9) 

Model 3 (Slopes and intercepts but no autocorrelation – SI model): The slopes model 

assumes that the data are not autocorrelated. Thus, the 𝜌𝜌 term vanishes or equals zero, thereby 

making equations 1-6 represent a simple piecewise regression model where only slopes and 

intercepts are estimated. The model becomes 

 𝑦𝑦�𝑝𝑝𝑝𝑝 = �
𝛽𝛽11 + 𝛽𝛽21𝑡𝑡 + 𝜀𝜀 , 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏

𝛽𝛽12 + 𝛽𝛽22(𝑡𝑡 −  𝑡𝑡𝑏𝑏) + 𝜀𝜀, 𝑛𝑛𝑡𝑡ℎ𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒.  (10) 

Model 4 (Intercepts only and no autocorrelations or slopes – IO model): The IO model is the 

simplest of all models where no trend is assumed. Therefore, both slopes and autocorrelations are 

set to zero and only intercepts are estimated. Thus, the variability in the data is only due to 

random error as shown in equation 11. 
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 𝑦𝑦�𝑝𝑝𝑝𝑝 = � 𝛽𝛽11 + 𝜀𝜀 , 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑡𝑡𝑏𝑏
𝛽𝛽12 + 𝜀𝜀, 𝑛𝑛𝑡𝑡ℎ𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 and (11) 

Priors: The priors were the same for the parameters that were common to all the models. We 

used weakly informative priors, which purposely include less information than what we actually 

have (Gelman & Jakulin, 2007). This allows the parameters of the priors to be estimated from the 

data rather than specifying them to have subjective information especially for small sample data 

like the ones in the present study (Efron & Morris, 1975; Gelman, 2006; James & Stein, 1960). 

The intercepts and slopes of both phases were independent of each other. The intercepts and 

slopes are drawn from normal distributions with hyperpriors in order to reduce the impact of the 

prior specification on the estimates as given in equations 12 - 15. The variances of the intercepts 

and slopes were independently drawn from gamma distributions with mode and standard 

deviations ranging uniformly between 0.01 and 1.1 We chose the means of the intercepts to come 

from a distribution that uniformly ranged from zero to fifty because we assume that the mean of 

the dependent variable would not be outside these bounds based on the simulation design. Of 

course, practitioners should choose appropriate priors for their data depending on the scale of the 

outcome variable. For instance, the mean of an outcome variable such as the number of problem 

behaviors exhibited by a child with Autism during an observation period might range from zero 

to an upper limit that makes substantive sense. The means of the slope parameters were sampled 

from a unit normal distribution because this value indicated change in the outcome variable 

which might be positive or negative and included all plausible values for means of the slopes 

based on the simulation parameters.  

 𝛽𝛽1𝑝𝑝 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜇𝜇1𝑝𝑝,𝜎𝜎𝑖𝑖𝑛𝑛𝑝𝑝2 ) (12) 

 𝛽𝛽2𝑝𝑝 ~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜇𝜇2𝑝𝑝,𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒2 ) (13) 

 𝜇𝜇1𝑝𝑝~ 𝑢𝑢𝑛𝑛𝑖𝑖𝑖𝑖(0, 50);𝑝𝑝 = 1, 2 (14) 

 𝜇𝜇2𝑝𝑝~ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0, 1);𝑝𝑝 = 1, 2 (15) 

Other prior specifications were as follows: 

 𝜎𝜎𝜀𝜀  ~ 𝑢𝑢𝑛𝑛𝑖𝑖𝑖𝑖(0.1, 5) and (16) 

 𝜌𝜌 ~ 𝑢𝑢𝑛𝑛𝑖𝑖𝑖𝑖(−1, 1). (17) 

 
1 Specifying gamma distributions using mode and standard deviations is simply easier to visualize (see 
http://doingbayesiandataanalysis.blogspot.com/2012/08/gamma-likelihood-parameterized-by-mode.html) 



RUNNING HEAD: BAYESIAN SCEDs AND MODEL COMPLEXITY 

 
 

12 

Method 

Data were simulated for the following conditions for an interrupted time series model. 

