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ABSTRACT
Student grade prediction is a popular task for learning ana-
lytics, given grades are the traditional form of student per-
formance. However, no matter the learning environment,
student background, or domain content, there are things in
common across most experiences in learning. In most previ-
ous machine learning models, previous grades are considered
the strongest prognosis of future performance. Few works
consider the breadth of instructor features, despite the ev-
idence that a great instructor could change the course of a
student’s future. We strive to determine the true impact of
an instructor by analyzing student data from an undergrad-
uate program and measuring the importance of instructor-
related features in comparison with other feature types that
may affect state-of-the-art student grade prediction models.
We show that adding extensive instructor-related features
improves grade prediction, when using the best supervised
learning classifier and regressor.
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1. INTRODUCTION
Student performance prediction is a useful service for multi-
ple educational stakeholders in a university and other educa-
tional contexts. For example, it is a frequent feature in learn-
ing analytics software, like in early-warning systems [6], cur-
riculum personalization [5], cultivating student study skills [13],
characterizing course difficulty [31], and can be incorporated
into Intelligent Tutoring Systems [22], Massively Open On-
line Courses [26], and Learning Management Systems [17]. It
makes sense that a student would want to use their predicted
grade in future courses for short-term course planning, or if
an instructor or advisor would want to predict the grades of
their students as an early indication of which students are
likely to need more assistance.

Intuitively, it would appear that student history would be
sufficient to predict future grades. However, in a classroom
environment,the student and their past grades are not the
only factors that dictate the student’s performance. The
specific course for which the grade is being predicted and
the particular instructor can also affect the outcome of the
student’s efforts. It is common knowledge that students have
varying strengths and weaknesses that interact with courses
and their materials. This is reflected in machine learning
(ML) models that attempt to carry out student grade pre-
diction by including course-based features. Furthermore,
the content of the course and the student’s ability to re-
tain the information and skills they learned can also have
an impact on student performance (e.g. [27]). Similarly, it
is also known that instructors can have a monumental im-
pact on students. For example, good teachers can improve
standardized testing scores in reading and math [20]. When
considering a teacher’s motivation level, there is a direct
link to students’ academic achievement [4]. Furthermore, it
is a common anecdote for someone to be able to point to a
teacher that had greatly affected who they became later in
life, usually by reinforcing positive traits or shielding from
negative influences (e.g. [9]). Yet, an instructor’s impact on
a student’s performance has not been fully explored, quan-
titatively and in ML models.

In this paper we take a first step to characterize the feature
space that can describe the instructor effect on student grade
prediction. We experiment with several ML algorithms, us-
ing a dataset with thousands of student data records from
a large, public university, and show that adding extensive
instructor-related features improves grade prediction. Our
evaluation shows that GradientBoost is the best supervised
learning classifier and regressor, and we will use it to com-
pare instructor-based features with other feature types.

2. PREVIOUS WORK
Student performance prediction is a popular research sub-
ject, given its varied applications and approaches. Some
works have approached the problem of binary classification
of student performance (e.g., predicting pass/fail), to focus
educators’ attention to the needy students. However, our
focus is on overall prediction of the Grade Point Average
(GPA) of the final grade in a course, along with a corre-
sponding 5-class breakdown of the grade1, to explore the
possible effect that instructor features have over a course’s

1The categories and corresponding GPA values can be found
in Table 3.
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final grade. Many works also attempted to train models that
predicted multi-class classification (e.g., categorical/letter
grading) or regression (e.g., percentage) [1], but with no
attempt to include instructor characteristics.

Recent published work in grade prediction has focused on ex-
perimenting with different ML models, using features such
as student characteristics, domain content, or other course
characteristics. Morsy and Karypis [19] focused on assigning
knowledge component vectors for each course, paired with
a student’s performance in those courses, to inform a re-
gression model, and attained up to 90% accuracy for some
predictions with leeway up to 2 half-grades away2. Polyzou
and Karypis [25] employed Matrix Factorization, previously
found in recommendation systems, and focused on historical
student grades as the primary feature category, achieving an
average error between 2 to 3 half grades. Widjaja et al. [34]
combined a Matrix Factorization model, Factorization Ma-
chines (FM), with a Long Short-Term Memory neural net-
work, using multiple course and student features, achieving
an error between 1 to 2 half grades. None of these works
included instructor-based features. For comparison, we will
use an FM [29] model as one of our baselines.

Most research to date in this area focuses on past student
performance, student-based features, and more recently on
course-based features, like in the examples given above. Poly-
zou [24] went further in an attempt to enumerate student
grade and course-based features, but applied the models
only to predicting several binary classifications (e.g. will the
student fail the course?). They found that for some classifi-
cation tasks, some feature types improved the performance,
while in other classification tasks, they made things worse.

