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ABSTRACT
To conduct a multilevel meta-analysis of multiple single-case experimental design (SCED)
studies, the individual participant data (IPD) can be analyzed in one or two stages. In the
one-stage approach, a multilevel model is estimated based on the raw data. In the two-
stage approach, an effect size is calculated for each participant and these effect sizes and
their sampling variances are subsequently combined to estimate a meta-analytic multilevel
model. The multilevel model in the two-stage approach has fewer parameters to estimate,
in exchange for the reduction of information of the raw data to effect sizes. In this paper
we explore how the one-stage and two-stage IPD approaches can be applied in the context
of meta-analysis of single-case designs. Both approaches are compared for several single-
case designs of increasing complexity. Through a simulation study we show that the two-
stage approach obtains better convergence rates for more complex models, but that model
estimation does not necessarily converge at a faster speed. The point estimates of the fixed
effects are unbiased for both approaches across all models, as such confirming results from
methodological research on IPD meta-analysis of group-comparison designs. In light of
these results, we discuss the implementation of both methods in R.

KEYWORDS
Single-case experimental
design; effect size;
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Introduction

In a single-case experimental design (SCED), an out-
come is repeatedly measured within one subject, case
or entity under multiple conditions or phases. These
conditions differ due to an intervention or treatment
which is introduced (and in some designs also with-
drawn again) by the experimenter. For example, in a
single-case design by Fiala and Sheridan (2003), cur-
riculum-based measurement probes were collected for
children with below-average reading skills during two
phases. The first phase is the so-called baseline phase,
which is followed by a treatment phase in which the
children do paired reading sessions with their parents
four times a week. Typically, reports on SCED studies,
like the paper by Fiala and Sheridan (2003), include a
time series plot for each of the cases (Figure 1). This
practice results in an important advantage for second-
ary analysis or meta-analysis: by means of software,
one can fairly easily retrieve the individual participant
data (IPD) from these graphs and directly analyze the
raw data. This is a substantial asset, especially when

the goal is to combine data from multiple participants
from different SCED studies in order to synthesize
individual findings in a meta-analysis.

In a traditional so-called aggregated data (AD)
meta-analysis, the unit of analysis is the summary sta-
tistics reported in the primary studies (Cooper &
Patall, 2009). Over the years, and especially since the
digital revolution has enabled sharing of (individual
participant) data on a larger scale, the AD meta-
analytic approach has been scrutinized and consensus
came to be that IPD meta-analysis is to be preferred
instead (Cooper & Patall, 2009; Stewart & Tierney,
2002; Tudur Smith et al., 2016). Given that the indi-
vidual participant data correspond exactly to the raw
data used to calculate the aggregated data, IPD meta-
analysis can not only exactly reproduce the
corresponding AD meta-analytic results, but also
offers several additional advantages. When conducting
an IPD meta-analysis, researchers are able to check
the raw data and standardize it across studies. In
some cases, primary studies might report summary
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statistics only on a selection of measured outcomes.
By obtaining the IPD, all measured outcomes are
available for meta-analysis and outcome reporting bias
can be reduced. With the raw data, researchers can
perform more detailed subgroup analyses with covari-
ates at the participant level. This leads to higher pow-
ered analyses with less risk of ecological bias and also
offers the possibility to add moderators on both
between- and within-study level (Berlin et al., 2002;
Cooper & Patall, 2009; Debray et al., 2015).

Despite the theoretical advantages of IPD meta-
analysis, in practice AD meta-analysis has not yet

been widely displaced by IPD meta-analysis. (Cooper
& Patall, 2009). This is due to the fact that AD is
more commonly available in published studies and
that the cost of retrieving IPD is usually much higher
in terms of time and resources. This is especially true
in social sciences, where it is much less likely that
researchers are able to retrieve the full set of IPD
underlying group-level statistics in published reports
(Cooper & Patall, 2009). In the context of single-case
research however, these concerns are much less of an
issue. The highly adaptable single-case design is asso-
ciated with many very diverse effect sizes (Hedges

Figure 1. Illustration of raw SCED data available as a time series graph. Reprinted from the multiple-baseline study by Fiala and
Sheridan (2003) assessing the effect of paired reading with a parent on reading skills in children.
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et al., 2013; Manolov & Moeyaert, 2017), and because
it is not trivial to standardize them and to make them
comparable across studies, combining them in a
meaningful AD meta-analysis is equally non-trivial.
Moreover, an important drawback of IPD meta-ana-
lysis in group-comparison contexts, namely the high
time and resource costs of retrieving the raw data, is
much less of an issue within single-case studies. With
the raw data commonly available as time series graphs
in the primary studies, there is no need to contact
authors of primary studies and to rely on their good-
will in sharing their data sets. A review of SCED
meta-analyses by Jamshidi et al. (2020) confirms that
in 69% of the reviewed studies, data were retrieved
from graphs in the primary studies, indicating indeed
that SCED meta-analysis is often conducted on IPD
rather than on summary statistics or effect sizes.

Two approaches are common when conducting an
IPD meta-analysis (Burke et al., 2017; Debray et al.,
2015). In the two-stage approach, the IPD are aggre-
gated within studies and a study-specific estimate of
the treatment effect is obtained. Then, meta-analytic
fixed or random effects methods are used to obtain an
overall treatment effect estimate by calculating a
weighted average of the study-specific estimates. As
opposed to an AD meta-analysis based on effect sizes
originally reported in the primary studies, a two-stage
IPD meta-analysis has the advantage that it allows for
choosing and calculating one particular effect size
measure across all participants and studies, as such
avoiding the need for transformation or standardiza-
tion of different effect size measures across studies. In
a one-stage IPD meta-analysis on the other hand, all
individual observations are analyzed in a hierarchical
or multilevel model, which accounts for within-study
dependencies.

Cooper and Patall (2009) have drawn the parallel
between IPD meta-analysis and SCED meta-analysis.
In literature on SCED meta-analysis (and in the field
of social sciences in general), the IPD terminology is
not commonly used. In line with Cooper and Patall
(2009), we choose to adopt the terms ‘individual par-
ticipant data’ or ‘IPD’ (with ‘participant’ rather than
‘patient’) as well as ‘one-stage’ and ‘two-stage’ meta-
analysis as used in biomedical sciences, in order to
promote cross-disciplinary communication by using
consistent terminology across disciplines. Our aim
with this article is to explore how the one-stage and
two-stage approaches can be applied to SCED meta-
analysis and whether similar issues, as described
extensively in methodological literature on the one-
stage versus two-stage approach in the field of

medicine, arise. In the following sections we explain
in more detail how the one-stage and two-stage
IPD approach correspond to practices in SCED
meta-analysis.

