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This article explores the effectiveness of the pedagogical practices associated with the cognitive 

load theory and the van Hiele theory, which are two theories from cognitivism and 

constructivism perspectives, respectively. Following a quasi-experiment, the quantitative 

analysis of 157 high school students’ responses to pre, post, and retention tests revealed that the 

students taught with the van Hiele teaching phases performed significantly better at the post and 

retention tests. While the cognitive load theory intervention bridges the gap between low and 

high ability students, the van Hiele teaching phases is beneficial to both low and high performing 

students. These results have implications for mathematics teaching practices and learning. 

The concern for higher mathematics students’ outcomes and the application of 

mathematical knowledge to real-world scenarios is increasing across the globe. While some 

15-year-old students’ performance in mathematics is below the average competency level at 

the Programme for International Student Assessment (PISA), others at an average level or 

above could not transfer mathematical knowledge to solve practical problems around them 

(Organisation for Economic Co-operation and Development, 2019). This is similar to reports 

from African countries, particularly Nigeria (Omobude, 2014). However, one of the main 

facilitators of students’ learning outcomes is teachers’ pedagogical approach (Bolstad, 2021; 

Li & Schoenfeld, 2019), which is the focus of this investigation. 

There are numerous studies that have applied several pedagogies generated from different 

learning theories (Ginga & Zakariya, 2022; Schneider et al., 2022). Of interest to this study are 

the worked example instruction – a popular instructional design, following the principles of the 

cognitive load theory (CLT) (Sweller, 2011)—and the van Hiele teaching phases (VHTP) (van 

Hiele, 1986)—which align with the constructivist approach and an element of the van Hiele 

theory. While available empirical findings have reported that both the CLT worked example 

instruction and VHTP is effective (Centre for Education Statistics and Evaluation, 2017), no 

study, either empirical or theoretical, has compared the effectiveness of the approaches. As 

several studies around the world have indicated that students struggle to solve complex 

algebraic equations with rich knowledge of concepts and procedures (Johari & Shahrill, 2020), 

which means students cannot transfer the acquired mathematical knowledge to solve real-life 

problems (Bolstad, 2021; Li & Schoenfeld, 2019), this study explores the CLT worked example 

instruction and the VHTP to determine their effectiveness for solving complex mathematical 

problems using the example of simultaneous equations. A predictor of students’ levels of 

mathematical understandings is their mathematical ability (Ayebale et al., 2020). 

Consequently, this study examines the influence of students’ ability levels on the effectiveness 

of these pedagogies. Specifically, this article answers the following research questions: 

1. How do students’ learning outcomes in the cognitive load group differ from the van 

Hiele group? 

2. What are the effects of each of the cognitive load theory intervention and the van Hiele 

teaching phases across the three time-points? 

3. Are there differences in the learning outcomes of students in the cognitive load group 

and van Hiele group based on ability levels? 
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Cognitive Load Theory 

The CLT (Sweller, 2011) aims to improve mathematics and science teaching and learning 

by focusing on human cognitive architecture, which is characterised by a limited working 

memory and unlimited long-term memory. The working memory processes information while 

the long-term memory stores the processed information. CLT contends that for learning to 

occur, the cognitive resources required to learn a task must not exceed the available working 

memory resources (Sweller et al., 2019). Moreover, the working memory can only process four 

to five pieces of new information at a time, and such information may be missing if not properly 

rehearsed after 20 seconds (Miller, 1956). Based on the understanding of the principles for 

processing information in humans, CLT recommends several instructional designs that could 

facilitate effective learning. One popular instructional design that manages the working 

memory resources is worked example instruction. In this design, students are provided with 

worked examples to study and transfer their understanding to similarly structured problems. 

Several studies have established that the use of worked examples is effective because it imposes 

a relatively low cognitive load and does not interfere with learning (Ngu et al., 2019; Renkl, 

2017; Richey & Nokes-Malach, 2013). However, these studies mainly focused on simple 

mathematical topics such as one-step and two-step equations. Moreover, most of the studies 

assessed students’ responses based on the procedural steps leading to the final answer, without 

considering the quality of the students’ responses. Furthermore, the long-term effect of this 

pedagogy has not been widely investigated, and no study has reported the effectiveness of the 

pedagogy in relation to students in Africa.  

The van Hiele Theory 

The van Hiele theory, formulated by Pierre van Hiele, originated from the difficulties 

students encountered in learning geometry. He proposed a developmental framework that 

requires teachers to understand how students’ geometric thinking progresses in levels, known 

as the van Hiele levels of thinking. In a joint effort with his wife, Dina van Hiele, they 

prescribed five sequential teaching phases for developing students’ cognitive reasoning 

through the levels, called the van Hiele teaching phases (VHTP) (van Hiele, 1986). This was 

based on their belief that students’ cognitive progression from one level to the next is dependent 

on instruction rather than maturity and age. They claimed that learning from real-life scenarios 

enhances life-long learning, and they recommended student-centred activities for learning. The 

five teaching phases are information, directed orientation, explication, free orientation, and 

integration. Upon successful completion of these teaching phases, students’ thinking is moved 

to the next level and the phases are repeated. The van Hiele teaching phases align with the 

constructivist perspective and emphasise that students construct their own mathematical 

knowledge in their own unique way by exploring the learning environment, seeking 

clarification, and developing initiatives for problem-solving (Serow et al., 2019). This 

pedagogy acknowledges the changing roles of teachers and students during learning and 

emphasises language development and building new knowledge on pre-existing information. 

Moreover, this pedagogical lens serves as a tool for guiding teachers in designing relevant 

activities for a lesson (for further information see van Hiele [1986] and Serow et al. [2019]). 