Given that our focus is to add instructor features, we ex-
amined works that included them. Ren et al. [28] used only
an instructor’s ID when training a neural collaborative fil-
tering model and achieved an error within two half grades.
Zhang et al. [35] had a feature list that included 4 instructor-
based features (that were grouped with course-based fea-
tures), namely “teacher’s seniority, teacher’s age, teacher’s
title, [and] teacher’s nation.” They applied a variation on
a Convolutional Neural Network, achieving an F1-score of
0.805 for a 5-grade classification task. Hu et al. [14] included
three instructor features in their datasets, namely instruc-
tor’s rank, tenure status, and average GPA over all of the
courses they taught in the dataset; they achieved an average
error up to 1 grade level difference with regression. Sweeney
et al. [32] used 4 instructor features, classification, rank,
tenure status, and a bias term introduced in their model,
features which focused on their official positions rather than
experience, and achieved an error range of two half grades.
Each of these works haphazardly included a few instructor
features. Only Sweeney et al. analyzed the instructor fea-
tures’ effects on the performance of their chosen models,
and found that the instructor’s bias feature was the third-
most important feature, yet was only one-third as important
as the student’s bias feature. Our work makes headway in
instructor-based features, and examines the number and im-
portance of such features in more detail.

2We define half grades to be when the grade changes by one
step (e.g., from A to A− or B+ to A-), while a full grade
change is when the letter changes (e.g., from A to B)

3. DATASET
3.1 Program Curriculum
The dataset is taken from a computer science (CS) four-year,
undergraduate degree program at the main campus of a large
American public university. This university has four inde-
pendent satellite campuses that may offer similar courses,
but do not offer the same curriculum. However, it is com-
mon for students to transfer from satellite campuses to the
main campus and enroll in the CS degree, and some courses
students took at the satellite campuses can be transferred
into the main campus’ CS program with approval from the
main campus undergraduate program director.

Courses in the program are split into three categories: manda-
tory, electives, and a capstone. There are 8 mandatory
courses that all students who intend to graduate with a CS
degree must take (unless students will enter with Advanced
Placement/International Baccalaureate CS credit or trans-
fer courses from other campuses). For electives, students
pick at least 5 upper-level CS courses that pertain to their
interests and strengths. Each course may or may not con-
tain prerequisites, and if they do, they tend to be other CS
courses. Some mandatory courses have co-requisites, mean-
ing certain courses may be taken at the same time. Stu-
dents must pass each course with a grade of “C” or higher;
if a student does not reach this threshold, they are given
the opportunity to retake the course up to two additional
times. The last grade that the student received for a course,
regardless if it is higher or lower than any previous attempt,
is the final grade recorded for the course. The capstone is a
project-oriented course as a culmination of the CS curricu-
lum, but not relevant to this research.

Instructors are given flexibility in how they wish to teach
their course, as long as they follow the generalized syllabus
that is agreed upon by the area faculty for that course. The
syllabus contains a list of topics that instructors are expected
to cover, but does not prescribe the depth that the instructor
must reach for each topic. Should instructors believe there
are additional important topics not covered by the general-
ized syllabus, they are also free to add them into their course.
A specific order is similarly not imposed by the generalized
syllabus, but topics tend to build on each other naturally,
common in STEM fields (e.g. [15]), which imposes a soft or-
dering. However, due to individual preferences on how to
present concepts to students, instructors have the freedom
to conduct their courses differently. Given different degrees
are offered on satellite campuses, we expect that in the same
course, satellite instructors will present their concepts dif-
ferently from instructors in the main campus.

The main campus CS degree program also is involved in a
college-in-high-school (CHS) program, where the CHS pro-
gram director and a faculty liaison provide materials to high
school teachers, and if the student earns a passing grade
given by the high school teacher, they qualify for college
credit, as if the student took the course at the university.
The material high school teachers receive is more structured
than the generalized syllabus that instructors for undergrad-
uate students receive, and the university provides training
for those teachers to ensure the material that is taught is at
the same level of rigor as what is expected for the undergrad-
uate course. The high school teachers assign the final grade,



Table 1: Dataset Statistics

Category Sub-Category Count

Grade
Records

Raw 186,316
Non-CE Students 165,655
Non-CE CS-Course Only 30,672
Fully Cleaned 28,150

Students
Raw 3,646
CE Students 524

Courses

Raw 77,733
CS 4,994
CS at Main Campus 4,560
Unique CS 136
Unique CS at Main Campus 84

Instructors

Raw 12,264ab

All CS 667b

University Only CS 259
Main Campus CS 233

a Upper bound due to 3,786 courses missing instructor data.
b Upper bound due to 408 CS CHS courses missing instruc-
tor data.

Table 2: Student Demographics

Category Sub-Category Count %

Gender
Male 3,013 82.6
Female 622 17.1
Other/Unknown 11 0.3

Ethnic
Group

American Indian/
Alaskan Native

2 0.1

Asian 618 17.0
Black/
African American

131 3.6

Hispanic/Latino 106 2.9
Multi-Racial 118 3.2
White 2,568 70.4
Other/Unknown 103 2.8

First
Generation
Undergraduate

First Generation 416 11.4
Not First Generation 2,424 66.4
Unknown 806 22.1

Origin
In-State 2,778 76.2
Out-of-State 868 23.8

Total 3,646 100.0

which are recorded in the official university transcripts.