One- and two-stage multilevel meta-analysis
of SCED data

The distinction between one-stage and two-stage IPD
meta-analysis stem from medical sciences, where the
randomized controlled trial (RCT) is considered as
the golden standard. When combining RCTs across
separate but similar clinical studies, the structure of
the data is a two-level hierarchy of participants nested
within trials or studies. This structure is similar to
that of the data from one SCED study, because—
despite the nomenclature—in single-case research it is
common practice to replicate the design across a small
number of participants (Shadish & Sullivan, 2011).
However, since participants are measured at several
time points, the first level is that of the observations
which are nested in participants at the second level.
When synthesizing several SCED studies with multiple
participants, an additional level of dependency is
introduced: measurements are nested within partici-
pants which are nested within studies. To account for
this nested structure, Van den Noortgate & Onghena
(2003b, 2003a, 2003c, 2007, 2008) proposed a
hierarchical linear model with three levels to synthesize
the raw SCED data from multiple cases. Since all raw
data are combined into a single model, this approach
can be interpreted as a one-stage IPD method.

However, the review by Jamshidi et al. (2020) sug-
gests that in practice, SCED meta-analysis is not con-
ducted in a one-stage fashion. Although retrieval of
the IPD through reverse-engineering of the reported
times series graphs is common practice, only a minor-
ity of the reviewed meta-analysis (12%) directly used
the retrieved raw IPD to synthesize the primary SCED
studies. Instead, a vast majority of the reviewed meta-
analyses (90%) used effect sizes (e.g., percentages of
non-overlapping data, improvement rate differences
or standardized mean differences). This implies that
researchers most commonly apply a two-stage IPD
approach, where they first retrieve raw data from
time-series graphs in the primary studies, subse-
quently calculate effect sizes and finally combine those
effect sizes in a meta-analytic model. Van den
Noortgate and Onghena (2008) illustrate an alternative
to the one-stage approach which allows for statistically
combining effect sizes from SCED studies. They pro-
pose to use a standardized mean difference (obtained
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from a regression coefficient) as an effect size measure
expressing the effect of the treatment for a particular
case. These effect sizes are then combined in a three-
level meta-analytical model and as such this procedure
comes down to a two-stage IPD approach. The stand-
ardized mean differences proposed by Van den
Noortgate and Onghena (2008) are particularly useful
when the scale of the outcome is not the same across
the cases and studies being aggregated. In situations
where the outcome is on the same scale, however, not
standardizing is preferable due to the fact that the
error introduced through estimation of the standard-
ization quantity is avoided. The three-level meta-ana-
lytical model as applied by Van den Noortgate and
Onghena (2008) can therefore also be an option for
alternative (unstandardized) effect sizes for SCED
data, such as other mean difference indices, regression
coefficients or descriptive metrics indexing immediate
changes in level or changes in slope.

Objectives

In this article we systematically compare a one- and a
two-stage approach for a multilevel IPD meta-analysis
of SCED data. For three models of increasing com-
plexity, we simulate datasets and apply both
approaches. For more complex models, the three-level
models involve more regression coefficients and there-
fore more parameters to estimate. This is particularly
true for the variance components, since the dimen-
sions of the covariance matrices at the higher level(s)
increase quickly; if a model has n coefficients, adding
one coefficient results in one additional variance and
2n additional covariances (i.e., 2nþ 1 additional
parameters) to estimate. The two-stage approach has
an important potential benefit over the one-stage
approach when the underlying model is more
complex. The multilevel model estimated based on
the effect sizes is reduced, so there are less parameters
to estimate. This might result in faster estimation
procedures and better convergence rates compared
to the one-stage approach.

However, a drawback of the two-stage approach is
the loss of information by reducing the rich raw data
to effect sizes. In a three-level design with I observa-
tions nested in J cases nested in K studies, the two-
stage approach uses I � J � K raw data points, while
the one-stage approach only uses J�K effect sizes. It
is not clear if the reduction in data combined with the
smaller model in the one-stage approach will result
in better or worse performance compared to the
two-stage approach. Possibly a less complex model

performs actually better than a complex model when
the available information is sparse. This might also be
the case for the two-stage approach. To investigate
this further, we compare the performance of both
approaches by assessing the statistical properties of
the estimations (the bias, MSE, confidence interval
coverage, Type I error rate and size of the standard
errors), the convergence rate and convergence speed.
Below, we start by describing in more detail the
one-stage and two-stage approach for a basic SCED
meta-analysis.

Three-level IPD analysis of SCED data

One-stage approach

Suppose SCED measurements Y have been obtained
from a two-phased design. First, the outcome Y is
measured in an initial baseline phase without any
intervention. After a number of measurement occa-
sions, the treatment or intervention is implemented
and the outcome continues to be measured under the
treatment condition. Suppose we have measurements
Y from multiple two-phased designs replicated across
cases and across studies. If we denote the measure-
ment occasion by i, the participant as j and the study
as k, we can model the measurements Yijk at the high-
est level as

Yijk ¼ b0jk þ b1jkDijk þ eijk, (1)

where the regression coefficients b0jk and b1jk are
specific to case j from study k. The regressor Dijk is
a dummy variable which equals 0 in the baseline
phase and 1 after the treatment has been imple-
mented. The residuals eijk are independent and
identically normally distributed with mean 0 and
variance r2e , assuming they are not autocorrelated
(i.e., there is no dependency between errors due to
similarity between consecutive observations). The
case-specific regression coefficients b0jk and b1jk can
be decomposed into a fixed effect c:::, a case-
specific random effect u:jk and a study-specific
random effect v::k :

(
b0jk ¼ c000 þ u0jk þ v00k
b1jk ¼ c100 þ u1jk þ v10k

u0jk
u1jk

� �
� MVN

0
0

� �
,

r2u0
ru01 r2u1

� �� �
;

v00k
v10k

� �
� MVN

0
0

� �
,

r2v0
rv01 r2v1

� �� �
:

(2)
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Often in SCED analysis, special interest goes out to
the estimation of the fixed effect parameter c100,
which expresses the overall average treatment effect
on the intercept. Furthermore, SCED practitioners
might be interested in estimating the between-subject
variance r2u1 and within-study variance r2v1 of this
treatment effect.

Two-stage approach

In the first stage of the two-stage approach, effect
sizes need to be calculated from the raw IPD data.
Van den Noortgate and Onghena (2008) illustrate
how to obtain effect size measures from SCED data,
based on a simple linear regression model per case
and using the ordinary least squares (OLS) method.
For the two-phase SCED data as described in the
previous paragraph, the simple linear regression
model is identical to the first-level equation of the
one-stage multilevel model (Equation 1):

Yijk ¼ b0jk þ b1jkDijk þ eijk (3)

We denote the residual variance per case as r2ejk : In
the baseline phase, when Dijk ¼ 0, the expected score
for case jk is b0jk: In the treatment phase, when Dijk ¼
1, the expected score for case jk changes to b0jk þ b1jk:
As such b1jk can be interpreted as an effect size of case
jk. From the fitted model, we obtain an estimation b1jk
of the effect size b1jk: The effect sizes b1jk can be used in
an alternative three-level meta-analytical model. We
assume that the effect sizes b1jk vary around b1jk, the
‘true’ effect for case jk with some random error rjk:

b1jk ¼ b1jk þ rjk: (4)

The within-case sampling variances are considered
to be known because they have been estimated as r̂2

b1jk
in the first step of the two-stage approach (Equation
3). Note that in the one-stage approach, the residuals
at the first level are assumed to have a common
variance r2e across cases and studies. In the two-stage
approach, the within-case variances (i.e., the diagonal
elements of r̂2

b1jk
) are not assumed to be identical. The

precision of these estimations will largely depend on
the number of measurements I. The individual ‘true’
effect sizes b1jk can be decomposed into an overall
fixed effect c100, a case-specific random effect u1jk and
a study-specific random effect v10k :

b1jk ¼ c100 þ u1jk þ v10k: (5)

The random effects u1jk and v10k are assumed to be
univariate normally distributed with means 0 and
variances r2u1 and r2v1 respectively.

