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ABSTRACT

Recommender systems in educational contexts have proven
effective to identify learning resources that fit the interests
and needs of learners. Their usage has been of special in-
terest in online self-learning scenarios to increase student
retention and improve the learning experience. In current
recommendation techniques, and in particular, in collabora-
tive filtering recommender systems, the quality of the rec-
ommendation is largely based on the explicit or implicit in-
formation obtained about the learners. On free massive on-
line learning platforms, however, the information available
about learners may be limited and based mostly on logs from
website analytics tools such as Google Analytics. In this pa-
per, we address the challenge of recommending meaningful
content with limited information from users by using rat-
ing estimation strategies from a log system. Our approach
posits strategies to mine logs and generates effective ratings
through the counting and temporal analysis of sessions. We
evaluate different rating penalty strategies and compare the
use of per-user and global metrics for rating estimation. The
results show that using the average number of lessons viewed
per-user is better than using global metrics with a p-value
under 0.01 for 4 of our 5 hypotheses, showing statistical sig-
nificance. Additionally, the results show that functions that
penalize the rating to a lesser degree behave better and lead
to a better recommendation.
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1. INTRODUCTION

The number of users enrolled in learning web platforms (i.e.,
MOOCs) [I] has a constantly grown in the last 8 years [2].
The recent COVID-19 pandemic has reinforced this phe-
nomenon, and web virtual learning platforms are taking on
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an importance not previously seen. The pandemic forced
learners, course designers and instructors to migrate to vir-
tual environments where the learning content is mainly de-
livered in digital formats with a limited or none face-to-face
interaction. Existing work have shown the importance of
simple but effective virtual learning environments, which al-
low a progressive adaptation according to learners needs and
preferences in order to keep their motivation and engage-
ment [3}, [].

To adapt the learning environment and give meaningful con-
tent recommendations to learners, learning platforms should
be able to profile the learner in terms of a set of features such
as preferences, behaviors, or learning needs. A question then
arises in this context: how to obtain relevant learners’ infor-
mation? While more traditional approaches ask the learner
directly through surveys and registration forms, modern ap-
proaches complement this explicit information with implicit
data extracted from interactions with the platform (i.e.,
logs) |5, [6]. The amount and quality of information that
can be extracted depends largely on privacy regulations,
the administrator guidelines, and the platform technologi-
cal capabilities. Therefore it is not unusual to find open
virtual learning scenarios where the information collected
and available about learners is limited. This is the case for
the GCFGlobal learning platformE]

The GCFGlobal Learning Program objective is to teach dif-
ferent basic skills necessary for the 21st century, online, in an
open modality, and without cost. According to GCFGlobal ’s
Web page “gcfglobal.org” offers training in more than 40 top-
ics, ranging from Microsoft Office and email usage to read-
ing, math, and more. A GCFGlobal course contains several
lessons. GCFGlobal offers more than 360 courses, counting
for more than 6,400 lessons, more than 2,500 videos, and
more than 50 interactive activities and games”. In 2021 the
number of users who used the English, Spanish and Por-
tuguese sites and visited at least one course was around 41
million. GCFGlobal establishes as a regulatory principle of
its operation that access to their learning content has to be
open to anyone in the world, and the only requirement is
internet access. The courses are online, self-paced and self-
directed (i.e., without a tutor). Registration and authenti-

!GCFGlobal learning platform:https://bit.1ly/3tBpGab
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cation on the platform is not mandatory and it is estimated
that only 2% of users are registered, thus, there is no ex-
plicit information about learners (i.e., identity data). The
information that is available comes mainly from the logs via
Google Analytics tool. Google Analytics is a standard and
popular tool used in e-commerce that has been also posi-
tioned itself as a useful tool in learning platforms [7} [§]. Its
popularity is due to its ease of implementation and its capa-
bilities to filter and analyze large volumes of logs. Although
log analysis has limitations when it comes to identifying a
user, it is the most likely type of data that can be found in
any existing web-based platform.

