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ABSTRACT

Learning objectives, especially those well defined by ap-
plying Bloom’s taxonomy for Cognitive Objectives, have
been widely recognized as important in various teaching and
learning practices. However, many educators have difficul-
ties developing learning objectives appropriate to the levels
in Bloom’s taxonomy, as they need to consider the progres-
sion of learners’ skills with learning content as well as de-
pendencies between different learning objectives. To remedy
this challenge, we aimed to apply state-of-the-art computa-
tional techniques to automate the classification of learning
objectives based on Bloom’s taxonomy. Specifically, we col-
lected 21,380 learning objectives from 5,558 different courses
at an Australian university and manually labeled them ac-
cording to the six cognitive levels of Bloom’s taxonomy.
Based on the labeled dataset, we applied five conventional
machine learning approaches (i.e., naive Bayes, logistic re-
gression, support vector machine, random forest, and XG-
Boost) and one deep learning approach based on pre-trained
language model BERT to construct classifiers to automat-
ically determine a learning objective’s cognitive levels. In
particular, we adopted and compared two methods in con-
structing the classifiers, i.e., constructing multiple binary
classifiers (one for each cognitive level in Bloom’s taxon-
omy) and constructing only one multi-class multi-label clas-
sifier to simultaneously identify all the corresponding cogni-
tive levels. Through extensive evaluations, we demonstrated
that: (i) BERT-based classifiers outperformed the others
in all cognitive levels (Cohen’s x up to 0.93 and F1 score
up to 0.95); (ii) three machine learning models — support
vector machine, random forest, and XGBoost — delivered
performance comparable to the BERT-based classifiers; and
(iii) most of the binary BERT-based classifiers (5 out of
6) slightly outperformed the multi-class multi-label BERT-
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based classifier, suggesting that separating the characteriza-
tion of different cognitive levels seemed to be a better choice
than building only one model to identify all cognitive levels
at one time.
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1. INTRODUCTION

A learning objective is a clear and specific statement defin-
ing knowledge and skills that learners are expected to ac-
quire after completing an educational activity |19]. A well-
articulated learning objective can benefit course designers,
instructors and learners. For instance, learning objectives
can inform course design, as they often signal how course
materials should be organized to ensure a suitable sequenc-
ing of instruction and optimize learning activities through-
out the semester. Instructors can utilize learning objec-
tives to assess learners’ progress; meanwhile, learners can
use learning objectives to get an overview of knowledge and
skills they should possess after receiving instruction [38], and
to support their studying for an exam, e.g., by developing
questions for self-testing prior to an exam [2].

Educators in many courses create learning objectives that
reflect knowledge/skills of different levels of cognitive com-
plexity. For example, evaluating whether a formula from a
textbook can be applied to solve a math problem is cogni-
tively a more complex skill compared to recalling that same
formula from a textbook. However, a learner needs to be
able to recall the formula first, and then evaluate its util-
ity in the context of a genuine problem, i.e., low-order skills
are precursors to high-order skills 1}, 12]. To define learning
objectives at different skill levels, educators often use edu-
cational taxonomies (e.g., Bloom’s [1| |4], Gagne’s |12, and
Jensen’s [16]). For instance, over decades educators have
widely utilized Bloom’s taxonomy for Cognitive Objectives
|1] to define learning objectives, as this framework can ac-
count for a broad range of learning objectives and provide
means for evaluating learner achievements relative to those
objectives |17]. Bloom’s taxonomy consists of six levels of
cognitive skills that include 3 low-order (remember, under-
stand, and apply) and 3 high-order cognitive skills (analyze,
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evaluate, and create).

Although Bloom’s taxonomy has been regarded as a helpful
pedagogical framework [19], many educators have difficulties
developing learning objectives appropriate to the levels spec-
ified in Bloom’s taxonomy [21]. This is because they need
to consider the progression of learners’ skills with learning
content and also take into account dependencies between
learning objectives, e.g., a learner must be able to define
and explain a math formula before applying it [19]. These
difficulties may lead to subsequent challenges in measuring
learners’ progress, i.e., difficulties to determine whether a
learner has progressed to upper levels of Bloom’s taxonomy
[21]. To ensure learning objectives educators create can be
mapped to Bloom’s taxonomy levels properly, the educators
often need support from educational experts [13], which are
not easily available in many departments in higher educa-
tion. Everything considered, the process of developing well-
articulated learning objectives to support teaching, learn-
ing and assessment activities is usually time- and resource-
consuming.