An important difference between the three-level
model in the one-stage approach (Equations 1 and 2)
and this three-level model is that there are fewer
model parameters to estimate: only one fixed effect
(c100) instead of two (c000 and c100), and only two
variance components (r2u1 and r2v1) instead of seven
(r2e , r

2
u0, ru01, r

2
u1, r

2
v0, rv01 and r2v1). Since multilevel

models can take long to estimate, especially when the
model is complex and involves many parameters, the
smaller three-level model might significantly reduce
the estimation time of the two-stage approach
compared to the one-stage approach. A downside of
the two-stage approach is that the effect sizes are
aggregated data: the three-level model in the two-stage
approach is based on only J�K observations b1jk,
whereas the three-level model in the one-stage
approach is based on I � J � K observations Yijk. It is
unclear whether this loss of information will affect the
statistical properties of the estimations of the two-
stage approach.

In the following section, we illustrate two more
complicated SCED multilevel models and how the
two-stage approach can be adapted accordingly. Note
that although standardization will in practice often be
required due to studies measuring the dependent vari-
able in different ways, we focus on unstandardized
raw data and effect sizes in this simulation study.
Standardization for both raw data and effect sizes as
illustrated by Van den Noortgate and Onghena (2008)
happens before the application of the meta-analytical
three-level models and with an identical standardiza-
tion quantity (i.e., the root mean squared error
from the individual OLS regression estimations per
case) and would therefore not have an impact on the -
comparison between the one-stage and two-
stage approach.

More complex three-level models for SCED data

SCED data with a linear time trend
The simple models in Equations 1 and 3 only have an
intercept and one predictor D. They assume a hori-
zontal average trajectory in both the baseline and the
treatment phase. Suppose we want to model a linear
time trend in both phases. The one-stage model is
extended by adding a covariate Tijk to the first level.
The time can be expressed by real time (e.g., days) or
as a time indication (e.g., session number). Modeling
the baseline trajectory as a straight line with intercept
c000 and a slope c100, the treatment can have an effect
on either of them. Therefore the second model
includes not only the treatment dummy Dijk as a
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covariate, but also DijkTijk :

Yijk ¼ b0jk þ b1jkTijk þ b2jkDijk þ b3jkDijkTijk þ eijk

(6)

where eijk again has a Nð0, r2eÞ distribution. Assuming
the time variable Tijk is centered around the first
observation in the treatment phase, b2jk can be
interpreted as the case-specific average effect on the
intercept and b3jk as the case-specific average effect on
the slope. Again all covariates are decomposed
into a fixed effect, a random effect at the case level
and a random effect at the study level:

bjk ¼ cþ ujk þ v0k
ujk � MVN 0,Ruð Þ,
v0k � MVN 0,Rvð Þ

(7)

The bold symbols represent multidimensional
vectors: bjk equals ðb0jk, b1jk,b2jk,b3jkÞ>, c equals
ðc000, c100, c200, c300Þ>,ujk equals ðu0jk, u1jk, u2jk , u3jkÞ>,
v0k equals ðv00k , v10k, v20k , v30kÞ>, Ru equals

r2u0
ru01 r2u1
ru02 ru12 r2u2
ru03 ru13 ru23 r2u3

0
BB@

1
CCA

and Rv equals

r2v0
rv01 r2v1
rv02 rv12 r2v2
rv03 rv13 rv23 r2v3

0
BB@

1
CCA

Estimating this model directly based on the raw data
involves the estimation of four fixed effects (the ele-
ments of c) and 21 variance components (r2e and all the
elements of Ru and Rv). The fixed effects of interest are
those related to the effect of treatment: c200, which
expresses the overall average effect of the treatment on
the intercept, and c300, which expresses the overall aver-
age effect of the treatment on the slope. The difference
with the previous intercept-only model is that for this
linear time trend model, the effect of the treatment can
no longer be expressed in one single effect size (i.e., c100
for the intercept-only model). Per case, we will have
two effect sizes: c200 and c300.

Analogously to the two-stage approach for the
intercept-only model, we can calculate per case effect
sizes by fitting a multiple OLS linear regression model
for each case jk:

Yijk ¼ b0jk þ b1jkTijk þ b2jkDijk þ b3jkDijkTijk þ eijk

(8)

This model yields estimates b2jk and b3jk and these
estimates will serve as effect sizes for the subsequent

three-level meta-analytic model. Because we now have
two effect sizes per case, the multilevel model will be
a multivariate model assuming a joint two-
dimensional distribution of the b2jk’s and b3jk’s:(

b2jk ¼ c200 þ u2jk þ v20k þ r2jk
b3jk ¼ c300 þ u3jk þ v30k þ r3jk

r2jk
r3jk

� �
� MVN 0, r̂2ðbÞ

� �
,

u2jk
u3jk

� �
� MVN 0,Ruð Þ,

v20k
v30k

� �
� MVN 0,Rvð Þ

(9)

The covariance matrix of the sampling errors r2jk
and r3jk is estimated in the first step of the two-stage
approach (Equation 8) and is denoted as r̂2ðbÞ: The
three covariance matrices r̂2ðbÞ,Ru and Rv are
elements of R

2�2: The random effects u2jk and u3jk
express the deviation of participant jk from the mean
of study k. Finally, the random effects v20k and v30k
express the deviation of the mean of study k from the
overall mean effect sizes c200 and c300. Estimating the
meta-analytic multilevel model in Equation 9 involves
estimating two fixed effects (c200 and c300) and six
(co)variance components (the elements of Ru and Rv),
which is substantially less than the number
of parameters to be estimated when applying the one-
stage approach on the SCED raw data.