In this paper, we present an empirical study for rating es-
timation from Google Analytics logs. These ratings express
the preferences of the learners and allow the construction
of recommender systems. Our evaluation is focused on how
these ratings behave in a course recommendation scenario.
The contributions of our work are summarized as follows.
(1) Dedicated strategies for counting lessons seen by a user,
and to process the timelines from logs. (2) A strategy to
generate ratings that contemplate per-user and global met-
rics based on lesson counting. (3) A comparison of previous
strategies in a course recommendation system.

2. RELATED WORK

A recommender system in a learning platform aims to iden-
tify the most interesting learning content for learners accord-
ing to their preferences [9]. The most popular recommen-
dation techniques described in the literature are collabora-
tive filters (CF), content-based techniques (CB), and hybrid
models that combine both CF and CB [10} 11}, 12| 13]. CF
uses information about the rating that learners assign to
courses or learning content to generate a recommendation
[14, Ch.3]. CF-based systems assume that if a learner X
has the same/similar rating as a learner Y on a course, X
is more likely to have the same/similar rating as ¥ on a
different course [I4, Ch.3]. CB filters use a course as the
basis of the recommendation, rather than a learner. That
is, a CB filter uses the characteristics of the course (i.e.,
descriptions, tags, content, topics, classifications) to make
recommendations. CB filters use course characteristics to
search for courses similar to those a learner has previously
taken [13]. To address specific disadvantages of CF and CB
models, hybrid models work on the idea of merging them to
enhance the resultE

Existing work have shown the effectiveness of recommenda-
tion engines in learning platforms. For instance, Campos
et al. [9] propose a CB filter that uses topic modeling for
a big corpus of courses from different education platforms.
Ma et al. [I5] use a similar CB technique but their eval-
uation focuses on user experience and usability. Another
common approach is to use of data mining techniques such
as associate rules; for example Intayoad et al. [16] use clas-
sification algorithms and associate rules to create a system
that exploits the learner’s content access history to propose
recommendations.

Following the trend of e-commerce recommender systems,

2 A discussion of the advantages and disadvantage of CB and
CF is given by Xiao et al. [13]

there is a recent increase of hybrid models use combining
both CF and CB. A representative strategy in that trend
is to use a CB model to manage the problem of the cold
start and CF to take advantage of the information that is
produced by learners in their interaction with the platform.
CB models are used to recommend items for learning content
for which there is not enough information for a CF strategy.
For example, a course recommendation engine can use the
CB model for new students, and a CF model for existing
students [I3] [I0]. Wang et al. [12] use a similar hybrid tech-
nique with the DCBVN framework, where the model is built
with a Variational Autoencoder Network combined with a
CF model to generate recommendations. DCBVN considers
the course difficulty and the skills of learners to generate the
recommendations.

Yin et al. [IT] use three models: CF, CB (using a topic clas-
sification technique), and a transition probability model to
produce a single rating for a course. The transition probabil-
ity model is used to manage the relationship of prerequisites
between courses. Shanshan et al. [I7] use a hybrid tech-
nique to generate recommendations with a CF model and
an ontology to calculate similarities. This technique uses a
cascade evaluation to refine the recommendation list with a
rule association algorithm.

The aforementioned models often operate in rich informa-
tion scenarios. In these scenarios, demographic information,
evaluation results or perception surveys are available to fa-
cilitate the construction and evaluation of the recommender
system. The problem of inferring ratings is not addressed
to the extent that this information is explicitly provided by
the learner.

3. METHODOLOGY

In this paper, we focus on the estimation of users results
and their ratings for courses via a CF recommendation tech-
nique. CF requires a rating matrix to find similar learners.
However, we do not have these ratings explicitly, therefore,
it is necessary to infer them from Google Analytics logs.
A course developed by GCFGlobal is composed of a set of
lessons. The analysis of the number of lessons accessed by
the learner and the associated session time are the basis for
generating the rating. In the following we present the raw
data extracted from Google Analytics and its processing, as
well as the rating generation strategies.