Phase Length (𝑙𝑙): 5, 8, 10, 15; standard deviation (𝜎𝜎𝜀𝜀): 1, 2, 5; Intercept effect size (𝐸𝐸𝐸𝐸1): 0.5, 1, 

2, 5; Slope effect size (𝐸𝐸𝐸𝐸2): 0, 0.3, 0.5, 1; and autocorrelations (𝜌𝜌): 0, 0.2, 0.5, 0.8. Therefore, 

this was a fully crossed 3 ×  4 ×  4 ×  4 ×  4 resulting in 768 conditions. One hundred datasets 

were generated for each condition yielding 76800 datasets. Some of the data conditions such as 

phase length, standard deviation, intercept effect size, and autocorrelations were chosen based on 

previous literature (Natesan & Hedges, 2017; Natesan Batley, Minka, & Hedges, 2020). The four 

models discussed in the models section were each fitted to each dataset. Root mean squared 

errors (RMSEs), mean relative biases, and coverage rates of the intercepts, slopes, intercept and 

slope effect sizes, autocorrelations, and standard deviations were used to compare the 

performance of the models. RMSEs are defined as the square root of the average squared 

deviation of the estimated value from the true value over all replications for a given data 

condition. Mean relative bias is computed as the average of the ratio of the difference between 

the true and the estimated value of a parameter. RMSE and relative bias for a parameter 𝑥𝑥 whose 

estimate in the 𝑖𝑖th replication is 𝑥𝑥𝑖𝑖 and true value is 𝑋𝑋 over 𝑛𝑛 replications is given in equations 

18 and 19. 

 
𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸 =  �∑ (𝑥𝑥𝑖𝑖−𝑋𝑋)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 and 
(18) 

 𝑅𝑅𝑒𝑒𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅𝑒𝑒 𝑏𝑏𝑖𝑖𝑎𝑎𝑒𝑒 =  1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖−𝑋𝑋)𝑛𝑛
𝑖𝑖=1

𝑋𝑋
. (19) 

 

Larger RMSEs and larger mean relative biases indicate less accurate estimates. According to 

Hoogland and Boomsma (1998), any relative bias greater than 0.05 was substantial in covariance 

structure models. We note here that relative bias was not computed for conditions where the true 

value was 0. Coverage rates are defined as the percentage of interval estimates that contain the 

true parameter value. 0-Coverage rates, that is, the percentage of credible intervals (CI) that 

contained 0 were used to examine if there was indeterminacy between estimating the slope and 

the autocorrelation. That is, when the credible interval of the autocorrelation contains zero when 

it is not expected to, the trend in the data may be incorrectly or inaccurately attributed to slope 

and the vice versa. This is represented as 0-coverage and represented as the parameter estimate 
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followed by “-0” (e.g. 𝜌𝜌 − 0). However, if both slope and autocorrelation credible intervals 

contain zero, this signals that in some iterations autocorrelation takes more credit for the trend in 

the data (while the slope is estimated to be zero) and in some iterations slope takes more credit 

for trend in the data (while the autocorrelation is estimated to be zero).  

Adequacy of Iterations and Replications 

R was used for simulation and data analysis (R, 2014). The package RunJAGS 

(Denwood, 2013) conveniently calls JAGS (Plummer, 2003), runs parallel chains and iterates the 

model estimates until convergence is indicated. Four parallel chains were run with starting values 

independently generated for each chain from the prior distribution. The first 100,000 iterations 

were discarded using the burn-in procedure. Convergence was checked using two convergence 

diagnostics: the multivariate potential scale reduction factor (MPSRF, Brooks & Gelman, 1998), 

and Heidelberger and Welch’s (1983) convergence diagnostic. In order to determine the 

adequacy of 100 replications (datasets) per condition, RMSEs and coverage rates of intercepts, 

slopes, intercept and slope effect sizes, autocorrelations, and standard deviations of the most 

complex model (SA) were plotted against the number of datasets generated. This procedure is 

similar to the one proposed by Koehler, Brown, and Haneuse (2009). When the RMSEs and 

coverage rates stopped fluctuating wildly or appeared to converge, there was indication of 

sufficient number of replications. This indicated that running the simulation for more datasets 

would not contribute to better diagnostic estimates such as RMSEs. In our study, 100 replications 

per data condition were deemed sufficient. The cumulative RMSEs and the coverage rates 