SCED data with a quadratic time trend
An extension of the linear time trend model
(Equations 6 and 7) is the quadratic time trend
model, in which the trajectory is allowed to be
parabolic (as well as linear). On top of the intercept
and the first-order time covariate, a second order
time covariate (plus its interaction with the
treatment dummy variable) is included at the first
level. The full three-level quadratic time trend
model is

Yijk ¼ b0jk þ b1jkTijk þ b2jkT
2
ijk þ b3jkDijk þ b4jkDijkTijk

þb5jkDijkT
2
ijk þ eijk

bjk ¼ cþ ujk þ v0k

ujk � MVN 0,Ruð Þ,
v0k � MVN 0,Rvð Þ (10)

Note that in this model the parameters bjk, c,ujk
and vk belong to R

6, while Ru and Rv are 6� 6
covariance matrices. The fixed effect parameters of
interest are those related to the treatment effect on
the baseline’s intercept (c300) and its first and second-
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order time coefficients (c400 and c500). Estimating this
model for the raw data involves the estimation of six
fixed effects (the elements of c) and 43 variance
components (the elements of Ru and Rv and the
residual variance r2e).

To apply the two-stage approach while modeling
a quadratic time trend, effect sizes can again be calcu-
lated per case jk with a multiple OLS linear regression
model:

Yijk ¼ b0jk þ b1jkTijk þ b2jkT
2
ijk þ b3jkDijk þ b4jkDijkTijk

þ b5jkDijkT
2
ijk þ eijk

(11)

where jk does not vary. From these per-case model
fits, we obtain three effect sizes b3jk, b4jk and b5jk, and
a sampling covariance matrix r̂2ðbÞ per case, which
we combine again in a multivariate, three-level
meta-analytic model:( b3jk ¼ c300 þ u3jk þ v30k þ r3jk

b4jk ¼ c400 þ u4jk þ v40k þ r4jk
b5jk ¼ c500 þ u5jk þ v50k þ r5jk
r3jk
r4jk
r5jk

0
@

1
A � MVN 0, r̂2ðbÞ

� �
,

u3jk
u4jk
u5jk

0
@

1
A � MVN 0,Ruð Þ,

v30k
v40k
v50k

0
@

1
A � MVN 0,Rvð Þ

(12)

The covariance matrices r̂2ðbÞ,Ru and Rv are now
elements of R3�3: Estimating the meta-analytic multi-
level model in Equation 12 involves estimating three
fixed effects (c300, c400 and c500) and 12 variance
components (the elements of Ru and Rv).

Methodology

All three described one-stage models (Equations 1 and
2 for Model 1, Equations 6 and 7 for Model 2 and
Equation 10 for Model 3) are summarized in Table 1.
These were the models used to estimate the data.
For simulating raw data for each of these models, the
coefficients of the covariates not related to the treat-
ment were fixed to 1 (i.e., c000 for Model 1, c000 and
c100 for Model 2, and c000, c100 and c200 for Model 3
in Table 1). This means that in the baseline phase, all
coefficients in all models equal 1. The effect sizes, i.e.,
the coefficients of the covariates related to the treat-
ment (i.e., c100 for Model 1, c200 and c300 for Model 2,
and c300, c400 and c500 for Model 3 in Table 1), were

set simultaneously to either 2 or 0. This means that
either the treatment has effect on all baseline covari-
ates, or on none of them. For Ru and Rv, the covari-
ance matrices on the second and third level, we chose
a compound symmetry structure to generate the raw
data. The variances (i.e., the diagonal elements in the
matrices in Table 1) were set to 1 or 4 at both levels,
and the correlations to 0 or 0.5 at both levels (thus
the off-diagonal elements in the matrices in Table 1
equaled 0, 0.5 or 2). The residual variance at the first
level r2e was fixed at 1. For Models 2 and 3 the time
variable was coded to be centered around the first
treatment observation. We varied the size of the simu-
lated datasets by varying the number of measurement
occasion I (I¼ 20, 28 or 40), the number of cases J
(J¼ 3, 5 or 10) and the number of studies K (K¼ 5, 7
or 10). The values for I and J were chosen based on
the review of SCED studies by Shadish and Sullivan
(2011). The number of studies K was kept fairly small
compared to values reported in a recent review of
SCED meta-analyses (Jamshidi et al., 2020), so that
the combination of smaller datasets and more com-
plex models provided a challenge for both the one-
stage and the two-stage approach in terms of conver-
gence and estimation speed. The datasets within stud-
ies were designed to have an identical number of
baseline and treatment phase observations, so the
intervention was set to take place after the first half of
I observations within each case. In total these param-
eter variations lead to 2� 2� 2� 3� 3� 3 ¼ 216
conditions. For each condition, we simulated 1000
datasets with raw data which we analyzed with the
one-stage approach. For each dataset, we then calcu-
lated effect sizes and analyzed those using the two-
stage approach.

The simulation study was implemented in R. To
generate the raw data and fit the three-level model for
the one-stage approach, we used the lmer function
from the lme4 package (Bates et al., 2015). Single
parameter hypothesis testing for the one-stage
approach was done with the contrast testing function
contest from the lmerTest package. For the
two-stage approach, we calculated effect sizes by fit-
ting a multiple linear regression model (using OLS)
based on the first level of the three-level model used
to generate the raw data. These effect sizes were com-
bined in a three-level model with the function
rma.mv from the metafor package (Viechtbauer,
2010). We chose not to use the lmer function here.
The reason for this is that in the three-level meta-ana-
lytic model for the effect sizes, the sampling variances
at the first level are assumed to be known and need
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to be fixed at these known values in the model.
However, the lmer function does not allow specifica-
tion of a known variance-covariance matrix for the
sampling errors. It only allows fixing the sampling
variances up to a proportionality constant via the
weights argument (Viechtbauer, 2016). Therefore
we opted to use the rma.mv function from the
metafor package instead, because rma.mv allows
for specifying known sampling variances as weights.
We made sure to implement both functions with
identical options: both functions used REML estima-
tion and the BOBYQA algorithm (Powell, 2009) with
a maximum of 10.000 function evaluations as the esti-
mation optimization method. The simulation code
can be requested from the last author of this paper.

To evaluate and compare the one-stage and the
two-stage approach, we calculated the bias, the MSE,
the coverage proportion of the 95% confidence inter-
val, the Type I error rate and the bias in the standard
errors of the relevant fixed effects of interest (i.e., c100
for Model 1, c200 and c300 for Model 2 and c400, c500
and c600 for Model 3). For the associated variance
components (i.e., the within- and between-study var-
iances and covariances related to the relevant fixed
effect coefficients), we looked at the bias and the
mean squared error only.

To calculate p-values and confidence intervals,
lmer and rma.mv do not offer the same options in
terms of the type of hypothesis test. The lme4 pack-
age by default offers likelihood ratio tests, profile con-
fidence intervals and parametric bootstrap confidence
intervals, but it does not offer p-values or Wald-type
confidence intervals (Bates, 2006; Bates et al., 2015;
Bolker, 2018). For Wald t-tests, users can resort to the
lmerTest package (Kuznetsova et al., 2017), which
offers t-tests with the Satterthwaite or Kenward-Roger
adjustment for the degrees of freedom (Kenward &
Roger, 1997; Satterthwaite, 1941). The metafor

package by default offers likelihood ratio tests and
Wald-type z-tests. It also includes the option to adjust
the standard errors of the estimated coefficients by
mimicking the Knapp and Hartung (2003) method
and performing a t-test instead (note that unlike in
the actual Knapp and Hartung (2003) method, the
covariance matrix of the fixed effects is not adjusted).
With some manual coding effort, parametric and non-
parametric bootstrap confidence intervals can also be
obtained with metafor (Viechtbauer, 2018).

