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ABSTRACT
Academic grades in assessments are predicted to determine
if a student is at risk of failing a course. Sequential models
or graph neural networks that have been employed for grade
prediction do not consider relationships between course de-
scriptions. We propose the use of text mining to extract se-
mantic, syntactic, and frequency-based features from course
content. In addition, we classify intended learning outcomes
according to their higher- or lower-order thinking skills. A
learning parameter is then formulated to model the impact
of these cognitive levels (that are expected for each course)
on student performance. These features are then embed-
ded and represented as graphs. Past academic achievements
are then fused with the above features for grade predic-
tion. We validate the performance of the above approach
via datasets corresponding to three engineering departments
collected from a university. Results obtained highlight that
the proposed technique generates meaningful feature repre-
sentations and outperforms existing methods for grade pre-
diction.

Keywords
Grade prediction, graph networks, course descriptions, se-
mantic similarities, cognitive levels

1. INTRODUCTION
Detecting students at the risk of failing university courses
based on predicted grades is essential for administering early
intervention strategies. From a regression problem per-
spective, grades obtained from prior courses in previous
semesters are used to predict grades for pilot courses reg-
istered in the upcoming semester.

1.1 Related Models for Grade Prediction
Existing techniques for grade prediction using past academic
records include conventional regression models such as ran-
dom forest, support vector machine, and K-nearest neigh-
bor [1, 10, 15] as well as the factorization machine in a col-
laborative filtering setting [33]. In addition to the use of
past examination results, information derived from online
click-stream data on learning management systems has been
used to augment the prediction capability of a model [25,26].
More recently, sequential models such as the long short-term
memory (LSTM) have been developed to capture the tem-
poral dynamics of past academic performance [12]. While
such deep learning models have achieved reasonable success
in grade prediction, existing temporal-based approaches do
not take the relationships among courses and among stu-
dents into account. Consideration of these relationships is
essential since information pertaining to courses with similar
content and students with similar cognitive levels would aid
in grade prediction. In addition, the performance trend of
an academically-inclined student or a well-performed course
in the current semester may continue for the upcoming
semesters [23].

Notwithstanding the above, graph neural networks have re-
cently been employed to generate meaningful feature rep-
resentations which model the transitions of grade distribu-
tions between courses across semesters [11]. Similar to social
multi-relational networks [14] with nodes representing either
students or courses, three graphs—student-course, student-
student, and course-course graphs—consisting of edge links
computed via grade distribution similarities or correlations
have been constructed [21,23]. Modeling the student-course
relations have also been achieved via knowledge graphs to
extract course and student embeddings as well as to encode
temporal student behavioral data [17]. Pre- or co-requisites
between courses have also been considered for grade predic-
tion [27].

Despite adopting multi-dimensional approaches toward an-
alyzing prior course grades to predict student perfor-
mance [35], existing models assume that the relationship
among courses depends solely on the grade distribution;
these models do not consider topics covered and the intended
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learning outcomes defined by the course instructors. These
aspects are important since the process of knowledge acqui-
sition often involves assimilating and discerning information
from myriad sources [29], i.e., academic performance has
shown to be dependent on prior experience and how the
student has understood certain concepts. Moreover, course
content that overlap or are highly inter-dependent may in-
fluence how well the student can achieve the intended learn-
ing outcomes for the upcoming semesters [38]. While course
syllabus has recently been used to extract frequency-based
features for the determination of course similarities [16], it
does not analyze the intended learning outcomes nor capture
the relationship between courses holistically. It is also not
surprising to expect that students who are less academically
inclined often struggle in courses that require higher-order
thinking skills. Information pertaining to the thinking skills
required for prior courses will, therefore, allow the grade-
prediction model to better represent grades achieved from
previous semesters.