3.2 Summary Statistics
Transcripts of 3,646 students, all of whom enrolled in at
least one of the first two computer science major mandatory
courses (since those two can be taken in any order and have
no prerequisites) were retrieved from the university regis-
trar. Records spanned between August, 2006 and Decem-
ber, 2019, for a total of 186,316 grade records. Not all stu-
dents have completed the degree program, but the university
does not have an official denotation for when students have
decided they no longer wish to pursue their studies at the
university or are taking a break from their studies.

3.3 Data Cleaning
To retain consistency, students enrolled in the computer
engineering (CE) program, which for a time took many

of the same mandatory courses of the CS program, but
with a different passing grade requirement, were removed
from the set, leaving 3,122 students. We further cleaned
the dataset by removing all non-CS courses and non-letter
grades (e.g. “Withdraw”,“Satisfactory”, etc.), leaving 28,150
“fully-cleaned” grade records. Basic statistics can be found
in Table 1.

4. METHODOLOGY
Our goal is to generate a supervised ML model that can
predict a student’s grade for a target CS course in a given
semester of their undergraduate career, and use that model
to run a comparison between the different feature types (i.e.,
to figure out which feature types contribute the most to the
best prediction), which will include instructor features.

4.1 Features
We include four types of features in our models: Student
Characteristics, Student Grade History, Course Characteris-
tics, and Instructor Characteristics, as detailed below. There
are 571 features altogether. The first feature that we include
with any model we will train is the target course number, to
indicate which course the training grade label came from.

4.1.1 Student Characteristics
Student Characteristics are features that describe the stu-
dent themselves that are not directly related to their courses.
We include a student’s ethnic group, gender, math and ver-
bal SAT scores, ACT scores3, high school GPA, whether
they are the first in their family to attend college, and whether
they are an in-state or out-of-state student. Furthermore,
with the anecdotal knowledge that instructors have particu-
lar jargon, preferences, and quirks, we add a feature indicat-
ing if the student has ever encountered the same instructor
for the target course, or if the instructor was the same for
the target course’s prerequisite, in the belief that a student
who encounters the same instructor again has a better un-
derstanding of how to satisfy the instructor’s requirements.
This provides a total of 9 features.

Demographic breakdown of the students in the dataset can
be found in Table 2.

4.1.2 Student Grade History
Student Grade History features are a simple enumeration of
all CS courses a student has taken in their undergraduate
career. Each course is represented by a pair of features, the
grade they received as a GPA value (e.g., 4.0 instead of A),
and the semester number they took the course relative to
the first CS course they took, which includes the summer
term. As an example, assume a student took their first ever
CS course, CS 101, in the spring term and received a B+,
and took CS 102 in the fall term of the next school year and
received a A−; the resulting grade and semester pairs for
CS 101 and CS 102 would be ⟨3.25, 0⟩ and ⟨3.75, 2⟩, respec-
tively. We use relative semester value given that students

3The SAT and ACT are common standardized exams that
high school students take for entry to an American under-
graduate program. For this university, these scores are not
required, and are given 0 if no score is provided. Note that
0 is not a valid score for either exam.



have other general education requirements to fulfill not re-
lated to the major, and thus can choose to delay taking CS
courses, or take the initial CS courses more leisurely. This
provides a total of 218 features. Note that each feature will
be considered independently when training the models.

The grading scale, GPA-equivalent, and distribution of grade
records can be found in Table 3.

4.1.3 Course Characteristics
Course Characteristics describe the courses. We generate
these characteristics for the target course, which will be the
direct context that the model can use in the grade predic-
tion task. We include the target course’s semester relative
to the student’s first semester taking a CS course and maxi-
mum enrollment size. We also compile the history of grades
for the target course before the semester the student com-
pleted the course by providing the parameters that describe
their fitted distributions over the GPA-equivalent conver-
sion. We provide the Weibull distribution, which can be
described over three parameters: location, shape, and scale,
aside from the normal distribution’s mean and standard de-
viation. Lastly, we derived a feature to denote whether the
target class started in the morning (AM) or afternoon and
evening (PM). For completeness, we also provide the max-
imum enrollment size for all courses the student has taken.
This provides a total of 117 features.

4.1.4 Instructor Characteristics
Instructor Characteristics describe a target course’s instruc-
tor, and were chosen here as an attempt to reflect the in-
structor’s tendencies and experience, which, under our hy-
pothesis, may have an effect on student performance. We
generated the cumulative number of students taught by that
instructor in any course to characterize the instructor’s ex-
perience. In addition, we include the instructor’s official
rank at the time of the target course. In understanding
an instructor’s grading behavior, we consider the instruc-
tor’s past history of assigning grades, in an attempt to cap-
ture how “demanding” the instructor is, by including fea-
tures that describe the distribution of the instructor’s given
grades. We generated the Weibull distribution parameters,
location, shape, and scale, along with the mean and standard
deviation, for the collection of grades that the instructor has
assigned for the target course, for all courses they have ever
taught, and for grades they have given for only morning or
evening classes. For completeness, we include the instruc-
tor’s ID as a base feature for every course the student has
taken (or null if the student has not taken the course at the
time of the target semester), representing the history of in-
structors that the student has encountered. This provides a
total of 226 features.