Because of the differences in functionality and
options regarding inference in lme4 and metafor,
we tried to streamline the inference procedure for the
one-stage and two-stage approach as much as

possible. As a first step, we conducted a simple Wald
z-test based on the point estimates and the
corresponding standard errors. Although the z-test’s
normality assumption for the null distribution does
not hold for finite samples, this was the only way to
make a fair comparison between the one-stage and
two-stage approach. Secondly, we conducted a t-test
for both approaches: for the one-stage approach we used
the extended lmer function and the contrast testing
function contest from the package lmerTest

(Kuznetsova et al., 2017) to conduct single parameter
hypothesis testing based on a Wald-type t-test with
Satterthwaite degrees of freedom (Satterthwaite, 1941)
and to calculate the associated confidence interval limits.
For the two-stage approach we used the option test ¼
"t" of the rma.mv function, which returns a t-test with
degrees of freedom adjusted by mimicking the Knapp
and Hartung (2003) method, namely KJ – p, where p is
the total number of model coefficients including the
intercept if it is present (Viechtbauer, 2010).

Furthermore we evaluated and compared the one-
stage and two-stage approach in terms of speed and
convergence. Because both approaches were imple-
mented with functions from different packages, com-
parisons between them in terms of speed and
convergence rely greatly on the implementation of the
specific functions, i.e., lmer for the one-stage
approach and rma.mv for the two-stage approach.
Speed was measured by taking a time stamp just
before and after the three-level model function call in
R and by taking the difference between both. Both the
lmer and rma.mv function calls included the option
to conduct the t-test. The z-test was calculated after-
wards based on the estimates and standard errors
obtained from the lmer and rma.mv objects. Thus
although the z-test was technically not included in the
speed calculation, its attribution to the speed results
of the approaches would only be marginal due to the
simple and fast calculation. Convergence behavior was
slightly different for the one-stage and two-stage
approach due to inherent difference between the han-
dling of convergence issues by lmer and rma.mv.
The lme4 package documentation lists some issues
regarding testing convergence due to the difficulty of
evaluating the gradient and the Hessian (Bates et al.,
2018). As a consequence, lmer throws convergence
warnings rather than errors, and the package authors
provide some suggestions on how to troubleshoot
these warnings. Such steps are beyond the scope of
this simulation study and we considered lmer model
fits which resulted in warnings as non-convergent.
We did this after we confirmed that although
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estimation results are still given when warnings occur,
the point estimations proved to be less reliable (in
terms of bias and MSE) than those from lmer model
fits without warnings. The behavior of rma.mv is
more straightforward: when convergence issues occur,
an error is thrown and no results are shown. In such
cases the model estimation was considered as
not converged.

For all of the aggregated results on the statistical
properties of the estimations and the speed and con-
vergence of the model fits, we used ANOVA’s to
determine if and how the results vary across the simu-
lation conditions. This was only used as a preliminary
analysis in order to select those factors with a signifi-
cant effect on a specific result, because likely the
ANOVA assumptions of normality and homogeneity
are not met. The factors we included in these
ANOVAs were the approach used (one-stage or two-
stage), the underlying model (Model 1, 2 or 3), the
number of measurements, the number of cases, the
number of studies, the value of the treatment effect(s),
the value of the between- and within study variance
and the value of the between- and within study correl-
ation. We looked at the statistical significance of main
and interaction effects and we calculated g2-values to
evaluate the size of the effects. Although the main
effects for approach and model were not always large
(i.e., g2 > :26) according to the classical standards by

Cohen (1988), we still included them in all results
below because they are crucial to the research ques-
tion which motivated this simulation study (i.e., is
one or the other approach more suitable for simple
versus more complex models?).

Results

Convergence

The simulation results showed that the convergence
rates for the two-stage approach remain fairly stable
when the model complexity increases: with 98% con-
vergence rate for Model 1, 99.9% for Model 2, and
98.5% for Model 3, the convergence rate did not drop
below 98%. The rates for the one-stage approach how-
ever decreased substantially for more complex models:
for Model 1 99.2% of the simulations converged,
whereas the convergence rate dropped to 94.6% for
Model 2 and to 42% for Model 3. The ANOVA ana-
lysis indicated that the underlying model (g2 ¼ :17)
and the approach (g2 ¼ :10) used have the biggest
impact on the convergence, as well as their interaction
(g2 ¼ :17). Furthermore, small interaction effects with
the number of measurements I became clear (g2 ¼ :02
for the interaction of model and I and the interaction
of approach, model and I). Figure 2 shows how the
convergence rate for the one-stage approach is slightly
lower (but not affected by I) for Model 2. The low

Figure 2. Convergence rates in function of number of measurements I for different approaches and models.
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convergence rate for the one-stage approach when
using Model 3 is clearly distinguishable and Figure 2
shows how it becomes worse when the number of
measurements I increases.

Speed

Speed was mostly affected by the underlying model
(g2 ¼ :51) and to a minor extent by the interaction of
the approach and the number of cases J with the
model (g2 ¼ :03 for J, g2 ¼ :04 for the interaction of
model and J and g2 ¼ :02 for the interaction of
approach and model). Figure 3 shows how again for
models 1 and 2, both approaches reach convergence
similarly fast. For Model 3, the model with the most
parameters to estimate, the one-stage approach is
faster, especially when the number of cases J is small.
As J becomes larger, the one-stage and two-stage

approach become slower and the difference in speed
between both becomes smaller to 37 (one-stage
approach) and 49 (two-stage approach) seconds on
average for J¼ 10. In general both the lmer() and
rma.mv() analyses converged in under a minute. The
longest fit to complete took 6.08minutes for Model 3
with the two-stage approach, in a condition with
c¼ 0, r2 ¼ 1, q¼ 0, I¼ 40, J¼ 10 and K¼ 10.

Statistical properties of fixed effect estimations

To compare fixed effect estimates, we first verified the
correlation between the one-stage and the two-stage
approach estimates. The Pearson correlation coeffi-
cient between the deviations of the one-stage and
two-stage estimates from the true nominal fixed effect
was r ¼.9994. This confirms that the one-stage and
two-stage fixed effect estimates are indeed consistent.
We compared them in terms of MSE, bias, confidence
interval coverage, Type I error rate and bias of the
associated standard errors below. Because the conclu-
sions are similar across different coefficients

Table 2. Mean squared error for the overall treatment effect
on the intercept.