3.1 Data processing

The logs in Google Analytics are consolidated under the con-
cept of a session. Sessions are defined as the set of events
generated by user’s actions within the platform without ex-
ceeding 30 minutes of inactivityEI Due to the way the logs
layer is deployed, we have to assume that the same user
accesses the platform through the same device. This state-
ment is true in most cases and allows us to group sessions
in a timeline per user. We are interested in the “PageView”
event that provides the URL of the page that the user ac-
cesses. The page URLs in the learning platform are defined
by a unique path for each course-lesson pair, which allows
us to identify the course and lessons related to a “PageView”

3Google Analytics forum: https://bit.1y/3IR1AAY
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event; URL paths are as “language/course/lesson/additional-
params”.

We use two filters to select users and lessons from Google
Analytics. The first filter removes sporadic users, keeping
users with at least 30 sessions during the year (2021-01-31
to 2022-01-31). The second filter ensures that the sessions
belong to at least three different courses. This filter allows
us to guarantee the future construction of the dataset and
ground truth to evaluate the recommendation system. We
use at least two courses to build the ratings for the col-
laborative filter and the third one for its evaluation. It is
important to mention that the temporality of the sessions is
taken into account in the construction of the dataset. The
first two courses in temporal order are used in the construc-
tion of the collaborative filter and the last seen was used to
evaluate the recommendation. We also consider the session
time factor for lesson counting as explained in the following.

After building a base of users and sessions, we proceed to
perform the pre-processing steps described in Figure In
step 1, the base of users and sessions extracted from Google
Analytics is loaded into a local database in order to be able
to perform transformations on the data in an easy and effi-
cient way. In step 2, the timestamp column is transformed
and standardized in such a way that the records can be or-
dered from the most recent session to the most distant. As
mentioned previously, this allows us to identify the chrono-
logical route that the user made through the courses and
their lessons. In step 3, we identify the time spent by the
user in each lesson (“ lesson duration”). Step 3 is not trivial
as the different sessions in which the same lesson is visited
must be reconciled. An intra-lesson analysis is performed
first, followed by an inter-lesson consolidation.

In the intra-session analysis, the time that a user spent
in lessons of the same session is extracted. The time is
calculated as the difference between the timestamp of the
“PageView” event of the lesson URL and the immediately
following event timestamp if it exists. In the case that the
session ends with a visit to a lesson and there is no subse-
quent event for the calculation, we use imputation using the
average lesson time over all users. For lessons with multiple
visits in the same session, the times obtained were added.
Table [1| shows an example of the calculation of the time
spent in the lessons within the same session. Being the last
event of the lesson, the time of lesson “D” is imputed using
the average duration of the lesson over all users. Then an
inter-lesson level analysis is carried out where the times of
the lessons that were visited in different sessions are added
to consolidate a total “lesson duration” per user.

Table 1: Intra session analysis example. Four “PageView”
events to lessons A, B, C, and D. The time spent in lesson D
is calculated as the average of all users.

Lesson | Timestamp | Time Spent (min)
A 2021-01-29 08:49:01 20
B 2021-01-29 09:09:01 18
C 2021-01-29 09:27:01 21
D 2021-01-29 09:48:01 17

In steps 4 and 5, the number of lessons that make up each
course is consolidated, then, for each user-course combina-
tion, the number of lessons viewed is counted. With these
results, in step 6, the percentage of lessons viewed is calcu-
lated per user-course. In step 7, the percentages obtained
in step 6 are averaged to obtain a per-user metric of the
percentage of lessons viewed.

In step 8, users who have seen lessons from more than 50
courses are removed. These are considered outliers because
they are more than three standard deviations from the mean
[18, p.19]. A total of 4 users were removed, one of them with
a total of 131 courses viewed. Considering the minimum 3
courses filter explained at the beginning of this section, our
dataset only contains users who have seen courses in the
range (2,50).

In step 9, we add a filter to the count made in step 5 accord-
ing to the user’s lesson duration. Lessons below a stipulated
time will not be considered. The exclusion of lessons by
duration is controlled by a parameter, and the effect of this
parameter is evaluated in the experimentation. Our hypoth-
esis is that the inclusion of this filter will allow discarding
lessons that a user addressed lightly and possibly incom-
pletely, thus improving the results of the recommendation.