1.2 Grade Prediction From Curriculum De-
velopment Perspective

From a curriculum development perspective, course descrip-
tions comprise topics to be covered and the intended learning
outcomes for each course designed by the course instruc-
tor [34]. The importance of identifying suitable topics is
motivated by an earlier study where first-year university
students who had been exposed to fundamental concepts
in high school have shown to perform better than those
who had not studied similar content before [13]. In today’s
context, this highlights the intrinsic (and often intimate)
relationships including pre-requisites, recommended litera-
ture, and course content that define dependencies between
courses. Coupled with the fact that course instructors often
adopt the constructivist approach in curriculum design [6],
analysis of course content is important for grade prediction.

Apart from course content, outcome-based teaching and
learning require course instructors to identify suitable in-
tended learning outcomes and assessments that measure
those learning outcomes [4, 30]. In this regard, learning ac-
tivities with various cognitive complexity levels should be
designed and aligned with the learning outcomes construc-
tively throughout the course [2,5,9,32]. Alignment of learn-
ing activities can be achieved via the revised Bloom’s Tax-
onomy with the recollection of information being associated
with the lowest-order thinking skill to generating creative
outcomes being associated with the highest-order thinking
skill [20]. Given that less academically-inclined students of-
ten face challenges in higher-order thinking skills [39], it is
important to consider the influence of learning outcomes on
student performance for grade prediction.

1.3 Contribution of This Work
In this work, we propose a course description-based grade
prediction (CODE-GP) model that employs text mining
techniques for extracting features associated with (i) course
content similarities and (ii) higher- or lower-order thinking
skills required for each course. With regards to the first
dimension highlighted in Table 1, we propose three types
of course similarities extracted from topic outlines and in-
tended learning outcomes found within course descriptions.

Table 1: Overview of text mining approaches in the proposed
CODE-GP model

Dimension Type Description

Course
similarities
from course
outlines and
learning
outcomes

Semantic
Contextual closeness
of course content

Syntactic
Grammatical

differences across
cognitive levels

Frequency-
based

Overlapping works
appearance in
descriptions

Student
similarities
based on
thinking

skills required

Higher-order
H

Verbs
corresponding to
creative outcomes

Lower-order
L

Verbs
corresponding to
recalling concepts

These similarities include semantic [22], syntactic [3], and
frequency-based features [36]. The use of these features is in
contrast to the use of grade distributions as edge weights for
generating similarities [11]. The basis for our proposed ar-
chitecture is motivated by the need to consider both course
outlines and intended learning outcomes, since both the in-
tended learning outcomes and syllabus are important for the
development and implementation of teaching programs [28].
In addition, we also consider past performance of each stu-
dent from the perspective of thinking skills required for each
course. In particular, the proposed model employs a doc-
ument classification approach that tags each course with
higher- or lower-order thinking skills according to the re-
vised Bloom’s Taxonomy. A learnable parameter is then
used to aggregate the respective grades achieved for both
lower- and higher-order thinking skill courses. This allows
the proposed model to establish the relationship between the
complexity of courses and academic performance.

As shown in Figure 1, we adopt graph neural networks
to generate representations of the above text mining fea-
tures. These features are represented as course- and student-
similarity graphs with nodes corresponding to courses and
students, respectively. The edge weights for the former are
computed based on the proposed three text features. For the
latter, past academic grades are aggregated, and the simi-
larity related to Jensen-Shannon Divergence (JSD) is then
computed among the grade distributions [23]. These graphs
are subsequently embedded and trained using a graph con-
volutional network (GCN) layer.

In addition and similar to [12], we incorporate temporal in-
formation extracted from past examination records for each
student across semesters. Grade embeddings, the corre-
sponding student vector, and prior course vectors acquired
from the GCN for each semester are then concatenated as a
representation vector. This temporal representation serves
as the input to LSTM, which exploits the sequential rela-
tionships and predicts the grade for a course to be taken in
the coming semester.



Figure 1: Process flow of the proposed CODE-GP model.