Model 1 Model 2 Model 3

r2 K One-stage Two-stage One-stage Two-stage One-stage Two-stage

1 5 0.25 0.25 0.27 0.27 0.32 0.31
7 0.18 0.18 0.19 0.19 0.22 0.22
10 0.12 0.12 0.13 0.14 0.16 0.15

4 5 0.98 0.97 0.99 0.99 1.05 1.02
7 0.69 0.69 0.71 0.71 0.79 0.74
10 0.48 0.48 0.50 0.50 0.55 0.52

Table 3. Bias for the overall treatment effect on the intercept.
One-stage Two-stage

Model 1 0.0012 0.0011
Model 2 0.0012 0.0006
Model 3 –0.0018 0.0004

Figure 3. Speed of model fit in function of number of cases J for different approaches and models.
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(treatment effect on the intercept, the linear slope and
the quadratic slope), we include only results for the
treatment effect on the intercept, since this is the only
fixed effect parameter included in all three models.
Results for the other fixed effect parameters are avail-
able upon request from the last author.

MSE
The ANOVA analysis did not reveal any substantial
difference in MSE between approaches (g2 < :001) or
for different models (g2 < :001). Overall, the MSE is
larger when r2 ¼ 4 and smaller when r2 ¼ 1
(g2 ¼ :10). Furthermore, the MSE increases when the
number of studies K decreases (g2 ¼ :02). The impact
of the number of units at the highest level (rather
than the lower levels) of a multilevel model on the
efficiency of the overall fixed effects estimations has
been observed and described in previous simulation
studies (Moeyaert et al., 2013a, 2013b). MSE values
are shown in Table 2. Despite the small effects of
model and approach as indicated by the ANOVA, we
see from Table 2 that the MSE increases with model
complexity and that for the most complex Model 3
the MSE is very slightly higher when applying the
one-stage approach.

Bias

The fixed effect estimates were unbiased across all
simulation conditions, independent from the underly-
ing model or approach used (Table 3). The highest
bias reported in Table 3 (for Model 3 with the
one-stage approach) corresponds to a relative bias of
�0:0018=2 ¼ �:09%, which is negligible. This is consist-
ent with results from previous simulation studies on
multilevel modeling of SCED data (Ferron et al., 2009,
2010; Moeyaert et al., 2013a, 2013b; Owens & Ferron,
2012; Van den Noortgate & Onghena, 2003a,
2003b, 2008).

95% confidence interval coverage
The ANOVA revealed that there was no substantial
difference in empirical coverage probability of the
Wald z-type 95% confidence intervals across simula-
tion conditions, models or approaches. Table 4 shows

how for all three models and both approaches, only
90% to 92% of the obtained 95% confidence intervals
contain the true nominal parameter value. The one-
stage approach performs slightly better for models 2
and 3. In an attempt to improve the confidence inter-
val coverage, we recalculated the confidence intervals
by using a t-distribution with Satterthwaite degrees of
freedom for the one-stage approach and the Knapp
and Hartung (2003) like degrees of freedom as pro-
vided by rma.mv for the two-stage approach. This
drastically improved the coverage probability when
using the one-stage approach, but only slightly
improved the coverage for the two-stage approach so
that for models 1 and 2 the 91% coverage probability
obtained for Model 3 was now also reached. The
improved coverage probability for the one-stage
approach is in line with the results from Ferron
et al. (2009).

Type I error rate
Just as for the confidence intervals, we evaluated Type
I error rates based on two types of hypothesis tests: a
z-test to make a fair comparison between the one-
stage and the two-stage approach, and a t-test where
both approaches again using the two different types of
degrees of freedom. Based on the ANOVA’s, we also
include the effect of the number of studies K
(g2 ¼ :001) in Table 5 next to the underlying model
(g2 < :001) and approach used (g2 < :0001). When
calculating p-values based on the Z-statistic, both the
one-stage and two-stage approach obtain equally bad
Type I error rates (as expected), especially for small K
and the less complex Model 1. The Type I error rates
again improve substantially for the one-stage approach
when using the t-test with Satterthwaite degrees of
freedom. Using a t-distribution (with Knapp-Hartung
degrees of freedom) did not substantially improve the
results of the two-stage approach: the Type I error
rates based on the t-test remain too high compared to
the nominal a ¼ :05 level.

Relative bias of standard errors
The relative bias in the standard errors is calculated
by comparing the mean standard error within a con-
dition with the sample standard deviation of the

Table 4. Empirical coverage probability of 95% confidence intervals for the overall treatment effect on the intercept.
Model 1 Model 2 Model 3

Wald-type CI One-stage Two-stage One-stage Two-stage One-stage Two-stage

Normal .9039 .9067 .9152 .9072 .9256 .9133
Student’s ta .9509 .9167 .9579 .9124 .9644 .9168
aUsing Satterthwaite (1941) degrees of freedom for the one-stage approach and degrees of freedom based on the Knapp and Hartung (2003) method for
the two-stage approach.
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estimates within that condition. For conditions in
which many or all of the 1000 simulations converged,
this yields reliable results. However, in some condi-
tions very few or no simulations converged. We there-
fore decided to only include conditions in which at

least half of the simulations converged, in order to
obtain a mean standard error and a sample standard
deviation of the estimates based on at least n¼ 500
observations. As such, 216 of 216� 3� 2 ¼ 1296 or
about 16% of the conditions were left out, including

Table 5. Type I error rates for the overall treatment effect on the intercept based on a nominal a ¼ :05
significance level.

Model 1 Model 2 Model 3

Hypothesis test K One-stage Two-stage One-stage Two-stage One-stage Two-stage

Normal 5 .11 .11 .10 .11 .08 .10
7 .09 .09 .08 .09 .08 .09
10 .08 .08 .08 .08 .07 .08

Student’s t a 5 .05 .09 .04 .10 .03 .09
7 .05 .08 .04 .09 .04 .09
10 .05 .07 .05 .08 .04 .08

aUsing Satterthwaite (1941) degrees of freedom for the one-stage approach and degrees of freedom based on the Knapp and Hartung
(2003) method for the two-stage approach.

Figure 4. Relative bias in the standard errors of the fixed effect parameter estimate ĉ in function of the number of cases J and
the number of studies K.

Figure 5. Bias in the variance component estimates in function of the number of cases J.
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all conditions using the one-stage approach with
Model 3. Based on the ANOVA the effect of the num-
ber of studies K (g2 ¼ :017) and the number of cases
J (g2 ¼ :040) was incorporated in Figure 4. The
underlying model had the largest effect on the relative
bias of the standard errors (g2 ¼ :052), while the
effect of the approach used was smaller (g2 ¼ :006).
The small effects of these factors on the relative bias
of the standard errors is shown in Figure 4: the rela-
tive bias is small to negligible almost everywhere.
Only for K¼ 5, J � 5 and Model 1 with the one-stage
approach, the relative bias exceeds 5%.