To remedy this challenge and help educators determine the
level of each learning objective they create according to
Bloom’s taxonomy, in the present study, we explored the
possibility of using state-of-the-art natural language process-
ing, machine learning and deep learning techniques to auto-
matically classify learning objectives. To date, researchers
have developed a few computational models for automatic
classification of different types of educational texts based on
cognitive levels in Bloom’s taxonomy, including exam ques-
tions (e.g., |6} |15} [25] [40]), participants’ contributions to dis-
cussion forums (e.g., [11]), and learning outcomes (e.g, [36]).
Researchers have demonstrated a considerable classification
accuracy of these models. However, even though the classi-
fication of learning objectives based on Bloom’s taxonomy
has been recognized as an important problem, to our knowl-
edge, there has yet to be developed a classification system
that accurately automatizes this work. To address this gap,
we obtained and manually annotated 21,380 course learning
objectives from 5,558 courses from all the 10 constituent fac-
ulties at an Australian university, and applied both machine
learning and deep learning models to construct classifiers to
automatically identify the cognitive levels of these learning
objectives.

2. RELATED WORK

2.1 Bloom’s Taxonomy

Bloom’s taxonomy [1} |4] was originally introduced to reduce
educators’ labor when preparing the materials for annual
comprehensive examinations. The taxonomy proposes six
hierarchically-arranged levels of cognition: remember, un-
derstand, apply, analyze, evaluate, and create. These levels
reflect the cognitive complexity of a learning objective or
an assessment question [15]. In particular, remember, un-
derstand, and apply are considered low-order, whereas an-
alyze, evaluate, and create are considered high-order cogni-
tive skills. Mastering a skill at a higher level is dependent
upon mastering a prerequisite skill or a group of prerequi-
site skills at lower levels in Bloom’s taxonomy. Due to its
well-developed structure, educational researchers and prac-
titioners have widely utilized Bloom’s taxonomy for both
research and instructional purposes, including the classifica-

tion of learning objectives [36]. We use Bloom’s taxonomy
as a theoretical framework to guide this study.

2.2 Automated Analysis of Educational Texts

Based on Bloom’s Taxonomy
Despite its educational promises, the use of Bloom’s taxon-
omy is usually not straightforward. Many educators struggle
to manually classify instructional and assessment activities,
specify the knowledge associated with each level in Bloom’s
taxonomy, and measure student progress accordingly ([21]).
To overcome these challenges and facilitate instructional ac-
tivities, researchers have created several computational sys-
tems for the automated classification of educational texts
based on Bloom’s taxonomy. Wen-Chih et al. [5] developed
a keyword-based system to automatically classify teachers’
questions into different cognitive levels of Bloom’s taxon-
omy. For this purpose, the authors developed a dictionary
of keywords mapped to the corresponding cognitive levels of
Bloom’s taxonomy. The classification system developed in
this way achieved a considerable accuracy of 75% in identi-
fying questions at the remember level, whereas the system’s
performance in identifying questions at other levels was no-
ticeably lower (25% — 59%). Amali et al. [28] developed
several models to automatically classify exam questions into
cognitive levels in Bloom’s taxonomy. The models included a
rule-based part-of-speech classifier, support vector machine,
naive Bayes and K-nearest Neighbor classifiers with word
vectors as inputs. Similar to [5], the models performed best
in identifying exam questions at the remember level (87%
— 100%) but achieved a lower overall performance (60% —
72%). The authors further created an ensemble model that
achieved 82% overall accuracy by combining the four models.
Jayakodi et al. [15] utilized semantic similarity algorithms
to develop a rule-based classifier that identifies a cognitive
level of an exam question according to Bloom’s taxonomy.
This system achieved a classification accuracy up to 0.70 in
identifying a correct cognitive level for an exam question.
Similarly, Echeveria et al. [11] computed TF-IDF features
in student discussion posts as input for a rule-based classifier
that categorizes a post into one of the levels of Bloom’s tax-
onomy. The authors reported an accuracy of nearly 0.77.
Waheed et al. [40] and Mohammed et al. [25] developed
a group of supervised machine learning models to classify
open-ended questions according to Bloom’s taxonomy. The
authors computed a variety of linguistic features from ques-
tion text, e.g., TF-IDF [32] and word2vec [24]. Whereas
these supervised machine learning models were trained us-
ing relatively small datasets (i.e., less than 1,000 questions),
most of them achieved a substantial classification perfor-
mance with their F1 scores ranging between 0.70 and 0.90.