Finally, in the last step (step 10), we split the data into
a subset for training (i.e., construction of the collaborative
filter) and another for testing. The split maintains the tem-
poral order, therefore, the test set always has courses viewed
after those in the training dataset per user. We use the first
70% of the courses for building the collaborative filter and
the last 30% for evaluation. In the worst case when a user
has only seen three courses, two will be used for training
and one for evaluation.

3.2 Rating Estimation

As mentioned above, these ratings are essential for the con-
struction of the collaborative filter [I4, Ch.2]. In this section,
we explain how we estimate these ratings. Our hypothesis
is that the number of lessons accessed by a user in a certain
course is an expression of the level of liking of a learner for
it. Being open courses where the courses and lessons are
approached by the will of the learner, it seems valid to as-
sume that the perception about a course is reflected in the
number of lessons taken by the learner.

To estimate ratings we use a threshold between 0 and 5,
common in recommender systems [I4, Ch.2]. Courses with
a percentage of lessons viewed above a threshold will obtain
the maximum grade (5), and those that are below will be pe-
nalized according to a penalty function. We use two thresh-
old metrics: (1) the average percentage of lessons viewed
per course by a user (per-user metric), and (2) the overall
average percentage of lessons viewed per course for all users
(global metric). These two metrics are inspired by the differ-
ent ways of calculating similarities [I4, Ch.2], where knowing
if a rating is above or below the average is considered more
valuable than the rating itself. It is known that user ratings
in different domains tend to be very close to the average.
While a rating in the middle does not say much, a rating far
from it is a clear indication of like or dislike.
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Figure 1: Data processing steps

For the rating penalty, 5 different functions will be evalu-
ated: logarithmic, square root, quadratic, linear, and step
(Equations [1] to . The combination of thresholds and
penalty functions give us 10 different ways of calculating
the ratings.

5, x > threshold
Ji(z) = { 5 % (m){ z < threshold (1)
5, x > threshold
f2(z) = { 5% =g, & < threshold )

fala) = 5, a > threshold 3)
ST 5% loge (o) + 1), @ < threshold

5, x > threshold

fa(z) = { 5% /s, @ < threshold @)

5, ax > threshold
() = { 0, « < threshold (5)

3.3 Collaborative Filter

We use a classic collaborative filter approach since our objec-
tive is to evaluate the effect of the rating generation strate-
gies on the recommendation as well as the temporal analysis
in the filtering of the lessons.

Our collaborative filter uses the turicreate python library
that implements an item-based CF. We use cosine similarity
to identify similar courses based on ratings (Equation (6]).

Cs(, e, Tui * Tus

e \/EuGUi (Tui)? * \/Zuer (Tuj)? ©

where U; is the set of users who rated item 4, and Us; is
the set of users who rated both items ¢ and j El The library

4Turicreate documentation: https://bit.1ly/3y0vIsx

has a default threshold of 0.001 where users with a lower
similarity coefficient are excluded when making the rating
prediction.

3.4 Evaluation setup

In step 10 of the data processing flow (Figure7 the dataset
is built using 70% of the courses for training and the remain-
ing 30% for evaluation. Given that the average number of
courses viewed by each user in our dataset is 6.64, in the
average case, there are four courses for the construction of
the collaborative filter and two for its evaluation.

The performance of the recommender system was evaluated
by precision at k (PQk), a typical metric for the evaluation
of Top-N recommender tasks [10} 1T}, 19 [20]. We found in
the literature that a value of N usually used in recommender
systems in learning environments is N € [5,10] [10, I1].
A higher number of recommendations could overwhelm the
learner, in particular in partially known domains of knowl-
edge, and a lower number could include elements that are
not diverse. However, the use of £ = N = 5 for evaluation
poses a challenge to the extent that in our dataset most of
the users do not contain 5 relevant courses in the evaluation
set. To avoid an overpenalization in the calculation of the
PQk, we define the k per user in the range 1 < k < 5 ac-
cording to the number of courses in the test set. The results
reported are the PQK average over all users. A Wilcoxon
rank-sum test with the Bonferroni correction was used for all
our statistical significance tests (p < (0.05/#hypothesis)).