Statistical properties of (co)variance estimations

To compare (co)variance estimations, we again veri-
fied the correlation between the deviations of the one-
stage and the two-stage approach estimates from the
true nominal (co)variance values. The Pearson correl-
ation coefficients equaled r¼ .9895 for the variances
and r¼ .9941 for the covariances. This confirms that
the one-stage and two-stage (co)variance estimates are
indeed consistent and we compare them in terms of
bias and MSE below. Note that we can only compare
(co)variance parameters estimated in both approaches,
i.e., those related to the treatment coefficients (see
Table 1). Across models this means there are 2þ 6þ

12 ¼ 20 different (co)variances to compare. In the
results below we only report the results for the within-
and between-case variance in treatment effect on the
intercept (r̂2

u1 and r̂2
v1, respectively), which are esti-

mated for all three models, and the within and
between-case covariances between the treatment effect
on the intercept and the treatment effect on the time
trend (r̂u13 and r̂v13, respectively), which are esti-
mated in Model 2 and Model 3. Results for the other
(co)variance parameters are available upon request
from the last author.

Bias

From the ANOVA analyses carried out per (co)vari-
ance parameter, the biggest effects on the bias were
attributed to the nominal value of the parameter, the
number of cases J, the number of studies K and the
underlying model used. The effect of the approach
used was small. Figures 5–7 show the bias in function
of J for the four parameters r2u1, r

2
v1, ru13 and rv13 and

in function of the nominal value of the parameter,
i.e., r2 for r2u1 and r2v1 and r2q for ru13 and rv13:
From Figure 5 it is clear that the bias decreases as the
number of studies J increases. An almost identical pat-
tern was observed when plotting the bias as a function
of the number of studies K. The bias appears to be

Figure 6. Bias in the variance estimates in function of the true value r2 for the within- and between-case variance.

Figure 7. Bias in the covariance estimates in function of the true value r2q for the within- and between-case covariance.

14 L. DECLERCQ ET AL.



larger for the variance parameters compared to the
covariance parameters, but this is due to the scale of
the y-axis. The underlying nominal values of the var-
iances are different from the ones of the covariances
and we did not compute the relative bias because this
was impossible for conditions in which the covariance
equaled 0. From Figures 6 and 7 we see that the bias
is larger when the variance or covariance is larger.
Figures 5–7 confirm the small effect of the approach.
It is however clear that for the variances r2u1 and r2v1,
the one-stage approach leads to larger biases when the
underlying model is more complex.

MSE
The ANOVA analyses per variance component
showed that their MSE is affected by the nominal
value of the variance component, the number of cases
J and the number of studies K. Again we only report
the results in terms of the number of cases J, since the
results for the number of studies K are very similar.
The MSE decreases as the number of cases J increases

(Figure 8) and is noticeably larger for variance com-
ponents at the study level (Figures 8 and 9). The
MSE’s are very similar for both approaches and only
slightly larger when the underlying model becomes
more complex. For the parameter r2u1, the two-stage
approach seems to lead to somewhat larger MSE’s
with more complex underlying models. From Figure 9
finally, we see that the MSE’s increase as the nominal
value of the variance r2 increases.

Discussion

In this simulation study, we wanted to verify how
using effect sizes for SCED data in a three-level meta-
analytic model impacts the speed, convergence rate
and statistical properties of the estimates compared to
using the raw data. For several single-case designs, we
showed how to calculate effect sizes per case from the
individual raw data and how to set up an appropriate
three-level model. The advantage of using the effect
size approach is that this corresponding three-level

Figure 8. MSE of the variance component estimates in function of the number of cases J.

Figure 9. MSE of the variance estimates in function of r2, the within- and between-case variance.
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model has fewer parameters to estimate than a three-
level model applied to the original raw data. A disad-
vantage on the other hand was that effect sizes com-
press the rich information present in the raw data.
The question was whether the effect size approach
leads to faster and better convergence and how it
affects the statistical properties of the estimations.

Based on the results we reported, neither of the
approaches outperforms the other on all aspects. The
two-stage approach does lead to better convergence
rates if the underlying single-case design is more com-
plex, but it was not faster. In terms of MSE and bias
of the fixed effect and variance component estima-
tions, the two-stage approach yields similar results as
the one-stage approach and the standard errors of its
fixed effects are similarly unbiased, but its empirical
confidence interval coverage and Type I error rate are
consistently worse. The fact that we did not see large
differences in efficiency (i.e., bias and MSE) between the
one-stage and two-stage estimators is not surprising.
Mathew and Nordstr€om (2010) have previously shown
that for a fairly general two-level setup (with participants
nested within trials), the two-stage approach is asymp-
totically as efficient as the one-stage approach. Under
the assumption that the first-level covariance matrix has
been accurately estimated and that the fraction of obser-
vations corresponding to any given treatment remains
the same across trials, the one-stage and two-stage IPD
estimators coincide. Both assumptions hold in our simu-
lation study: the first-level variance estimates are
retrieved from the OLS regression on the within-case
data, and the fraction of observations corresponding to
the baseline and the treatment phase was equal to 0.5
for all simulated datasets.

Much of the simulation results in this study of
course depend heavily on the implementation of both
approaches in R, using two different packages and
several different functions. Although we tried to
streamline the code as much as possible, we are aware
of the fact that next to comparing the one-stage and
the two-stage approach, we are also comparing the
lmer and the rma.mv function in terms of code effi-
ciency and available options. Although the open-
source R software has the advantage of being more
widely available, it would also be interesting to repeat
the simulations with e.g., PROC MIXED (Littell et al.,
2007) using SAS software. The MIXED procedure
allows for fixing the level-one variance as well as
obtaining p-values and confidence intervals for the
fixed effects with different methods of computing the
denominator degrees of freedom (SAS/STAT 15.1
User’s Guide, 2018).

The main difference between lmer and rma.mv

is in their available options for inferential statistics.
We conducted a Wald-type z-test to make a fair com-
parison between the two approaches, but since the
null distribution can only be asymptotically approxi-
mated by a normal distribution, this is usually not
recommended. Switching to a t-distribution to reduce
Type I error inflation requires computation of the
degrees of freedom. Unlike its univariate counterpart
rma, the rma.mv function only offers inference
based on the normal distribution or on a t-distribu-
tion with a fairly simple degrees of freedom calcula-
tion. As such, the improvement in confidence interval
coverage and Type I error rate for the two-stage
approach implemented with rma.mv (Tables 4 and
5) is minimal. Small sample adjustments for the
degrees of freedom, like the Satterthwaite method
applied in the one-stage approach with lmer

(Satterthwaite, 1941), the Kenward-Roger method
(Kenward & Roger, 1997), or the Knapp and Hartung
between-study variance estimator (Hartung & Knapp,
2001), yield a more substantial improvement.
S�anchez-Meca and Mar�ın-Mart�ınez (2008) have illus-
trated this for the confidence interval coverage in a
simulation study in which different confidence inter-
val construction methods and between-study variance
estimators are compared, including the Wald-type z-
test method and the Hartung and Knapp (2001)
method. The latter method is currently implemented
in the univariate rma function in metafor and
could be implemented for results obtained with the
rma.mv function by manually adjusting the variance-
covariance matrix of the fixed effects.