2. THE PROPOSED CODE-GP MODEL
The task of grade prediction involves predicting the grade
for student si who has registered a pilot course. Given NC

number of prior courses and NS students, the set of prior
courses is defined as C = {c1, c2, . . . , cNC} and the set of
students as S = {s1, s2, . . . , sNS}. We define ĝsi as the pre-
dicted grade of a given pilot course for the student si.

2.1 Construction of Course Similarities
Graph Based on Course Descriptions

The CODE-GP model incorporates semantic, syntactic, and
frequency-based features extracted from course descriptions
that comprise topic outlines and intended learning out-
comes. These features are subsequently used for construct-
ing the course-similarity graph. We first pre-process the
text by removing symbols, diagrams, equations, numbers,
punctuation marks, and stop-words (e.g., “and”, “or”). All
remaining characters are set to lower case [32].

Semantic similarity based on word embeddings has been em-
ployed to assess student capability for the recommendation
of similar courses [24]. In the context of CODE-GP, we
first define topic outline as qi corresponding to course ci. A
topic outline vector vqi is then generated from qi based on
the bidirectional encoder representations from transformer
(BERT) embeddings [7,8]. The cosine similarity between qi
and qj is then computed between two course outlines via

cos
(
θ(ci, cj)

)
=

vqi · vqj

||vqi ||||vqj ||
. (1)

With 0 ≤ cos
(
θ(ci, cj)

)
≤ 1, a value of 1 implies an almost

semantically similar pair of courses ci and cj .

Syntactic features for CODE-GP comprise phrase types (i.e.,
regular expressions (regexes)) that are extracted from state-

ments associated with the intended learning outcomes. In
this context, we first extract noun- and verb-phrases from
the intended learning outcome document li corresponding
to course ci. These (multiple) phrases are then associated
with their parts-of-speech tags resulting in the set of regexes
Rli [31]. Overlaps between the regex sets are then computed
via the Jaccard similarity given by

Φ(ci, cj) =
|Rli ∩Rlj |
|Rli ∪Rlj |

, (2)

where 0 ≤ Φ(ci, cj) ≤ 1. The number of common occur-
rences is denoted by |Rli ∩Rlj | while |Rli ∪Rlj | refers to the
total number of regexes. A high Jaccard similarity, there-
fore, implies a high proportion of similar phrase types occur-
ing between a course pair regardless of whether the topics
covered are identical.

The term frequency-inverse document frequency (TF-IDF)
determines the uniqueness of a word within a set of doc-
uments [37]. To account for word appearance similarity,
we include TF-IDF weighting on both the topic outlines qi
and intended learning outcomes li for course ci. These fea-
tures are extracted from each concatenated course document
di = q⌢i li, where ⌢ denotes the concatenation of two texts.
We then compute the cosine similarity Ω(ci, cj) ∝ vdi · vdj

similar to (1) but between bag of words (BoW) vectors
vdi and vdj corresponding to each course document. Here,
vdi = [α(w1, di), α(w2, di), . . . , α(wNW , di)] with wk denot-
ing the kth word in document di. The BoW vector length
is based on the word vocabulary size NW across the entire
corpus. The value of each element corresponding to the TF-
IDF weight for word wk is given by [37]

α(wk, di) =
Nwk,di

L(di)
× log

(
ND

Nwi + 1

)
, (3)



where Nwk,di is the number of times wk occurs in di, L(di)
denotes the length of that document, ND the total number
of documents, and Nwi the number of documents in which
wi occurs. The obtained TF-IDF values are subsequently
normalized to prevent bias in the term frequency variable
due to document length L(di).

With nodes of the course-similarity graph denoted by each
course ci ∈ C, the edge weights are determined via

aC
ij ∝

(
βsemantic × cos

(
θ(ci, cj)

)
, βsyntactic × Φ(ci, cj),

βfrequency × Ω(ci, cj)
)
, (4)

where βsemantic, βsyntactic, and βfrequency are the trainable
weights. Each of the variable aC

ij is used within the adja-
cency matrix

AC =

 aC
11 · · · aC

1NC

...
. . .