In line with the increased use of deep learning methods
in educational research over the past few years, James et
al. [|44] utilized BERT [10], a pre-trained language model,
to classify educational questions relative to Bloom’s taxon-
omy in a cognitive domain. The models performed well in
identifying questions at the levels that were frequent in the
dataset (remember, understand, analyze — achieving 82.61%
accuracy), whereas the identification of questions at less fre-
quent levels (apply, evaluate, create) remained a challenge
(59.2% accuracy with all cognitive levels included). This
study demonstrated the potential of deep learning methods
to assist educators in determining Bloom’s cognitive levels



of educational questions if a sufficiently big pool of questions
at all cognitive levels is available to train the deep learning
models. Further, Sarang et al. [36] utilized the pre-trained
language model Wiki Word Vectors to generate word em-
beddings for learning objectives and assessment questions.
The word embeddings were used as input to the Long Short
Term Memory (LSTM) model classifying learning objectives
and assessment questions into different levels of Bloom’s tax-
onomy. This model achieved a weighted average F1 score of
0.73 in correctly classifying learning objectives and a macro-
average F1 score of 0.82 in correctly classifying the assess-
ment questions. Moreover, to our knowledge, this study is
the first to automatically classify learning objectives (among
other forms of educational texts) according to Bloom’s tax-
onomy and the considerable classification performance re-
ported in the study encourages further research. Overall,
the classification models developed to date promise to pro-
vide at-scale support to educators who aim at categorizing
educational texts, e.g., discussion forum posts, assessment
questions, and, more recently, learning objectives, based on
cognitive levels of Bloom’s taxonomy.

Although researchers have begun increasingly harnessing the
automated text analysis methods to classify different educa-
tional texts based on Bloom’s taxonomy, only a small group
of researchers has considered exploring the possibility of us-
ing these methods to automatically classify learning objec-
tives, despite the challenges documented that many educa-
tors report when attempting to manually classify learning
objectives according to the cognitive levels of Bloom’s tax-
onomy [21]. Additionally, all of the relevant studies that we
found assumed each piece of text to belong to only one cogni-
tive level while the possibility existed for learning objectives
to have more cognitive levels as educators could have com-
bined several learning objectives in one sentence. We also
note that practical challenges in obtaining a large, manually
labeled dataset, with a sufficient number of learning objec-
tives at each of the six levels of Bloom’s taxonomy to train
the classification models, could have been an important ob-
stacle to this line of research [36]. To address these gaps,
we gathered a large number of authentic learning objectives
across different university courses and manually labeled each
learning objective with at least one cognitive level in Bloom’s
taxonomy. Next, we developed classification models based
on machine learning and deep learning methods to automat-
ically classify learning objectives. More specifically, we at-
tempted to answer the following research question: To what
extent can machine learning and deep learning classifiers ac-
curately classify a learning objective into the cognitive levels
of Bloom’s tazonomy?

3. METHODOLOGY

3.1 Data Collection and Labeling

We collected 21,380 learning objectives publicly available
from 5,558 courses provided by the 10 faculties at an Aus-
tralian university in 2021. To collect the data, we developed
a web scraper using Python to automatically parse the con-
tent of the available course web pages to obtain learning
objectives of a course.

One human coder, who had previously received training on
Bloom’s taxonomy, manually categorized the learning ob-
jectives into their corresponding cognitive levels of Bloom’s

taxonomy. Some learning objectives were categorized into
more than one cognitive level, i.e., 2,325 learning objectives
were labeled with two cognitive levels, 280 with three and
2 with four levels. We provide a sample of coded learning
objectives in Table [T}

To ensure the reliability of data labeling, we included a sec-
ond human coder trained on Bloom’s Taxonomy in cognitive
domain who randomly selected 30% of the learning objec-
tives labeled by the first coder and independently labeled
those learning objectives. The two coders achieved a sub-
stantial inter-coder agreement (Cohen’s k 0.63), according
to the recommendations provided in [22|. The two coders
discussed the labeling disagreement cases between them and
found out that the major source of disagreement was because
many learning objectives from the low-cognition category
remember were wrongly categorized as the high-cognition
category apply. The coders revised the corresponding la-
bels in the entire dataset accordingly which increased inter-
coder agreement on the 30% of sample to 0.80, measured
with Cohen’s k. We proceeded with feature engineering
and model development using the labeled dataset to answer
our research question. The detailed descriptive statistics are
provided in Table [2]