Relating to instructor’s official rank, the CS department
under study has several official teaching positions, namely
“Teaching Fellow,”“Part-Time Instructor,” “Lecturer,” “Se-
nior Lecturer,”“Visiting Lecturer,”“Visiting Professor,”“As-
sistant Professor,” “Associate Professor,” and “Full Profes-
sor.” We opted to merge “Teaching Fellow”with “Part-Time
Instructor,” given their duties are exactly the same, but the
former corresponds with PhD students. Each instructor’s
rank was consistent with the position they held at the be-
ginning of the semester that they taught a course. In addi-

tion, we included another category, “High School Teacher,”
to indicate teachers who taught through the college-in-high-
school program, given students who are enrolled in the pro-
gram may have a CHS course (or several) on record. Finally,
we include a “Satellite Instructor” title, given the courses
taught at the satellite campuses are different, despite the
true title that those instructors have.

4.2 Comparison Metrics
We compare the models using weighted average F1-score
(Weighted F1) for classification, as well as mean absolute
error (MAE) and root mean square error (RMSE) for regres-
sion. We also conduct cross-metric comparisons for com-
pleteness. For computing MAE and RMSE for each clas-
sifier, we converted the predicted letter grade directly into
their corresponding GPA value. For computing Weighted F1
for each regressor, we took the predicted value output, which
represents an expected GPA, converted it to the closest let-
ter grade, and dropped the plus or minus, where applicable.
Conversions between GPA values and letter grades can be
found in Table 3.

The F1-score formula is defined as

F1 = 2 · precision · recall
precision + recall

=
TP

TP + 1
2
(FP + FN)

where TP is the true-positive rate, FP is the false-positive
rate, and FN is the false-negative rate. For multiclass clas-
sification, weighted average F1-score formula is defined as

Weighted F1 =

∑
c nc · F1(c)∑

c nc

where F1(c) is the F1-score for class c, and nc is the number
of data points that are part of class c. This metric gives more
weight towards correctly predicting larger-sized classes.

The MAE is defined by the following formula

MAE =

∑n
i=1 |yi − xi|

n

where yi is the value predicted by the algorithm, xi is the
true value, and n is the number of data points. MAE can be
preferred for grade prediction because the absolute distance
can translate directly into GPA values without additional
penalty for significant wrong predictions.

The RMSE is defined by the following formula

RMSE =

√∑n
i=1 (yi − xi)

2

n

where yi, xi, and n have the same definitions as those in the
MAE formula. As opposed to MAE, RMSE penalizes large
errors, which can be useful in spotting cases where excellent
grades are predicted as failing grades, and vice versa.

Note that higher values of Weighted F1 mean the model is
better, while for MAE and RMSE, lower values mean that
the model is better.

4.3 Data Preparation and Model Selection
Recall that the task is to predict the grade of a student for a
target course. Towards that aim, we first clean the dataset



Table 3: Grade class, university’s letter grade, GPA equivalent, and final grade percentage required for the letter grade, along
with the percentage of grade records that were given the letter grade and percentage of records for the combined classes.

Class A B C D F

Letter Grade A+/A A− B+ B B− C+ C C− D+ D D− F
GPA 4.0 3.75 3.25 3.0 2.75 2.25 2.0 1.75 1.25 1.0 0.75 0.0
Grade Threshold (%) 92.5 90.0 87.5 82.5 80.0 77.5 72.5 70.0 67.5 62.5 60.0 0.0

Grade Records (%) 28.9 8.7 9.4 18.2 5.7 5.7 11.4 1.0 1.2 3.1 0.5 6.3
Class Records (%) 37.6 33.3 18.1 4.8 6.3

as described in Section 3.3, and then compile the features
for each student, ensuring that the feature vector is consis-
tent with the known information at the time they would be
taking the course, so that future information cannot inform
past courses. For example, if the student is taking CS 102
in the third semester, then only grades from before the third
semester will be part of the input. Note that, for the pur-
poses of training the algorithms, we ignore prediction for CS
courses offered for non-majors, given that CS students are
unlikely to be taking those courses, especially after they have
already started taking the mandatory courses. As a result,
the total dataset transformed into 25,354 rows, an average
of 7.7 transcript moments (or courses and grades) per stu-
dent considered. The dataset was randomly split 80-20 for
training and testing, respectively.

We decide to compare several classifiers and regressors, as
described below. We use implementations by Scikit-learn [23],
unless otherwise noted. For the classification task, we only
require the models to predict from the five letter grades (i.e.
{A,B,C,D,F}, where +/− is dropped). For the regression
task, we train the models to predict GPA values using the
university’s scale (found in Table 3).