4. RESULTS

After processing the data, 56466 sessions were obtained, a
total of 7071 users extracted, and 230 different courses were
considered from the GCFGlobal learning platform. Table [2]
presents the results obtained using the rating strategies ex-
plained in Section [32]

The results suggest that a custom threshold (PU: per-user) is
better than a global one (GPC). However, it is not conclusive
on the use of penalty functions. To identify if there are
significant differences in the precision obtained by different
combinations of penalty functions and threshold strategies,
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Table 2: Precision results for the PU (Per-user metric) and
GPC (Global metric)

Penalty Function | Threshold Strategy | Precision @ 5

F1 (Quadratic) l(D}IliC 823;2
F2 (Lineal) I(D;EC 8:3;??
F3 (Logarithmic) gllic 82;?2
F4 (Square root) g[PJ’C 832;};
F5 (Step) aPo 7o

we built a set composed of 100 sample. Each sample is
built by selecting randomly 3000 users from the total set of
users (i.e., 7071). Then, we repeat the process of building
and evaluating the recommendation engine. In Table [5] we
present the average precision obtained per penalty function
over the 100 experiments. As can be seen in the table, a
similar behavior where the custom threshold (PU) and a
square root function (F4) lead to a better recommendation
results. Regarding the penalty functions, a very interesting
behavior is evident: the lower the penalty, the better the
recommendation. Figure[2]shows the penalty functions for a
particular threshold from which it is possible to identify that
there is a correspondence between the order in the results
F4(best)-F3-F2-F1-F5(worst) and the penalty degree of the
function.

We perform a statistical significance via Wilcoxon rank-sum
test where the null hypothesis is that the PQK obtained
by the two threshold metrics have the same distribution.
The alternative hypothesis is that the distribution of PQk
obtained by one metric is stochastically greater than the dis-
tribution of the other. We repeated this test for each penalty
function, therefore a total of 5 hypotheses were evaluated.
The results of the tests for each penalty function are shown
in Table Our first relevant finding is that the results
obtained by a custom threshold (PU) are statistically sig-
nificant in most cases. Only for the quadratic function, the
null hypothesis was not rejected.

We repeat a similar test but for the penalty functions. Us-
ing PU as the threshold, we test if the results obtained via
F4 are statistically significant in comparison with the others
penalty functions. The test results are reported in Table []
and show that results obtained via F4 are statistically sig-
nificant compared to all other functions except again for the
quadratic function.

Our final experimentation is related with the lesson duration
(i.e., Step 9 in Figure . We want to see the effect on
the recommendation precision of adding a lesson duration
filter prior to counting and calculating the percentage of
lessons viewed. The filter removes lessons with a duration
less than x value. We use PU as threshold metric and F4 as
penalization strategy. Figure[3|shows the results obtained as

Table 3: PU (Per-user metric) vs GPC (Global metric)
Wilcoxon test results.

Penalty Function | p-value (p < (0.05/5))
F1 (Quadratic) | 0.448

F2 (Lineal) | 5.273e-32
F3 (Logarithmic) | 9.649¢-32
F4 (Square root) | 5.750e-32
F5 (Step) | 1.261e-34

Table 4: F4 vs other penalty functions via Wilcoxon test.

| p-value (p < (0.05/4))
( | 0.033

F4 ( ) ( | 7.837e-09

F4 (Square root) vs F3 (Logarithmic) | 8.400e-05

F4 ( ) ( | 1.261e-34

Penalty Functions
F4 (Square root) vs F1 (Quadratic)

Square root) vs F2 (Lineal)

Square root) vs F5 (Step)

Table 5: Average precision over 100 randomly datasets. PU:
Per-user metric, GPC: Global metric