3.2 C(lassification Models

To answer our research question, we developed and exam-
ined six classification models. Of these, five models were
based on traditional machine learning algorithms, support
vector machine (SVM), logistic regression (LR), naive Bayes
(NB), random forest (RF) and XGBoost. These algorithms
have been widely utilized for text classification tasks in ed-
ucational research (for an overview see [35]). Moreover, in-
spired by the increasing use of deep learning approaches in
educational research over the past few years (e.g., |7} 9} 14]),
we developed deep learning classifiers based on the BERT
pre-trained language model. Specifically, we coupled the
pre-trained BERT sequence classifiers with a single layer for
classification and trained the model using the data we col-
lected.

Recall that, in our collected dataset, each learning objec-
tive can be assigned with either only one cognitive label or
multiple labels at the same time. Correspondingly, we could
tackle the classification task by using two different meth-
ods. The first method is to construct a binary classifier
for each cognitive level in Bloom’s taxonomy (e.g., those la-
beled as remember vs. those not), and the second method
is to build one multi-class multi-label classifier for all the
cognitive levels in Bloom’s taxonomy (i.e., identifying all
the cognitive labels specific to a learning objective). Given
that part of our research goal was to shed light on the best
way to tackle this problem, we implemented both methods
for comparison purposes. More specifically, we used each
of the models described above to construct a binary clas-
sifier for each cognitive level in Bloom’s taxonomy, i.e., we
constructed a total of 36 binary classifiers. Then, we con-
structed two multi-class multi-label classifiers (i.e., a Ran-
dom Forest model and a BERT model), as these two mod-
els have been demonstrated effective in tackling multi-class
multi-label classification problems in previous research (|27}
37,39} 142, |43]).



Table 1: Example of learning objectives categorized into the cognitive levels in Bloom’s taxonomy.

Learning Objective Examples Labels
Recognise the key role that human factors play in the leadership and

. . . ) Remember
development of a highly functional perioperative team.
Describe the general characteristics of the modern X-ray system used in clinical practice,
. . Lo o . Lo Understand
including scientific principles, and production of the digital image.
Apply research skills to operate effectively as a member of a research project team. Apply
Identify an issue of relevance to the practice of perioperative medicine

. Lo s . Analyze
capable of further investigation and research within the context of a capstone project.
Ability to articulate critical interpretations of dramatic texts and

. . . Evaluate

processes in systematic written argument.
A capacity to design, manage, and carry out a research project. Create

Analyze and apply contemporary management theory and research to current organizational issues.

Apply & Analysis

Assess and synthesise diverse information about up-to-date information and knowledge

management systems market and how to use implementation strategies to maximise their

strengths and minimise their weaknesses.

Evaluate & Create

Table 2: Descriptive statistics of the Learning Objective (LO) dataset.

| Total | Remember Understand Apply Analyze Evaluate Create | Multi-Label

# Total LOs | 21,380 | 886 5,079 5,074 2,311 2,468 2,955 | 2,607
# Avg. words per LO | 17.81 | 16.14 17.42 18.55  16.68 16.64 16.27 |  21.52
# Avg. unique words per LO | 15.75 |  14.59 15.33 16.40  15.05 14.91 14.74 | 18.25

3.3 Study Setup
3.3.1 Data Pre-processing

Prior to conducting any experiments, we randomly split the
dataset in an 80:20 ratio, i.e., 80% of data was used as a
training set and 20% of data was used as a testing set. We
used these same datasets across all classification tasks to
ensure fair comparisons between different models.

The textual data was initially pre-processed in the same
fashion for both the machine learning models and the BERT-
based deep learning model by converting them to lower-
case. We extracted multiple features that had been proven
to be useful not only for educational forum post classifica-
tions [35], but also in other studies sharing a similar context
to ours (|25], [32]) to empower the five conventional ma-
chine learning models described above. In particular, we
computed a group of features in n-gram form, including un-
igrams (1,000 most frequent excluding stopwords) and bi-
grams (1,000 most frequent excluding stopwords); TF-IDF
features (1,000 most frequent excluding stopwords); auto-
mated readability index [33] for each learning objective; and
93 features derived from the LIWC dictionary [31] reflecting
a frequency of different psychologically meaningful words,
e.g., cognitive processes, function words, words reflecting
summary, relativity and time orientation, leading to a to-
tal of 3,094 features. For our BERT-based deep learning
model, unlike some previous studies ([18, |25 [28]) where
the researchers used word2vec to generate word embeddings,
we employed BERT-uncased shared by HuggingFace [41] to
generate word embeddings, because BERT generated em-
beddings had been proven to be capable of capturing con-

textual information and properties at the sentence level (in
this study, the learning objective level) [23].