We train five different classifiers: majority classification (Ma-
jority) as a baseline, decision tree model (DT), K-neighbors
model (K = 2, 2Neigh), AdaBoost classifier (AdaClass),
and GradientBoost classifier (GradClass). To reduce vari-
ability, we utilize five-fold training; we tested typical cross-
validation, “soft” voting, and “hard” voting [21]. We explain
the first two here for completeness, and we report soft voting
because it yielded the best results. In typical 5-fold cross-
validation (we assume 5 folds in this paper), five mutually-
exclusive and equally large portions of the training set are
generated, the classifier is trained on four folds of the data
and validated on the fifth, generating a model instance. This
procedure is repeated five times, generating 5 different classi-
fier model instances trained on different subsets of the data.
We then select the instance with the best performance, and
use that model to label new input. In five-fold soft voting,
rather than selecting one instance, we average across all in-
stances, and the class with the highest average is the label
assigned to the input.

Due to the imbalance of the classes (see Table 3 for a break-
down), we attempted class-balancing via upsampling and
downsampling (e.g. SMOTE [8]). However, in the final
models trained, we do not perform any rebalancing, because
while all models improved on the “C,”“D,” and “F” classes,
they did not improve enough to offset the loss of performance
in the “A” and “B” classes.

We train seven different regressors. Following the lead of
previous works that utilize regression models, we opt to use
a Matrix Factorization technique, specifically FM, using a
Python wrapper [18] of an existing package [30], along with
Linear Regression (LinReg). We also include the regression
version of the decision tree model, using both mean-squared
error (DT(MSE)) and mean-absolute error (DT(MAE)) to
determine the best split, and the K-neighbors model (K =
2, 2Neigh). Finally, we also use the AdaBoost regressor
(AdaReg), and GradientBoost regressor (GradReg). We
train each model five times, and take the average result.

Using the results from Table 4, the GradientBoost classifier
performs the best because it provides the highest weighted
average F1-score on the testing set, and has a slight edge on
MAE and RMSE over the AdaBoost and decision tree clas-
sifiers. When selecting a regressor, the F1-score is less rep-
resentative due to the prediction of continuous GPA values;
even though FM performs better on the weighted average
F1-score, we select the GradientBoost regressor because it
provides the lowest RMSE and ties with FM on MAE.

5. DISCUSSION
5.1 Individual Feature Weights
Referring to Figure 1, we see that for classification, “instruc-
tor grade weibull loc” has the largest feature weight; this
feature describes one of the parameters for the fitted Weibull
distribution, namely “location.” Location for the Weibull
distribution is analogous to the mean for the normal distri-
bution. In our case, the “instructor grade weibull loc” sum-
marizes the instructor’s grades for the target course across
all semesters in the dataset before the target semester. Sim-
ilarly, for regression, the instructor’s mean grade for the
target course instead factors as the most-predictive feature.
With grading strategies like curving or partial credit, it is
easy to see how the instructor’s (subjective) grading style
can affect the final grade. We also notice that the differ-
ence in contribution between the top-two features is quite
large. The difference between the top contributor in classi-
fication (approx. 0.16) and the second contributor (approx.
0.10) greatly exceeds the difference between the remaining
consecutive features (<0.02). A similar effect can be seen
in regression, where the top contributor has a feature im-
portance that is more than double the second feature. This
shows that the grades that an instructor is likely to give in a
target course is a strong predictor of what kind of grade the
student is likely to achieve in the target course. We examine
the distribution type in more detail in Section 5.3.

Six out of the top 10 features are grades that the student
achieved in the given course number. In this case, all 6
courses are mandatory (out of 8 total) for CS majors to



Table 4: Comparison between different models. Italics represent the best among only classifiers or regressors, while bold
represents best overall.

Training Testing
Weighted F1 MAE RMSE Weighted F1 MAE RMSE

Classifiers

Majority 0.20 1.07 1.55 0.20 1.07 1.55
DT 0.55 0.57 1.00 0.48 0.65 1.05
2Neigh 0.68 0.46 0.94 0.40 0.83 1.24
AdaClass 0.51 0.63 1.02 0.49 0.66 1.06
GradClass 0.53 0.60 1.02 0.50 0.63 1.04

Regressors

FM 0.60 0.44 0.64 0.47 0.66 0.93
LinReg 0.40 0.71 0.93 0.39 0.73 0.98
DT(MSE) 0.48 0.64 0.87 0.44 0.71 0.96
DT(MAE) 0.50 0.62 0.95 0.45 0.68 1.01
2Neigh 0.57 0.47 0.66 0.38 0.86 1.16
AdaReg 0.27 0.80 1.00 0.27 0.81 1.00
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

take at the university. The second-most predictive feature
for both classification and regression are also for the same
mandatory course. It seems intuitive that these courses
would provide insight into how students would do in future
courses, emphasized by the idea that the curriculum requires
students to take these mandatory courses first. However, it
is likely that the importance of each course is inflated sim-
ply because of the mandatory requirement, and as a result
provides the initial information that is necessary to predict
courses earlier in a student’s undergraduate career. This
type of result may not hold as strongly in a major that does
not provide a mandatory course schedule.