...
aC
NC1 · · · aC

NCNC

 (5)

corresponding to the course-similarity graph.

2.2 Temporal Grade Information
Before attempting the pilot course in the current semester,
we assume, for each student si, availability of prior course
grades in C across semesters t ∈ {1, . . . , NT } , where NT

is the total number of semesters, gtsi,ci denotes the grade
that student achieves for ci in semester t. Hence, the grade
vector for student si in semester t is given by

gt
si = [gtsi,c1 , · · · , g

t
si,cNC

], (6)

where Nc is the total number of prior courses across all NT

semesters. It is important to note that for a given semester,
only a subset of these Nc prior courses are attempted, i.e.,
gt
si is not a full vector and null elements will be assigned

for courses not attempted during that semester. Across all
previous NT semesters, we acquire the temporal grade in-
formation for each student, as shown in Figure 1. Such
temporal grade information would be used in two ways—(i)
being aggregated according to the thinking skills required
for each course and to generate student similarity as will be
described in Section 2.3 and (ii) being concatenated with
the course and student embeddings as input for LSTM.

2.3 Construction of Student Similarities
Graph Based on Cognitive Levels

Construction of the student-similarity graph is based on
cognitive levels associated with each course according to
Table 1. Each of the prior courses is first categorized as
one that requires high-order thinking skills H or lower-order
thinking skills L. This is achieved by first classifying each
course intended learning outcome statement via document
classification described in [31] with classes being defined ac-
cording to Bloom’s Taxonomy. Each course is then tagged
as H (or L) if more statements are classified as labels asso-
ciated with high-order (or lower-order) thinking skills.

For each student, we compute the frequency distribution pL
si

and pH
si corresponding to courses that require lower- and

higher-order thinking skills. This is achieved by first divid-
ing the grade range (1-100) into five bins of twenty-point

Table 2: Details on datasets from three departments

Department
Pilot
course
index

NS NC NT
Number of
records

Department 1
c1 453 16 5 7241
c2 645 20 6 11197

Department 2
c3 575 16 6 9234
c4 688 16 6 10977

Department 3
c5 711 23 7 13616
c6 540 17 6 8785

intervals before determining the number of courses (in each
H and L category) that falls under each bin. Contributions
of these two distributions are then learned via

psi = βg × pL
si + (1− βg)× pH

si , (7)

where βg is a learnable weight for psi . With the above,
student similarities are obtained via the JSD between the
grade distribution for each pair of students, i.e.,

aS
ij = 1− JSD

(
psi ||psj

)
. (8)

Therefore, a higher aS
ij implies that the two students possess

similar higher- or lower-order skills (measured by how they
perform in the prior courses). With the student similarity
graph shown in Figure 1 comprising students as nodes, the
corresponding adjacency matrix AS is generated based on
aS
ij similar to (5).

2.4 GCN and Embeddings
After constructing the course- and student-similarity graphs,
we employ a two-layer GCN to embed each graph. Both
course and student nodes are encoded with one-hot vectors
to obtain encoded matrices XC and XS . The embedding
vector EC for the course-similarity graph is generated via

EC = WCXC (9)

such that the one-hot vectors are represented as dense vec-
tors of lower dimensions. Here, WC is the weight matrix.
With ES being generated similarly, and with AC and AS
derived from Sections 2.1 and 2.3, two GCN layers [18] are
then applied to obtain latent representations of all nodes in
course-similarity graph C and student-similarity graph S. In
particular, the (G + 1)th layer for C is computed via

Z
(G+1)
C = σ

(
D

− 1
2

C ACD
− 1

2
C Z

(G)
C W

(G)
C

)
, (10)

where DC =
∑

ci
AC is the degree matrix, Z

(0)
C = EC , and

W
(G)
C is the weight matrix. The output of the GCN for

course-similarity graph is denoted as matrix RC = Z
(2)
C

with each row vector rci being associated with course ci.
The above computation is also applied on student-similarity
graph S to obtain the graph embedding matrix RS with
each row vector being defined as rsj for student sj .