appeared to stop fluctuating significantly after the first 40 replications for all parameters. The 

cumulative RMSEs of all parameters fluctuated less than 0.03 after the first 60 iterations as 

shown in figure 1. The pattern for coverage rates was similar. We also stopped at 100 

replications because of the computationally intensive nature of the estimation. It took 45 days to 

estimate all parameters of the four models across all 76800 datasets on six computers, each with 

quad core processors. We used doParallel and foreach (Weston & Calway, 2017) to parallelize 

the replications across the processors. Independent ANOVAs were conducted to measure the 

effect of the various data conditions on the RMSEs and coverage rates of the parameters. The 

data conditions were the independent variables. Eta-squared was computed for all main and 2-

way interaction effects. Plots were examined to understand the patterns in parameter recovery.  
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INSERT FIGURE 1 ABOUT HERE 

Results 

Overall trends from the ANOVAs 

The eta-squared effect sizes from independent ANOVAs are given in tables 2 and 3. 

These values give us a general pattern of those data conditions that affected the RMSEs, mean 

relative biases, coverage rates, means, and mean posterior standard deviations.  

Autocorrelations: Longer phase lengths yielded smaller RMSE autocorrelations indicating that 

longer time-series yield more accurate estimates. However, phase lengths did not affect the 

coverage rates of autocorrelations with the exception of high 0-coverage rates for longer phase 

lengths combined with high autocorrelations. The 𝜌𝜌 RMSEs were always larger for the NS 

model compared to the SA model especially for larger values of intercept effect size. The 

interaction effect between autocorrelation and model accounted for 8.56% of the variation in 𝜌𝜌 

RMSE. This is shown in Figure 2. Estimates from datasets with longer phase lengths combined 

with larger autocorrelation values covered 0 less frequently than those with smaller phase lengths 

and smaller autocorrelation values as shown in Figure 3. NS model had lower 0-coverage rates 

but substantially higher coverage rates of autocorrelation than the SA model as shown in Figure 

4. Even for original autocorrelation value of 0.8, 60% of the SA model's CIs contained 0. 

Coverage rates of autocorrelation increased with increase in true 𝜌𝜌 value for both NS and SA 

models, but the increase in coverage rate was more rapid for SA model. The NS model had 

narrower CIs than the SA model as shown in Figure 5. The width of the CIs increased with 

increase in phase length and decrease in autocorrelation.   

INSERT TABLE 2-3 AND FIGURES 2-5 ABOUT HERE 

Slopes: SI and SA models were compared for their recovery of slopes and slope effect sizes. 

RMSE of the first phase slopes (𝛽𝛽12) decreased with increase in phase length and decrease in 

standard deviation and autocorrelation as shown in figure 6. This makes intuitive sense because 

longer time-series, smaller standard deviations, and lower autocorrelations all contribute to 

clearer patterns, and hence, smaller slope RMSEs. The SA model had slightly lower 𝛽𝛽12 RMSE 

than the SI model but this effect was very small. The RMSE of the second phase slope 𝛽𝛽22 was 
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impacted most by variation in standard deviation and phase length. 𝛽𝛽22 RMSE decreased with 

increase in phase length and decrease in standard deviation.  

INSERT FIGURE 6 ABOUT HERE 

Intercepts: Standard deviation, autocorrelation, and their interaction explained most of the 

variation in the RMSE of the intercept of the first phase 𝛽𝛽11. The RMSEs of 𝛽𝛽11 increased with 

increase in standard deviation and autocorrelation which is to be expected because increase in 

both these data conditions leads to less clear data patterns. The RMSEs of the second phase 

intercept 𝛽𝛽21 increased with increase in standard deviation and intercept effect size. The 

interaction effects between intercept effect size and standard deviation and intercept effect size 

and model also had a substantial effect on the RMSE of 𝛽𝛽21. For intercept effect sizes up to 2, 

𝛽𝛽21 RMSE was similar for all models but rapidly increased for the IO model followed by NS, SI, 

and SA models as shown in figure 7.  It might seem illogical that with increase in intercept effect 

size, 𝛽𝛽21 RMSE would increase because larger intercept effect size would indicate clearer 

pattern. To understand this result more, we computed the mean relative bias of 𝛽𝛽21. Mean 

relative bias of 𝛽𝛽21increased with increase in intercept effect size as shown in figure 8. However, 

the absolute value of mean relative biases were less than 0.05 only for small values of intercept 

effect size for only SI and NS models. 