High school GPA rounds out the top-three. This is consis-
tent with previous literature that indicates that the overall
grades received by an incoming student can predict success
at the university level [16], from student retention (e.g. [12])
to higher freshmen grades (e.g. [10]). The combined verbal
and math score for the SAT also stands out as one of the
top features, but is not as predictive as high school GPA,
which consistent with the literature [3]. Typically, college-
preparedness features are assumed to only have the most
impact upon arrival at the university, which is why the typ-
ical benchmark for student success that uses these features
tends to be freshmen grades. From our work here, it may
suggest that these features are more representative of stu-
dent success throughout the student’s undergraduate career.

While not as predictive as some of the top features, “tar-
get semester” appears as a top-15 feature for both classifi-
cation and regression, which may suggest that the timing in
which a student takes a particular course in their major in
relation with other major courses is correlated to their suc-
cess. However, it is not clear what the causal link may be; it
is reasonable to hypothesize that students who take courses
in close succession are likely to do better, but it may also be
the case that students who do better are more likely to take
courses in quick succession. There is also a likelihood that
delays in taking courses due to repeating failed courses may
be captured by this feature.

5.2 Feature Type Comparisons
To provide a proper comparison between feature types (each
of which is detailed in Section 4.1), we choose to retrain

and retest GradientBoost over each feature type by itself to
contrast them with the model trained over all feature types.
Given our goal in this paper is to determine the impact that
instructor features have on grade prediction models, we also
compare a model trained with all feature types except for
Instructor Characteristics. We perform the same validation
techniques as mentioned in Section 4.3 (5-fold soft vote for
classification and 5-run average for regression).

We can see that the Student Grade History feature cate-
gory continues to be the main feature type for student grade
prediction. From Table 5, we note that for all comparison
metrics, either the classifier or regressor trained with only
Student Grade History features outperforms all other singu-
lar feature type trained models. Furthermore, when train-
ing GradientBoost over all features, Figure 2 shows that
Student Grade History features provides the highest fea-
ture weight among all categories. Along with the discussion
about course grades from the section above, this provides
further evidence to confirm previous research indicating that
past student grades are a good predictor for future grades.

Instructor Characteristics comes closely in second, on many
of the same angles presented for Student Grade History.
From Table 5, we note that the classifier and regressor trained
with only Instructor Characteristics has a similar perfor-
mance with Student Characteristics and outperforms Course
Characteristics on all comparison metrics. In terms of fea-
ture weights, we also see in Figure 2 that Instructor Char-
acteristics comes closely in second and is almost on par with
Student Grade History in the classification task. While indi-
vidually, an instructor’s grade distribution retains the high-
est feature weight (as seen in Figure 1), collectively, they
still fall short of Student Grade History.

To provide assurance that Instructor Characteristics helps
with student grade prediction, we compared two feature sets
when training and testing GradientBoost, one trained with
all features, and one trained without Instructor Character-
istics. Results in Table 5 indicate that for both classifica-
tion and regression, GradientBoost performs better when
Instructor Characteristic features are included. We further
examine the classification confusion matrix in Figure 3; in
comparing Figures 3a and 3b, we see that adding Instruc-



(a) Top 15 features for GradClass (b) Top 15 features for GradReg

Figure 1: Top 15 features on average utilized by the GradientBoost model when training over all features. Features with
names like“grade ⟨num⟩”describe the grade that the student received in the indicated course number. Features that start with
“instructor grade”each describes a parameter of the instructor’s grade distribution. “pm”(e.g. in“instructor pm grade mean”)
further indicates the grade distribution assigned by the instructor for courses that start in the afternoon or evening.

(a) Top feature categories for GradClass (b) Top feature categories for GradReg

Figure 2: Top feature categories on average utilized by the GradientBoost model when trained over all features. Feature
categories are described in Section 4.1. “target course” is the feature that describes which course the grade label comes from
during training or should be assigned to during testing.

tor Characteristics does have a general positive effect on
the accuracy of the classification, given that the number of
correct classifications (numbers on the diagonal) increases,
and the number of incorrect classifications (numbers not on
the diagonal) decreases. Furthermore, we also note that the
total misclassifications that are one grade away (adjacent
to the diagonal) increases, while the total misclassifications
elsewhere decreases. This further confirms that instructor
features do have a positive impact in overall classification,
not just in singularly increasing recall or precision.