To generate representations for the prior grades achieved,
embedding is applied for each grade. With a one-hot vector
representing a unique value of prior grade gtsi,cj , the embed-
ding vector for a student prior grade is learned via

et
si,cj = WG One-hot

(
gtsi,cj

)
, (11)



Table 3: Prior courses list for pilot course c5 from Department 3

EA101 Dynamics IC102 Physics A CS108 Computing
EC180 Mathematics 1 EC181 Mathematics 2 EC280 Mathematics A
EA201 Mechanics of Materials EA202 Theory of Mechanism EA203 Intro to Thermofluids
EA204 Engineering Materials EA205 Engineering Graphics EA206 Engineering Mathematics
EA207 Thermodynamics EA305 Control Theory EA306 Fluid Mechanics
EA271 Laboratory Experiments EA371 Engineering Experiments EA301 Machine Element Design

EA209
Intro to Electrical

Circuits Electronic Devices
EA102

Fundamentals of
Engineering Materials

CS103
Introduction to

Engineering and Practices

EA302
Solid Mechanics
and Vibration

EA304
Mathematical Methods

in Engineering

(a) Cosine similarity (b) Jaccard similarity (c) TF-IDF similarity

Figure 2: Visualization of three similarities among different prior courses from an engineering department (Department 3) of a university.

where WG is the weight matrix. The three embedding vec-
tors from course-similarity graph, student-similarity graph,
and temporal grade information are then concatenated for
each semester to form a (la +NC × (lb + lc))× 1 vector

etsi = [rsi , rc1 , e
t
si,c1 , . . . , rcNC

, et
si,cNC

]T , (12)

where la, lb, and lc denote the embedding length for rsi , rcj ,

and et
si,cj , respectively, and T denotes transpose. Each of

these vectors are then concatenated to form a feature matrix

Esi = [e1si , . . . , e
NT
si ] (13)

of each student si for the subsequent prediction model.

2.5 Grade Prediction using LSTM
LSTM models time-series representations and is used to
predict the pilot grade based on sequential matrix Esi for
each student. Through the use of input, output, and forget
gate, LSTM aggregates important and permutes less signif-
icant representations to achieve prediction of pilot grades in
semester NT + 1. LSTM is employed for grade prediction
via the hidden state

ht
si = LSTM(et

si ,h
t−1
si ), (14)

where ht
si denotes the hidden state for semester t. The pre-

dicted grade ĝsi for student si obtained from the last hidden
state is then given by

ĝsi = wL · hNT
si + b, (15)

where wL and b are defined, respectively, as the weight vec-
tor and bias scalar for the predictor.

3. RESULTS AND DISCUSSION
3.1 Datasets and Implementation Details
Open-source datasets employed for grade prediction do not
include course descriptions. We collected data that include
both academic records and course descriptions (compris-
ing both course outlines and intended learning outcomes).
These are obtained from three engineering departments in
a university to evaluate the models. Each dataset is ob-
tained with the student name and identity being hashed by
another office (authorized to handle such data) to protect
privacy. Table 2 summarizes details for each dataset used.
In particular, NT for each dataset is determined by the max-
imum number of semesters the students within the cohort
take to complete all courses under consideration. The prior
course list for each pilot course consists of the core courses
corresponding to the department’s curriculum. In addition,
NC and NS are distinct for each dataset. In our experi-
ments, the training, validation, and testing ratio are set as
6:2:2.

We employed the mean squared error (MSE)

MSE =
1

NS

NS∑
i=1

(
ĝsi − gsi

)2
(16)

for performance evaluation, where gsi denotes the actual
grade obtained by student si for a given pilot course. In
terms of hyperparameter selection, course description docu-
ment embeddings are trained using BERT with a dimension
of 768. During GCN training, the dropout rate was set as
0.5, while the Adam optimizer with a learning rate of 0.001
was used. A weight decay parameter was set to 5× 10−4 to
prevent overfitting.