3.3.2  Model Implementation

To implement and examine the five conventional machine
learning models, we utilized the Python package Scikit-Learn
|30] to develop naive Bayes, logistic regression, support vec-
tor machine, and random forest classifiers, and the package
XGBoost [8] to develop the XGBoost classifier. We per-
formed hyper-parameter tuning with 3-fold cross-validation
on these models using grid search in order to find the most
suitable parameters for our models. F1 score was used as the
evaluation metric when performing hyper-parameter tuning.
The details of the parameters were all documented in our
source code and would be open-sourced together with the
data collected in this study, and thus be made available to
other researchers for replication:

For the BERT-based model, we applied the BERT-uncased
shared by HuggingFace [41]. The model included 12 hid-
den layers, each with 768 neurons. The vocabulary size
was 30,522 and the dropout rate was 0.1. For binary se-
quence classifiers, the number of output neurons is 2, each
predicting the probability of the text belonging to differ-
ent classes (0 and 1 as class labels). Therefore, we applied
a softmax function on these probabilities to find the cor-
responding class labels for the texts. For the multi-class
multi-label sequence classifier, the number of output neu-
rons is 6, predicting the probabilities of the text belonging

Yhttps://github.com/SteveLEEEEE /EDM2022CLO.git



to the six cognitive levels. Thus, we used a sigmoid function
on these probabilities and set the probability threshold to
0.50 to find their predicted class labels. The entire BERT
models were fine-tuned without freezing the parameters in
any layers for all experiments.

3.3.3 Model Training

The training data were used to train all the machine learn-
ing models without further splitting. However, for our deep
learning models, the 80% training data were further split
with 80% being training set and 20% being validation set.
The batch size was set to 64 for all the deep learning models
and the number of epochs was set to 3. Early-stopping was
applied in order to avoid over-fitting. When the F1 scores
stopped improving on 10 consecutive validations, the train-
ing terminated and the model weights rolled back to the best
performing one.

3.3.4 Evaluation Metrics

We evaluated the performance of the classification models by
computing the following performance metrics: accuracy, Co-
hen’s k, Area Under the ROC Curve (AUC), and F1 score.
To find out the categorical performance on the multi-class
multi-label classifiers, we separated the classification results
for each of the cognitive levels on testing data and made
comparisons with the humanly assigned ones to find out
their individual accuracy, Cohen’s k, AUC, and F1 scores.

4. RESULTS

Our results provide evidence that it is possible to develop
highly accurate supervised machine learning and deep learn-
ing models to classify learning objectives into skill levels
based on Bloom’s taxonomy, answering our research ques-
tion. In particular, the high-performing models included
those based on SVM, RF, XGBoost and BERT (Table [3)).
All of the high-performing models achieved Cohen’s k score
spanning between 0.79 and 0.93, while the prediction accu-
racy of these models spanned between 0.92 and 0.99, i.e.,
the models can accurately classify at least 92% of learn-
ing objectives into a corresponding skill level of Bloom’s
taxonomy. Equally importantly, the F1 scores of the high-
performing models were between 0.83 and 0.95, indicating a
high precision and recall achieved by SVM, RF, XGBoost,
and BERT in identifying each of the six cognitive levels in
Bloom’s taxonomy. We note that the binary BERT models
outperformed all the binary machine learning models ob-
served. These models achieved an outstanding classification
performance, as measured by Cohen’s x (0.87 to 0.93), ac-
curacy (0.96 to 0.99), and F1 scores (0.88 to 0.95). The
classification performance of other models observed in this
study (i.e., naive Bayes and logistic regression) was notice-
ably lower, e.g., with Cohen’s & typically not exceeding 51%
for naive Bayes and 73% for logistic regression.