INSERT FIGURE 7 and 8 ABOUT HERE 

Slope and Intercept Effect sizes: The mean bias of the slope effect size (𝐸𝐸𝐸𝐸2), that is, the mean 

difference between the true slope effect size and the posterior mean of the estimated slope effect 

size increased with increase in both intercept effect size and standard deviation together except 

for a standard deviation value of 1. This is probably because data patterns become less clear with 

increase in standard deviation. Slope effect size 0-coverage was higher for the SA model than 

that of the SI model and its credible intervals contained 0 more than 90% of the time. Still both 

models had overcoverage of 0. As expected, the 0-coverage of slope effect sizes decreased with 

increase in autocorrelation as shown in figure 9. However, the absolute mean relative bias of 

slope effect size was greater than 0.5 for all conditions. This is extremely high. The slope effect 

size coverage rates were all above 95% for all conditions except the SI model only for an 

autocorrelation value of 0.8. This situation seems to be exacerbated slightly by the intercept 
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effect size. The mean relative bias of the intercept effect size (𝐸𝐸𝐸𝐸1) was largest for the IO model 

and lowest for the SI model yet the absolute mean relative bias values were greater than the 

acceptable value of 0.05 for all conditions. For IO and NS, 𝐸𝐸𝐸𝐸1 increased with increase in true 

intercept effect size, but SA and SI models exhibited an opposite pattern as shown in figure 9. 

INSERT FIGURE 9 ABOUT HERE 

Standard Deviations: The RMSE of the standard deviation (sigma) only differed to the second 

decimal for all cases.  For the case of intercept effect size of 5, the SA model had high sigma 

RMSE. The mean standard deviation of 𝛽𝛽11 was affected by standard deviation and the model. 

As expected, this mean standard deviation increased with increase in standard deviation and 

model complexity. Models that estimated autocorrelations had larger mean standard deviations 

than those without. The same pattern was found for the mean standard deviation of 𝛽𝛽21. 

0-Credible Intervals for Autocorrelation and Slope 

In order to better understand the behavior of the SA model with respect to 0-coverage, we 

investigated how many credible intervals of autocorrelation and slopes both contained the value 

of zero. If both autocorrelation and slopes of the second phase contained zero in their credible 

interval when they should not, this indicates a possible indeterminacy problem. That is, some of 

the patterns in the data are sometimes interpreted as only slopes with no credit given to 

autocorrelation and sometimes as only autocorrelation with no credit given to slope. The issue 

with this indeterminacy is that such an estimation would lead to increased Type II errors. That is, 

concluding that there is no autocorrelation or slope when there truly is.  

We investigated 0-coverage in datasets where neither the true autocorrelation nor the true 

𝛽𝛽22 values were zero. These were 43,200 in total. Figure 10 presents the histograms for the 

number of datasets whose autocorrelation CIs and 𝛽𝛽22 CIs that contain zero and the histograms 

for the number of datasets where both, either, or neither CIs contain zero. The histogram shows 

that 66.24% of the datasets’ estimates contained zero in CIs of both parameters, 10.79% of the 

datasets’ estimates contained 0 in only the autocorrelation CI, 20.9% of the datasets’ estimates 

contained 0 in only the 𝛽𝛽22 CI. Only 2.02% of the datasets’ estimates did not contain 0 in both 

autocorrelation and 𝛽𝛽22 CIs. Similarly, 66.9% of the datasets’ second phase slope CIs contained 

zero 90-100% of the time. In over half of the data conditions, more than 80% of the datasets’ 
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estimates showed that both CIs contained zero when they should not as shown in the histograms. 

This was the most prevalent case. That is, the probability of Type II error for both 

autocorrelation and slope of the second phase was over 0.8 in more than half the data conditions.   