Table 4: Performance evaluation across grade prediction algorithms

Mean Squared Error (MSE)

Methods
Department 1 Department 2 Department 3

Average
c1 c2 Ave. c3 c4 Ave. c5 c6 Ave.

LR 0.0360 0.0199 0.0280 0.0262 0.0247 0.0255 0.0264 0.0576 0.0420 0.0318
LSTM [12] 0.0309 0.0210 0.0260 0.0191 0.0259 0.0252 0.0164 0.0377 0.0270 0.0252
GCN [19] 0.0356 0.0214 0.0285 0.0259 0.0251 0.0245 0.0224 0.0276 0.0250 0.0263

Proposed CODE-GP 0.0296 0.0203 0.0250 0.0159 0.0184 0.0172 0.0188 0.0299 0.0244 0.0222

Table 5: Ablation test results

Approach(es) MSE MAE
Temporal only (LSTM) 0.0252 0.1288
Graph only (GCN) 0.0263 0.1244

Removal of student-similarity graph 0.0225 0.1223
Removal of course-similarity graph 0.0231 0.1224

Proposed CODE-GP 0.0222 0.1221

3.2 Performance Analysis
We take pilot course c5 from Department 3 as an example to
illustrate the impact of considering the semantic, syntactic,
and frequency aspects of words used in course outlines and
intended learning outcomes. Three heatmaps with colors
depicting the similarity values described in Section 2.2 are
provided while details pertaining to prior course information
are shown in Table 3.

Figure 2(a) illustrates the semantic cosine similarity where
high similarities in terms of the closeness of course con-
tent are indicated by the dark shades. It can be seen that
the mathematics-based prior course EC180 exhibits high se-
mantic similarity with other prior courses EC280, EA206,
EC181, and EA304, which have high mathematical content.
On the other hand, computing course CS108 exhibits lower
semantic similarity with the most of other non-programming
courses. Figure 2(b) highlights how (dis)similar phrase types
are between the course outlines and the intended learning
outcomes of two prior courses. We note that EC181 ex-
hibits higher Jaccard similarity with courses that require
fundamental scientific and mathematical knowledge such
as EC180, IC102, and EC280. TF-IDF weighting, on the
other hand, indicates the choice and uniqueness of words
being used in the course outlines and intended learning out-
comes. Figure 2(c) highlights the high variability in words
used between the courses being considered—only a few pairs
of course outlines and intended learning outcomes exhibit
high TF-IDF similarity. In addition, we also note that the
similarity between content is irrelevant. This can be ob-
served from the fact that even though EC180 and EC181 are
mathematics-related, their frequency-based TF-IDF similar-
ity is relatively low.

We next compare the performance of the proposed CODE-
GP model with LSTM based grade-prediction model [12],
GCN [19], and the conventional logistic regression (LR)
model. While LR and LSTM focus on temporal informa-
tion and GCN exploits the interrelationship between courses
and students, the proposed model considers both aspects.
We note from Table 4 that the proposed CODE-GP model
achieves the highest grade prediction capability than the
LR, LSTM, and GCN. While the proposed model requires
higher complexity than these three baseline models, CODE-

GP achieves the lowest mean MSE of 0.0222 (11.9% improve-
ment compared to LSTM), across the three departments as
seen in Table 4. These results highlight the importance of
course descriptions when constructing student- and course-
similarity graphs with time series information. Features ex-
tracted from course descriptions enhance the grade predic-
tion capability instead of using only a single modality.

We further performed an ablation test by excluding each
input graph/temporal representations. Table 5 summarizes
the MSE and mean absolute error (MAE) across all three
departments. We note that the use of all three aspects
in CODE-GP is vital to provide a holistic perspective for
grade prediction. It is interesting to note that grade pre-
diction performance is more sensitive to course-similarity
graph (compared to student-similarity graph). This suggest
that information derived from course descriptions can assist
in grade prediction since performance is closely related to
achieving the set of intended learning outcomes depicted in
course descriptions. These results also highlight that tempo-
ral information and graphs provide complementary features
which contribute jointly to the success of grade prediction.