Furthermore, by comparing the performance between binary
and multi-class multi-label random forest classifiers, it is ev-
ident that binary random forest classifier outperformed the
multi-class multi-label one in most cases except for under-
stand. Meanwhile, the multi-class multi-label BERT-based
classifier performed better than all the binary and multi-
class multi-label machine learning models from the same
cognitive level, but rarely outperformed binary BERT-based

classifiers in terms of the prediction performance. The ex-
ception was the cognitive level evaluate where binary BERT-
based classifier achieved a similar but slightly lower perfor-
mance than the multi-class multi-label BERT-based classi-
fier (i.e., 0.001 difference in Cohen’s k and F1 score).

5. DISCUSSION
5.1 Interpretation of the Results

Many educators across a range of disciplines develop learn-
ing objectives for their courses based on Bloom’s taxonomy
for Cognitive Objectives [1]. Even though Bloom’s taxon-
omy has been widely deemed a useful pedagogical frame-
work [19], educators often find it challenging and tedious
to develop learning objectives to describe cognitive skills at
different levels of Bloom’s taxonomy [21]. To remedy this is-
sue, in this study, we explored whether machine learning and
deep learning methods can be used do develop the classifica-
tion model that can automatically classify a learning objec-
tive into appropriate cognitive level in Bloom’s taxonomy.
Overall, our results indicated that three traditional machine
learning models, i.e., support vector machine, random for-
est, and XGBoost, and one deep learning model based on
BERT, may be the viable approaches towards solving this
problem.

The four high-performing classification models achieved con-
siderable performance not only relative to commonly ac-
cepted standards in discourse analysis [3], but these models
also outperformed the models from prior research that tar-
geted similar classification tasks. Importantly, all the mod-
els performed well in correctly classifying learning objectives
at each level of Bloom’s taxonomy. Given that both conven-
tional machine learning (e.g.,|5, [28]) and deep learning ap-
proaches (e.g, [44]) have been documented to perform poorly
in classifying educational texts into higher-order cognitive
levels of Bloom’s taxonomy (e.g., analyze, evaluate, and cre-
ate), the results of our study add to the body of knowl-
edge in educational research showing that advanced conven-
tional machine learning and deep learning models trained on
a large corpus of educational textual data can provide useful
classifications across all the levels in Bloom’s taxonomy.

Moreover, our findings resonate with prior research show-
ing that deep learning models can provide a more accurate
classification results in educational classification tasks, com-
pared to conventional machine learning algorithms [35]. We
also note that, given the performance scores the naive Bayes
classifier consistently achieved across the six tasks in our
study, it appears that this classifier may be the least prefer-
able algorithm for classification tasks based on Bloom’s tax-
onomy, corroborating evidence provided in [29] where the
authors pursued the question classification task based on

Bloom’s taxonomy and found that naive Bayes under-performed

other classifiers in this task.

Last, we observed that, though multi-class multi-label clas-
sifiers achieved satisfactory performance, binary classifiers
using the same model (i.e., BERT) still attained better per-
formance. This might be mainly because that, while multi-
class multi-label classifiers tried to minimize the overall er-
rors across different cognitive levels during the model train-
ing process, binary classifiers tended to focus comprehen-
sively on minimizing the errors on a single category. There-



Table 3: Classification Performance of the binary and multi-class multi-label (MCML) classifiers, i.e., Support Vector Machine
(SVM), Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), XGBoost, and the BERT-based classifier. The best
results are in bold for each evaluation metric in each level of Bloom’s taxonomy.

Method Remember Understand Apply

ethods Acc. Cohen’s k AUC F1 Acc. Cohen’s k AUC F1 Acc. Cohen’s k AUC F1
NB 0.640 0.111 0.716 0.198 | 0.642 0.327 0.716 0.581 | 0.778 0.507 0.781 0.668
SVM 0.982 0.827 0.923 0.837 | 0.922 0.801 0.891 0.855 | 0.923 0.805 0.890 0.858
Binary LR 0.960 0.485 0.681 0.503 | 0.891 0.714 0.839 0.787 | 0.896 0.726 0.837 0.793
Classifiers RF 0.983 0.830 0.892 0.839 | 0.920 0.793 0.880 0.847 | 0.936 0.837 0.904 0.881
XGBoost | 0.981 0.820 0.916 0.830 | 0.928 0.818 0.900 0.867 | 0.938 0.844 0.914 0.887
BERT 0.987 0.871 0.916 0.878 | 0.971 0.926 0.959 0.947 | 0.961 0.904 0.951 0.931
MCML RF 0.982 0.809 0.989 0.818 | 0.927 0.811 0.970 0.860 | 0.921 0.794 0.970 0.847
Classifiers BERT 0.984 0.848 0.988 0.856 | 0.955 0.889 0.982 0.920 | 0.951 0.877 0.976 0.912