The speed and convergence of the multilevel model
fits are two other aspects which might depend on the
implementation of lmer and rma.mv. Here we
attempted to streamline the results by making sure
both functions used the same estimation method
(REML), optimizer (BOBYQA) and maximum num-
ber of function evaluations (10,000). The results of
our simulations show that the difference between both
model fits is small and that with averages below one
minute and a maximum duration of 6minutes across
all simulations, estimation speed for a single model fit
is negligible in practice. Non-convergence is also dealt
with differently in practice, i.e., when only a single
dataset is being analyzed. It is possible to make man-
ual adjustments to the optimization routines with
both lme4 and metafor in order to obtain estima-
tions, but in a simulation study with thousands of
datasets, this is not a practical option.
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Simulation studies on IPD meta-analysis are still
relatively rare. The SCED simulation results obtained
in this study can be compared with a recent simula-
tion study by Morris et al. (2018), who compared the
one-stage and two-stage approach for data obtained
from clinical trials. Using a simple linear model with
fixed intercept and random treatment effect, Morris
et al. (2018) found little to no difference in empirical
variance and in coverage of 95% confidence intervals.
The first result is in line with our results in Figure 4,
where we compare the mean of the standard errors of
the treatment effect with the empirical standard devi-
ation of the treatment effect estimates. The 95% confi-
dence interval coverage in Table 4 show a larger
difference between the one-stage and the two-stage
approach. As discussed earlier this might be mostly
due to the implementation of our simulations in R

with the metafor and the lme4 package, while
Morris et al. (2018) have conducted their simulations
with SAS and Stata (Stata multilevel mixed-effects ref-
erence manual, 2013). Legha et al. (2018) have con-
ducted a more extensive simulation study on the IPD
one-stage approach, also for a simple linear model
similar to Model 1 in this study. One of their key
findings is that using the Satterthwaite or Kenward-
Roger approach leads to better 95% confidence inter-
val coverage compared to a standard normal
approach, although that on occasion the Satterthwaite
and Kenward-Roger confidence intervals show some
over-coverage. Again this agrees with what we have
found in Table 4. The two-stage approach has also
been studied in a much earlier simulation study by
Stukel and Demidenko (1997), who suggest that the
two-stage approach may be more robust to certain
forms of model misspecification, in particular when
the focus is on a subset of the model coefficients. This
is indeed the case for the multilevel models in the
current simulation study, where in the second stage
(Equation 5) only the treatment effect c100 and its
associated variance components are estimated, but not
the baseline level c000.

The models analyzed in this simulation study were
still of relatively modest complexity. We did prelimin-
ary simulations with more models of increasing com-
plexity, including models with ABAB designs with and
without linear or quadratic time trends and with combi-
nations thereof. These took substantially more time to
fit using the one-stage as well as the two-stage approach
and were finally not included due to the fact that run-
ning a full simulation (including 1000 simulations
across 216 conditions) for these models was not feasible
within a reasonable time frame. Note that although we

ran simulations in parallel, it would take 221 days in
total to run all simulations in this study sequentially.

Another complexity which might be considered in
future simulation studies on SCED raw data and effect
sizes, is modeling of discrete or proportional outcomes,
which are very common in single-case research
(Shadish & Sullivan, 2011). This can be done by means
of generalized linear mixed modeling (Declercq et al.,
2019). Applying generalized linear mixed models for
non-normal data involves integration over the random
effects and thus requires more complex estimation tech-
niques (e.g., penalized quasi-likelihood, Gauss-Hermite
quadratures or Markov chain Monte Carlo algorithms).
This might have a substantial impact on convergence
rates and estimation speeds. The simulation study by
Declercq et al. (2019) showed that accounting for non-
continuous outcomes with generalized linear models
makes modeling single-case data considerably more
complex, but that using simple linear mixed models as
the ones presented in this manuscript would not neces-
sarily lead to inaccurate fixed effect estimates or flawed
inferences when applied to count outcomes. Because in
this study, we wanted to isolate the complexity of hav-
ing an increased number of regression coefficients (and
how that affects the one-stage and two-stage model), we
have chosen to only simulate continuous outcomes.

For all multilevel models presented in this simulation
study, random effects were included for every regres-
sion coefficient. In practice, researchers conducting
SCED meta-analyses will carefully consider for which
regression coefficients random effects need to be
included, based on the characteristics of the data, the
amount of data at hand, and their specific research
interests. In a meta-analysis of SCED studies, the con-
ducting researcher is likely to be explicitly interested in
how the effect varies across cases and across studies,
and as such it is equally likely that the most appropriate
model includes multiple random effects.

The results reported in this simulations study are,
as for any simulation study, limited to the simulation
conditions used: the choices of nominal values for the
model parameters and of the number of measure-
ments, cases and studies, as well as the models used
to generate and analyze the SCED data (as explained
in the previous paragraph). The results of the two-
stage approach also depend on the particular choice
of SCED effect sizes (i.e., regression coefficients).
Instead of regression coefficients, the univariate or
multivariate two-stage approach could be applied to
other parametric or non-parametric effect sizes
(Manolov & Moeyaert, 2017), like nonoverlap indices
(e.g., percentage of non-overlapping data or PND),
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descriptive indices quantifying changes in level and
slope (e.g., mean phase difference or MPD), standar-
dized mean difference indices (e.g., the Hedges et al.
(2013) d statistic) and other indices based on regres-
sion analyses (e.g., the Pustejovsky et al. (2014)
d statistic).

Conclusion

We simulated raw SCED data with three levels (meas-
urements nested within cases nested within studies)
from three designs: an intercept-only model, a model
with a linear time trend and a model with a quadratic
time trend. On these simulated data, we applied a
one-stage IPD approach by fitting a three-level meta-
analytic model on the raw data. Then, we calculated
effect sizes by fitting individual OLS linear regression
models per case and retrieving the regression coeffi-
cient(s) related to the treatment. These were subse-
quently used as the dependent variables in a uni- or
multivariate three-level model. As such we applied a
two-stage IPD meta-analytic approach. Although
reducing the raw data to effect sizes leads to a loss of
information, the resulting three-level model has fewer
parameters to estimate. For the three models of
increasing complexity, we investigated how this
impacted the convergence rate and speed of the model
estimations as well as the statistical properties of the
estimates. Using two different packages and functions
in R, the results showed that for more complex mod-
els, the one-stage approach indeed obtained better
convergence rates but that model estimations did not
necessarily converge at a faster speed. The precision
and the bias of the point estimates was very similar
for both approaches and for all models. Inference
results were consistently worse for the two-stage
approach, although this might be due to the particular
implementation and methods used in R (i.e., the
rma.mv function from the metafor package).
When confronted with convergence issues when esti-
mating a multilevel model from the raw data, one of
the options for applied SCED researchers who are
conducting a meta-analysis based on raw SCED data
could be to turn to the two-stage approach instead,
especially if they cannot simplify their model. With
the two-stage approach, practitioners might experience
less convergence issues with larger, more complex
multilevel models (especially if effect sizes are based
on larger studies) and they should obtain reliable and
valid point estimates. However, they should interpret
the corresponding inference results obtained from the
multilevel analysis with caution.
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