5.3 Grade Distributions and Representation
We tested 103 different distribution types (implemented by
SciPy [33]), as well as the logit-normal distribution [2], over
the full dataset to determine which kind of distribution best
represents the grades’ GPA-equivalent values. We evaluated
each distribution using the sum of squared error, and the
best fit was the Weibull distribution, which can be repre-
sented by three parameters, location, shape, and scale. For
every relevant grade distribution, we fit a Weibull distribu-
tion to the corresponding grouping, and each parameter was
then considered an independent feature. Overall, 10 features
were derived from the normal distribution, and 15 were de-
rived from the Weibull distribution. In addition, out of the
25 total features, 5 were Course Characteristics (all grades

ascribed to the course up to the target semester, regardless
of instructor), and 20 were Instructor Characteristics.

There is some controversy about using the normal distribu-
tion for representing grades [11], so we briefly investigated
the effect of having only the Weibull distribution or the nor-
mal distribution represent the grades. We retrained and
retested the GradientBoost classifier and regressor with the
same procedure in Section 4.3 (5-fold soft vote for classifi-
cation and 5-run average for regression), both of which are
reported in Table 6. From the results, having at least one
representation of grade distribution provides some benefit
over not having a representation at all, with no difference
in performance between the distribution type. Having both
provides little-to-no benefit, so it is easy to conclude that
it does not matter which grade distribution representation
is included, so long as a representation is expressed in the
feature set.

Feature weights provided a different angle with which to de-
termine any effects that may stem from the different kinds
of distributions. We first examined the effect that historical
grades and their distributions had on future grade prediction
by examining the weights of those features separately from
the main categories. Figure 4 shows that Student Grade
History grades and Instructor Category grade distributions



Table 5: Comparison between different feature types. The fifth category combines the first three feature categories together.
Italics represent the best among singular feature type, while bold represents best over any category. Note that the “All
Features” section mirrors the results from Table 4.

Feature
Category

Model
Training Testing

Weighted F1 MAE RMSE Weighted F1 MAE RMSE
Student
Characteristics

GradClass 0.41 0.75 1.18 0.40 0.77 1.18
GradReg 0.30 0.77 1.01 0.29 0.77 1.01

Grade History
GradClass 0.46 0.70 1.13 0.44 0.74 1.16
GradReg 0.37 0.70 0.93 0.36 0.72 0.94

Course
Characteristics

GradClass 0.39 0.79 1.22 0.36 0.83 1.24
GradReg 0.23 0.80 1.03 0.22 0.81 1.04

Instructor
Characteristics

GradClass 0.42 0.75 1.17 0.38 0.79 1.19
GradReg 0.29 0.78 1.01 0.29 0.79 1.03

Student + Grade +
Course Characteristics

GradClass 0.49 0.65 1.06 0.46 0.68 1.09
GradReg 0.41 0.68 0.91 0.40 0.70 0.94

All Features
GradClass 0.53 0.60 1.02 0.50 0.63 1.03
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

(a) Only Student Characteristics, Student Grade History, and
Course Characteristics feature types used in training.

(b) All feature types used in training.

Figure 3: Confusion matrices for the GradientBoost classifier on the test set with the given feature set.

Table 6: Training and testing GradientBoost with different grade distribution types. Note that the rows with all features and
both distribution types are the same as those in Table 4.

Feature
Set

Distribution
Type

Model
Training Testing

Weighted F1 MAE RMSE Weighted F1 MAE RMSE

All
Features

None
GradClass 0.50 0.64 1.06 0.46 0.68 1.09
GradReg 0.40 0.69 0.91 0.39 0.70 0.93

Weibull
Only

GradClass 0.53 0.61 1.02 0.49 0.64 1.05
GradReg 0.44 0.66 0.88 0.43 0.67 0.90

Normal
Only

GradClass 0.53 0.60 1.01 0.49 0.64 1.05
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

Both
GradClass 0.53 0.60 1.02 0.50 0.63 1.04
GradReg 0.44 0.66 0.88 0.44 0.66 0.89

Instructor
Characteristics

Only

None
GradClass 0.41 0.79 1.23 0.37 0.82 1.24
GradReg 0.20 0.80 1.03 0.20 0.81 1.04

Weibull
Only

GradClass 0.42 0.75 1.16 0.39 0.78 1.18
GradReg 0.29 0.78 1.02 0.29 0.78 1.02

Normal
Only

GradClass 0.41 0.75 1.17 0.39 0.78 1.19
GradReg 0.29 0.78 1.01 0.29 0.78 1.02

Both
GradClass 0.42 0.74 1.16 0.39 0.78 1.19
GradReg 0.30 0.78 1.01 0.29 0.79 1.03



(a) Classification (b) Regression

Figure 4: Top feature categories on average utilized by the GradientBoost model when grades and grade distribution features
are separated from their original categories. Feature categories are described in Section 4.1. Categories with the suffix of
“Grades” are only features from the category prefix that use GPA as their values, while categories that end with “Non Grades”
are the remaining non-GPA-based features.