INSERT FIGURE 10 ABOUT HERE 

Phase length (52.46%), intercept effect size (11.64%), autocorrelation (19.11%), and the 

interaction between phase length and autocorrelation (7.27%) explained variation in credible 

intervals of both second phase slope and autocorrelation containing zero. Data with longer phase 

lengths and larger true autocorrelation values had fewer cases where both credible interval 

estimates contained zero. Next, we considered cases where the second phase slope credible 

intervals contained zero, but the autocorrelation credible intervals did not. Data with longer 

phase lengths and higher true autocorrelation values had more cases where the autocorrelations 

CIs were estimated to contain zero. Only phase length (31.72%) explained cases where the 

second phase slope CIs contained zero, but the autocorrelation CIs did not. It was more common 

to see autocorrelation CIs contain 0 and second phase slope not contain zero for longer time-

series and higher autocorrelations. In cases where autocorrelation CIs contained zero, but second 

slope phase CIs did not, intercept effect size (56.86%) explained most of the variance followed 

by the interaction of intercept effect size and autocorrelation (7.24%), and phase length and 

autocorrelation (6.65%). More autocorrelation CIs contained zero when the intercept effect sizes 

were large.  

Finally, we considered only cases where the CI estimates of both second phase and 

autocorrelation did not contain zero when they should not. Phase length (17.17%), intercept 

effect size (19.6%), autocorrelation (7.27%), and the interaction effects between length and 

autocorrelation (6.34%), length and intercept effect size (19.77%), and autocorrelation and effect 

size (5.33%) explained most of the variation in these estimates. Cases with longer time-series, 

large intercept effect sizes, and large autocorrelations had more correct CIs, that is, those where 

neither autocorrelation CI nor the second phase slope CI contained 0. This shows that in general, 

clearer data patterns, that is, longer time-series with larger autocorrelations and intercept effect 

sizes yield more power to identify slope effect size and autocorrelation. 

Conclusion 
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The question of which model needs to be fitted to data, in general, and SCED data, in 

particular, has long been a problem of interest for researchers. Often then the question is whether 

we need to mimic the true model, that is, the model from which the data are generated or whether 

we need to find the simplest model that best explains our data. Statisticians have tended to favor 

the Occam’s razor approach by leaning towards selecting the simplest model, which is evident in 

many model fit indices such as the AIC and the BIC, which penalize models for complexity. We 

revisit the question posed in the title of this study as to whether we should favor accurate models 

or accurate estimates. This study tends towards the latter because by selecting the “correct” 

model, that is, the model that was used to generate the data, we obtain not only incorrect 

estimates but also reach incorrect decisions and potentially make Type II errors. Additionally, 

when it comes to whether the practitioner would be concerned more with obtaining the accurate 

model or arriving at proper inferences and conclusions, we would always favor the latter. Thus, 

our recommendation is to lean toward simpler models that we can expect to yield better 

estimates.  

The mean relative bias of intercepts and intercept effect sizes show that the intercepts 

only (IO) model may not be the best-suited model to estimate the parameters of a two-phase 

SCED model with slopes and autocorrelations. This is perhaps because there is a pattern in the 

datasets that is unaccounted for when using the IO model. In fact, none of the models had 

desirable mean relative bias for intercept effect size and slope effect size. Although the slopes 

and autocorrelations (SA) model had lower RMSE for autocorrelation than the no slopes but 

autocorrelations (NS) model, it also had substantially higher 0-coverage rates and lower 

coverage rates for autocorrelations with wider credible intervals and high probability of Type II 

error rates. This indicates that the precision of the autocorrelation estimates obtained from the 

SA model is smaller than that of the NS model. The NS model had slightly higher second phase 

intercept and intercept effect size mean relative biases than the SA model.  

The slopes and intercepts but no autocorrelations (SI) model had fewer 0-coverage rates 

for slope effect size than the SA model although the RMSE of the second intercept for the SA 

model was slightly better than that of the SI model. It also had the lowest intercept effect size 

mean relative bias, lower 0-coverage of slope effect size and lowest second phase intercept mean 

relative bias of all models. The main disadvantage of the SI model include that it does not 
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estimate autocorrelations. However, practitioners are not interested in estimating autocorrelations 

other than to get rid of their effects while computing effect sizes for interventions. Rather, 

practitioners are most interested in computing and interpreting the accuracy of intercept and 

slope effect sizes and their credible intervals. This shows that researchers are better off choosing 

the slopes and intercepts model without estimating autocorrelations, rather than use a model that 

includes intercepts, autocorrelations, and slopes. This of course, comes with the caveat that none 

of the models had desirable 0-coverage rates of slope effect sizes. The best model of the four, the 