Penalty Function | Threshold Strategy | Avg. Prec. @ 5

F1 (Quadratic) gllic 8;32
F2 (Lineal) ch 8:3?2
F3 (Logarithmic) EIPJ’C 8;41%
F4 (Square root) EIPJ’C 8;;12
F5 (Step) ggc 8:82

54 — FL
F2
— F3
— F4
4] — F5
Threshold

0.0 02 0.4 06 0.8 10
Percentage of lessons

Figure 2: Behavior of penalty functions with a threshold of
0.8 (80%) for a given course. The estimated rating is 5 if the
percentage of lessons accessed is greater than 80%. For lower
values, the rating is given by the penalty functions F1-F5.

the filter becomes more restrictive. One of the consequences
is that as the minimum lesson duration time is restricted, the



size of the dataset is reduced. This means that after applying
the filter there are users with less than 3 courses and they
are thus removed from the analysis. Figure 4] shows how the
size of the number of users decrease with the increase of the
lesson duration filter.
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Figure 3: Lesson duration filter vs recommendation precision
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Figure 4: Lesson duration filter vs number of users in dataset

S. DISCUSSION AND FUTURE WORK

In relation to penalization functions, we observe that less
penalty lead to a better recommendation. This indicates
that a low number of lessons viewed per course cannot be
directly related to low preference. Being open learning re-
sources where the learning process is self-directed, there are
many other variables that can affect the non-continuity in
the learning process that are impossible to identify in our
context (i.e., learning priorities, time, health). It should
also be taken into account that since it is an implicitly ex-
tracted rating, it is to be expected that it does not accurately
reflect the user’s preferences. We also conclude that the F4
(square root) penalty function leads to better recommenda-
tion results, and there is statistical significance concerning
F3, F2, and F5.

The experiments suggest that a per-user metric works bet-
ter than a global metric. This result is not surprising to

us as using a custom metric for each user should better re-
flect their behavior and therefore their preferences. Despite
this, keeping this metric updated is a process that can be
exhausting in a productive environment, since it must be re-
calculated for each new interaction with a lesson. The global
is expected to fluctuate less and can be recalculated every
certain time interval.

Regarding the duration of the lesson, the figures show the
more restrictive the filter is, the better is the recommen-
dation precision. This behavior is independent of the way
the session is processed (i.e., inter vs intra). We attribute
this result to the fact that the lesson duration filter reduces
the data set to users for which we have (1) more information
(i.e., more lesson interactions), and (2) more precision in the
rating calculation. As users spent more time going through
the lessons, it is more likely that those lessons were of in-
terest to them. In consequence, we can conclude that the
rating estimation strategy based on course lesson complete-
ness better reflects the preferences of learners with greater
lesson duration times.

There is a wide range of future work that we want to address
based on the results presented in this paper. Now that we
have found an appropriate strategy to build the ratings from
logs, we want to explore more advanced techniques for build-
ing the CF engine such as matrix factorization strategies and
recent deep learning approaches [21], 22]. We also want to
explore hybrid recommendation techniques that combine CF
and CB making use, on the one hand, of textual descriptions
of lessons and on the other hand, on semantic descriptions
that can be enriched via knowledge graphs [23].

6. CONCLUSION

This paper addresses the problem of course recommendation
under limited information scenarios. We posit a process for
course rating estimation based on log information for a CF-
based recommender system. Our strategy to exploit the
limited information available in logs uses the combination of:
(1) the percentage of the lessons accessed in a course, (2) a
threshold definition, and (3) different penalty functions to
estimate the learner perception about the course. Then, we
evaluate the influence of the duration of a user in a lesson
in the definition of the rating.

As a threshold, we found that a personalized average per-
user is better than a global one. Regarding penalty func-
tions, F4 present the best results, and in general we found
that the functions that penalize to a lesser degree lead to a
better recommendation. Finally, we found that “lesson dura-
tion” plays an important role to improve rating estimation.
The more demanding the ”lesson duration” filter better our
rating estimation and the recommendation precision. How-
ever, using the lesson duration as a filter has the side effect
of reducing the number of users in the dataset because a
great number of lessons access records are discarded.
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