(a) Classification (b) Regression

Normal distribution features only

(c) Classification (d) Regression

Weibull distribution features only

Figure 5: Top 15 features on average utilized by the GradientBoost model when varying the type of distribution of grades.

would be the top two feature categories, if they were on their
own. We then compared the effect that having a singular
distribution type has on feature weights, to see if there were
any notable changes. Figure 5 shows that no matter which
distribution type is being used, the mean or the Weibull dis-
tribution’s analogous parameter, location, will remain the
top feature overall. However, it is important to note that
for the regression task, GradientBoost assigns a much higher
weight to the mean than to Weibull’s location parameter,

and even the sum of all three Weibull distribution parame-
ter feature weights, indicating a stronger preference for the
normal distribution for regression. We also see this effect ap-
pear when both distributions are used, as seen in Figure 1;
classification prefers Weibull’s location parameter, while re-
gression prefers the mean. This may provide evidence that
the mean captures information that overlaps with more fea-
tures, more so than the Weibull distribution, given that the
performance does not noticeably increase. As for feature



Figure 6: Top feature categories on average utilized by the
GradientBoost classifier model when only using the normal
distribution to describe grades. Feature categories are de-
scribed in Section 4.1. “target course” is the feature that
describes which course the grade label comes from during
training or should be assigned to during testing.

categories, no placement change was noted. However, in
Figure 6, we see that the total feature weight for Instructor
Characteristics is almost on par with Student Grade History
during classification, further emphasizing the role that the
normal distribution can have on predictive models.

5.4 Implications
While our model still has room for improvement for student
grade prediction, there are several key items that can be
derived from this research.

First, instructor-based features have a place in student grade
prediction. The Student Grade History feature type contin-
ues to provide the most predictive power for grade predic-
tion, and Instructor Characteristics follows closely behind in
second place, while other feature types lag behind.

Second, the distribution of instructor grades is an important
feature class to include in future student grade prediction
models. It may not matter what kind of grade distribution
representation is needed, despite prior research into the “ap-
propriate” distribution, but the parameters for the normal
distribution may assist with feature selection, given its high
weight in the regression task.

Third, given the strong importance of the distribution of
grades that an instructor assigns in their courses, more re-
search is needed to determine the best way to either reduce
the impact that instructors have on final grades through
teaching ability or subjective measures, or conversely, en-
suring that the grades that instructors assigned are truly
unbiased and dependent only on the student’s performance
in the course. Indeed, it is a long-standing question about
the reliability and validity of grades themselves as a mea-
surement of knowledge, given the significant variability in
assigning them [7]. One could attempt to expose some of
these subjective items by measuring student satisfaction for
the instructor, characterizing the instructor’s teaching style,
or determining the instructor’s efficacy when utilizing learn-
ing management systems, but those would all require addi-
tional data collection beyond what a university might readily

have access to.

Lastly, there is still significant room for improvement in ex-
plainable student grade prediction. One area where signifi-
cant work has been done is in Knowledge Tracing to diag-
nose student issues while they complete a course. Intuitively,
understanding how students are doing within a course will
ultimately determine how students will do overall, given
the knowledge dependency within the course, which is espe-
cially important in STEM majors. While Knowledge Trac-
ing does provides additional insight, the effort for train-
ing a model significantly increases due to the variation in
course content material; it remains to be seen if Knowl-
edge Tracing-adjacent or domain-agnostic Knowledge Trac-
ing features can be generated to assist with generalized stu-
dent grade prediction without introducing an extra heavy
burden.

6. CONCLUSION
In attempting to characterize the relationship between in-
structor features and predicting a student’s grade, we first
enumerated the feature space in grade prediction, with ad-
ditional emphasis on generating features that describe an in-
structor’s history and experience in teaching. These features
were then extracted from over 13 years and thousands of stu-
dents’ grade records from a large, public, American univer-
sity, and used to train and test several supervised ML mod-
els. From our experiments, the GradientBoost algorithm,
both as classifier and regressor, has the best performance
when compared with other supervised ML models.

We then used GradientBoost as our comparison algorithm
between different features and feature types, in order to de-
termine the utility of features that define an instructor in a
grade prediction model. First, we noted that the distribu-
tion of grades that an instructor gives, specifically the mean
or the Weibull distribution’s analogous parameter, location,
is a major factor in grade prediction. Upon further review,
it was found that the distribution representation does not
make a major difference in the performance of the model.
We then grouped features by type and found that Instruc-
tor Characteristics has the second-highest combined feature
weight, closely behind Student Grade History. We further
trained GradientBoost with and without Instructor Char-
acteristics, and found that Instructor Characteristics con-
tributed to better predictions of student grades for both
classification and regression. Therefore, we strongly insist
that future ML models should include features that describe
Instructor Characteristics, or at the very least, features that
describe the distribution of grades that an instructor assigns
to a course.

References
[1] Rahaf Alamri and Basma Alharbi. “Explainable Stu-

dent Performance Prediction Models: A Systematic
Review”. In: IEEE Access 9 (2021), pp. 33132–33143.

[2] Noah Arthurs et al. “Grades Are Not Normal: Improv-
ing Exam Score Models Using the Logit-Normal Dis-
tribution.” In: Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019).
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