4. CONCLUSIONS
We propose a grade prediction model that considers course
descriptions and prior academic results. Text mining tech-
niques determine the edge weights of the course- and
student-similarity graphs. A three-pronged model that
constitutes the semantic, syntactic, and frequency-based
feature extraction methods is formulated for course sim-
ilarities. Student performance in terms of their achieve-
ments in courses associated with low- or high-order thinking
skills have also been incorporated to construct the student-
similarity graph. The LSTM synthesizes these aspects be-
fore performing prediction.

An accurate and just-in-time prediction of performance en-
ables course instructors to administer early interventions.
Once the predicted results indicate a tendency of a student
in failing a course, student support staff can respond and
plan for a personalized intervention strategy for each stu-
dent. Moreover, early detection of at-risk students can po-
tentially reduce the drop-out rate. Future work may include
techniques that incorporate other data modalities such as
student demographic or online learning behavior while pro-
tecting student privacy.
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[6] H. Bydžovská. A comparative analysis of techniques
for predicting student performance. In Proc. Int.
Conf. Edu. Data Mining (EDM), pages 306–311, 2016.

[7] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova.
BERT: pre-training of deep bidirectional transformers
for language understanding. In Proc. Human Lang.
Tech.: Annual Conf. North American
Chap.(NAACL-HLT), pages 4171–4186, 2019.

[8] M. Fateen and T. Mine. Predicting student
performance using teacher observation reports. In
Proc. Int. Conf. Edu. Data Mining (EDM), pages
481–486, 2021.

[9] R. M. Felder and R. Brent. Designing and teaching
courses to satisfy the ABET engineering criteria. J.
Eng. Edu., 92:7–25, 2003.

[10] Q. Hu and H. Rangwala. Course-specific Markovian
models for grade prediction. In Proc. Int. Pacific-Asia
Conf. Knowledge Discovery Data Mining, pages 29–41.
Springer, 2018.

[11] Q. Hu and H. Rangwala. Academic performance
estimation with attention-based graph convolutional
networks. In Proc. Int. Conf. Educational Data
Mining, pages 69–78, 2019.

[12] Q. Hu and H. Rangwala. Reliable deep grade
prediction with uncertainty estimation. In Proc. Int.
Conf. Learn. Anal. & Knowl., pages 76–85, 2019.

[13] T. Hunt. Overlapping in high school and college again.
J. Edu. Research, 13(3):197–207, 1926.

[14] V. N. Ioannidis, A. G. Marques, and G. B. Giannakis.
A recurrent graph neural network for multi-relational
data. In Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), pages 8157–8161, 2019.

[15] Z. Iqbal, J. Qadir, A. N. Mian, and F. Kamiran.
Machine learning based student grade prediction: A
case study. arXiv, pages 1–22, 2017.

[16] W. Jiang and Z. A. Pardos. Evaluating sources of
course information and models of representation on a
variety of institutional prediction tasks. In Proc. Int.
Conf. Edu. Data Mining (EDM), pages 115–125, 2020.

[17] H. Karimi, T. Derr, J. Huang, and J. Tang. Online
academic course performance prediction using
relational graph convolutional neural network. In
Proc. Int. Conf. Edu. Data Mining (EDM), pages
444–450, 2020.

[18] T. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. In Proc. Int. Conf.

Learn. Representations (ICLR), pages 1–14, 2017.

[19] T. N. Kipf and M. Welling. Semi-supervised
classification with graph convolutional networks. In
Proc. Int. Conf. Learn. Representations, pages 76–85,
2017.

[20] D. Krathwohl. A revision of Bloom’s Taxonomy: An
overview. Theory into Practice, 41:212–218, 2002.

[21] D. D. Leeds, T. Zhang, and G. M. Weiss. Mining
course groupings using academic performance. In Proc.
Int. Conf. Edu. Data Mining (EDM), pages 1–5, 2021.