SI model still had 0-coverage rates ranging from 59% to 95%. This overcoverage of 0 value 

however was accompanied by adequate coverage of the true value. The 0-coverage has 

implications for false decisions about the slope effect size even when the effect size is large, 

however these same credible intervals also contained the true value of the slope effect size. This 

implies that the credible intervals were much wider than desired and is an avenue for further 

research. Perhaps more informative priors could lead to narrower credible intervals. Still these 

findings only further make the case for future simulation studies to include 0-coverage rates 

because this diagnostic is very rarely reported in simulation studies. Therefore, we do not know 

how many studies that have adequate coverage rates of true values still might have undesirable 

0-coverage rates.  

Finally, the question is whether it is better to fit a simpler model such as the SI model 

even though it is not the “true” model. The advantages of fitting a simpler model to yield 

estimates that are more powerful outweigh the need to fit the more accurate model (SA) as our 

results show. Although Harrington and Velicer (2015, p. 176) noted that in single case designs, 

any analysis that ignores autocorrelations is “indefensible,” Allison and Gorman (1993) 

suggested that failure to address and properly model trend can result in biased parameter 

estimates and inflated standard errors. On the other hand, Shadish, Rindskopf and Hedges (2008) 

reported that modelling the trajectory of the data might reduce the inflation of autocorrelation 

based on model misspecification. Our results shed additional light on these viewpoints mainly 

because we consider credible intervals, coverage rates, and 0-coverage of CIs. We have shown 

that researchers may want to choose only one of these sources of trend, that is, slope in favour of 

autocorrelation, in order to reduce 0-coverage and reduce model complexity. 
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Our results also emphasize that in simulation studies it is not adequate to observe only 

RMSE, standard errors, and biases as is common practice. Interval estimates and their coverage 

and 0-coverage rates have a more complete and sometimes even a different story to tell when 

evaluating the accuracy of parameters (Jennings, 1986, 1987; Natesan, 2015). Coverage rates 

have nominal values against which the performance of a model can be checked unlike RMSE 

and biases which are unbounded statistics. We have also showed that in addition to examining 

coverage rates, examining 0-coverage rates is important because excessively incorrect 0-

coverage rates lead to incorrectly failing to reject the null hypothesis about the parameter. 

Adequate coverage rates along with excessively incorrect 0-coverage rates indicate wider than 

necessary interval estimates.  

RMSEs can only be used to compare one criterion against another to conclude which 

criterion had lower RMSE. Whether this low RMSE is desirable or substantially above desirable 

is unknown unless the value is zero. We have shown that investigating the performance of 

credible intervals of two variables in tandem can be helpful in evaluating model performance. In 

fact, in the present study, the best model in terms of RMSE (SA) is not the best in terms of 

coverage. 

We used weakly informative priors for the study. This allows us to stay agnostic about 

the parameters and try to estimate them. Of course, with small sample sizes such as the ones 

encountered in SCEDs, researchers may find it helpful to use informative priors based on 

previous research. Using informative priors may yield better estimates. Again, the use of 

informative priors in Bayesian estimation of SCEDs needs more investigation.  

The implications of our study are multi-fold: First, our study informs authors of standards 

such as the WWC standards that estimating slopes and autocorrelations for SCED data often 

yields inaccurate estimates and is not recommended. Researchers may incorrectly infer that their 

intervention did not have a statistically significant intervention effect as shown by the confidence 

intervals of the trend of the data. Second, there has been much effort spent on developing effect 

sizes for slopes for SCEDs. The present study indicates that any effect size that is a function of 

the difference between the slopes severely underestimates slope effect size by often containing 0 

in its credible interval unless it ignores autocorrelations. Therefore, future studies that develop 

slope effect sizes for SCEDs should take 0-coverage as an important diagnostic for testing the 
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performance of these effect sizes. Given that there is a need for statistics to be used in the 

domain of SCED analysis, the present study is of interest because it informs standards that 

should be developed that are standardized for SCED researchers to use.  

 

Open practices statement: Software codes used to generate the data and evaluate the models are 

available, and preregistration is not applicable. 
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