Methods Analyze Evaluate Create

Acc. Cohen’s k AUC F1 Acc. Cohen’s k AUC F1 Acc. Cohen’s k AUC F1
NB 0.549 0.183 0.684 0.392 | 0.596 0.234 0.703 0.447 | 0.676 0.300 0.743 0.474
SVM 0.956 0.832 0.897 0.858 | 0.959 0.861 0.922 0.886 | 0.942 0.791 0.880 0.825
Binary LR 0.936 0.732 0.818 0.767 | 0.920 0.694 0.799 0.739 | 0.902 0.604 0.762 0.659
Classifiers RF 0.961 0.851 0.902 0.874 | 0.967 0.887 0.932  0.907 | 0.943 0.792 0.877 0.826
XGBoost | 0.959 0.844 0.903 0.868 | 0.964 0.878 0.924 0.900 | 0.944 0.796 0.882 0.829
BERT 0.975 0.906 0.950 0.922 | 0.974 0.913 0.954 0.929 | 0.962 0.866 0.924 0.888
MCML RF 0.951 0.803 0.972 0.831 | 0.950 0.822 0.981 0.852 | 0.928 0.715 0.964 0.755
Classifiers BERT 0.971 0.890 0.984 0.907 | 0.974 0.914 0.989 0.930 | 0.958 0.846 0.971 0.872

fore, with adequate data collected, tackling the problem as
multiple binary classification tasks may be a better solution.

5.2 Practical Implications

In this study, we made a first step towards developing fu-
ture computational tool that can provide at-scale support to
instructors, instructional designers, and other educational
stakeholders who aim at developing learning objectives well
aligned to Bloom’s taxonomy. The system will automati-
cally analyze learning objectives using the classification rou-
tines developed in this study. For instance, an instructional
designer may submit the list of manually created course
learning objectives to this future system and obtain a highly
accurate classification of the learning objectives into cogni-
tive levels of Bloom’s taxonomy. Using this information, the
instructional designer may determine whether all the learn-
ing objectives are provided, relative to course requirements,
e.g., “It looks like I yet to develop a learning objective at
the create level. Since this is an advanced writing course,
the create learning objectives should be included” or “Fven
though I have created a few learning objectives for the skills
at the apply level, my list is missing lower-level learning ob-
jectives that represent the corresponding pre-requisite skills”.
Overall, the classifiers developed in this study can be used to
automatically diagnose the cognitive levels of learning objec-
tives for courses and educational programs across different
higher education institutions.

In addition, coupled with the systems for natural language
generation, the classifiers of learning objectives might be fur-
ther enhanced to automatically generate learning objectives
from course content. This, in turn, may reduce time educa-
tors dedicate to this task and may mitigate inconsistencies
educators introduce among each other when defining learn-
ing objectives, e.g., two instructors defining different learn-

ing objectives for the same subject. We also anticipate our
work will benefit students by providing means for automatic
development of questions of different cognitive levels for self-
assessment. For example, automatically generated learning
objectives can be further coupled with the systems for au-
tomatic question generation to obtain interrogative form for
objectives. Questions developed in this way may provide
at-scale support to students studying for assessment.

6. LIMITATIONS AND FUTURE WORK

We identified several limitations in this study that may be
considered in future research. Firstly, even though all the
learning objectives we collected were classified into at least
one of the cognitive levels in Bloom’s taxonomy, it is, how-
ever, possible that some learning objectives cannot be cate-
gorized relative to a cognitive domain but relative to other
domains instead, e.g., affective domain [26]. In future re-
search, the learning objectives dataset should be further la-
beled from other domains, and relevant classifiers should be
trained to recognize these types of learning objectives. Sec-
ondly, the supervised machine learning and deep learning
methods utilized in this study require extensive amounts of
labeled data to achieve a highly accurate prediction per-
formance. As preparing such a large-scale dataset can be
costly and time-consuming, researchers may consider us-
ing semi-supervised machine learning approaches (e.g., semi-
supervised Random Forest [20]) or training strategies like ac-
tive learning [34] to enable more effective and efficient model
construction process in the future.
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