[22] X. Liu, X. You, X. Zhang, J. Wu, and P. Lv. Tensor
graph convolutional networks for text classification. In
Proc. AAAI Conf. Artificial Intell., pages 8409–8416,
2020.

[23] X. Lu, Y. Zhu, Y. Xu, and J. Yu. Learning from
multiple dynamic graphs of student and course
interactions for student grade predictions.
Neurocomputing, 431:23–33, 2021.

[24] H. Ma, X. Wang, J. Hou, and Y. Lu. Course
recommendation based on semantic similarity
analysis. In Proc. IEEE Int. Conf. Control Sci. Syst.
Engg., pages 638–641, 2017.

[25] K. H. R. Ng, S. Tatinati, and A. W. H. Khong. Online
education evaluation for signal processing course
through student learning pathways. In Proc. IEEE
Int. Conf. Acoust., Speech, and Signal Process., pages
6458–6462, 2018.

[26] K. H. R. Ng, S. Tatinati, and A. W. H. Khong. Grade
prediction from multi-valued click-stream traces via
Bayesian-regularized deep neural networks. IEEE
Trans. Signal Process., 69:1477–1491, 2021.

[27] Z. Ren, X. Ning, A. S. Lan, and H. Rangwala. Grade
prediction based on cumulative knowledge and
co-taken courses. In Proc. Int. Conf. Educational Data
Mining, pages 158–167, 2019.

[28] J. C. Richards. Curriculum approaches in language
teaching: Forward, central, and backward design.
RELC J., 44(1):5–33, 2013.

[29] S. H. Seyyedrezaie and G. Barani. Constructivism and
curriculum development. J. Humanities Insights,
1(3):119–124, 2017.

[30] S. Supraja, K. Hartman, S. Tatinati, and A. W. H.
Khong. Toward the automatic labeling of course
questions for ensuring their alignment with learning
outcomes. In Proc. 10th Int. Conf. Educational Data
Mining (EDM), pages 56–63, 2017.

[31] S. Supraja, A. W. H. Khong, and S. Tatinati.
Regularized phrase-based topic model for automatic
question classification with domain-agnostic class
labels. IEEE/ACM Trans. Audio Speech Lang. Proc.,
29:3604–3616, 2021.

[32] S. Supraja, S. Tatinati, K. Hartman, and A. W. H.
Khong. Automatically linking digital signal processing
assessment questions to key engineering learning
outcomes. In Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), pages 6996–7000, 2018.

[33] M. Sweeney, J. Lester, and H. Rangwala. Next-term
student grade prediction. In Proc. IEEE Int. Conf.
Big Data, pages 970–975, 2015.

[34] R. Tang and W. Sae-Lim. Data science programs in
U.S. higher education: An exploratory content



analysis of program description, curriculum structure,
and course focus. Edu. Info., 32(3):269–290, 2016.

[35] J. Valenchon and M. Coates. Multiple-graph recurrent
graph convolutional neural network architectures for
predicting disease outcomes. In Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), pages
3157–3161, 2019.

[36] P. Wei, J. Zhao, and W. Mao. A graph-to-sequence
learning framework for summarizing opinionated
texts. IEEE/ACM Trans. Audio Speech Lang. Proc.,
29:1650–1660, 2021.

[37] A. A. Yahya, A. Osman, A. Taleb, and A. A. Alattab.

Analyzing the cognitive level of classroom questions
using machine learning techniques. In Proc. 9th Int.
Conf. Cognitive Sci., pages 587–595, 2013.

[38] Y. Zhang, R. An, S. Liu, J. Cui, and X. Shang.
Predicting and understanding student learning
performance using multi-source sparse attention
convolutional neural networks. IEEE Transactions on
Big Data, 2021.

[39] A. Zohar and Y. J. Dori. Higher order thinking skills
and low-achieving students: Are they mutually
exclusive? J. Learn. Sci., 12(2):145–181, 2003.