As the van Hiele theory was formulated to improve performance in geometry, several 

studies across the world have reported the effectiveness of the phase-based pedagogy for 

geometry teaching, learning, and curriculum (Alex & Mammen, 2016; Machisi & Feza, 2021; 

Serow & Inglis, 2010). There is, however, need to transfer the lens of van Hiele theory to other 

areas of mathematics (Colignatus, 2014; Vojkuvkova, 2012). Since then, some attempts have 

been made to investigate the effectiveness of the van Hiele teaching phases in other aspects of 
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mathematics, but results have been inconsistent (Nisawa, 2018; Walsh, 2015). Thus, there is 

the need for further research in this area. 

Notably, both pedagogies considered in this paper rely on schema from other people to 

learn and emphasise the contribution of prior knowledge to learning. However, while VHTP 

stresses that students are to construct their knowledge by exploring their environment and 

developing crisis in thinking, CLT claims that these activities may overload students’ working 

memory and thus result in no learning. Furthermore, unlike the VHTP, the CLT-associated 

pedagogy does not encourage social interaction such as peer discussion. 

Method 

This quasi-experimental design followed a pre-, intervention, post-, and retention test 

sequence, which involved two experimental groups—one for the CLT and the other for VHTP. 

Each group comprised one intact class of first-year senior school students (ages 14 to 15 years) 

from two government schools in Nigeria. A total of 157 male and female students was involved: 

CLT group (n = 72) and VHTP group (n = 85). The groups were equivalent in terms of 

mathematical content coverage, access to materials and human resources, English language 

competencies, and geographical locations. Due to the limitations in contact occasioned by the 

COVID-19 pandemic, the regular teachers of each group implemented the interventions after 

undergoing training from the researchers. The students completed three similar tests and were 

exposed to the interventions across eight weeks. Initially, students completed an open-ended 

pre-test to determine their current knowledge about solving simultaneous equations. The 

groups were then exposed to eight (40-minute) carefully sequenced lessons, with one group 

receiving the worked examples instruction and the other receiving the VHTP instruction. The 

students then completed a post-test. Three weeks after the post-test, a retention test was 

administered to the students to establish the lasting effects of the interventions. Students were 

required to solve the mathematical problems in the tests and provide an explanation for their 

responses. Generally, the study followed the research ethics standard and was approved by the 

University of New England (Approval number HE20-224). Rasch analysis was employed to 

ascertain the degree to which the data (items and persons) fit the model. The Rasch model is 

suitable because of its significant role in considering both items and persons as connected 

constructs, the acknowledgment of unequal intervals within the functioning of the items, and 

the non-assumption that all items are of equal difficulty (Bond & Fox, 2013). The model fitness 

is reported by four statistical parameters: outfit, infit, separation index, and reliability. 

According to Linacre (2013), infit and outfit values ideally range between 0.5 and 1.5. Hence, 

when the infit mean square estimate is close to 1, it indicates that the set of items and persons 

perfectly fit the Rasch model. 

Scoring 

Students’ responses (procedural steps and explanation of the procedures) to the tests were 

classified into increasing levels of thinking and scored following the rubrics of the structure of 

the observed learning outcomes (SOLO) model (Biggs & Collis, 2014). SOLO is considered 

appropriate because it examines both the quality and quantity of students’ responses in the 

evaluation process. Six levels of response were identified: prestructural = 0, unistructural = 1, 

multistructural = 2, relational = 3, formal mode 1 = 4, and formal mode 2 = 5.  

Results 

Table 1 presents the Rasch results. The item reliability (I) indices (> 0.9) across time 

indicate that a large range of item measures are adequate for stable item estimates, which 

implies that the sample size can be used to establish a reproducible item difficulty hierarchy.  
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Table 1 

Rasch Summary Statistics for Items (I) and Persons (P) estimates 

Tests   Separation 

index (I) 

Separation 

index (P) 

Infit 

(I) 

Infit 

(P) 

Outfit 

(I) 

Outfit 

(P) 

Reliability 

(I) 

Reliability 

(P) 

Test1 CLT 7.08 1.31 0.93 0.83 1.70 1.23 0.98 0.63 

VHTP 5.87 1.46 1.01 0.87 0.95 0.95 0.97 0.68 

Test2 CLT 5.79 1.52 1.04 0.98 0.99 0.99 0.97 0.70 

VHTP 4.57 1.30 1.02 1.07 0.94 0.94 0.95 0.63 

Test3 CLT 4.98 0.92 1.02 1.04 0.95 0.95 0.96 0.46 

VHTP 4.25 1.15 0.97 0.83 0.86 0.86 0.95 0.58 
 

With regard to the person estimates, most of the person reliability (P) and separation indices 

for both groups were greater than 0.5 and 1, respectively. This means that the Rasch model 

identified more than one level of ability within the participants. Correspondingly, the 

participants were classified into low and high ability levels. The infit and outfit for both items 

and persons ranged between 0.5 and 1.5, except for the item outfit of CLT, which was 1.70. 

The outfit measure of 1.70 may be a result of a few random responses by the low-performing 

students. Furthermore, the high item separation indices (> 3) for the two groups indicate that 

the samples for each group were large enough to identify the item difficulty of the test 

instrument.  

Additionally, the Wright (variable) map in Figure 1 indicates the relationship between the 

ranking of person abilities and item difficulties before the intervention. The figure shows that 

the persons’ abilities range between -5 and 3 logits while the item difficulties range between -

3 (easiest) and 1.5 (most difficult) logits. The most difficult items were Questions 5, 8, and 9, 

which were located between 1 and 2 logits, while Question 1, the easiest question, was located 

at -3 logits. Since the question difficulties ranged between the logits of persons’ abilities, the 

items of the test instrument were adequate for the targeted students. Thus, it was concluded 

that the test items fit the Rasch model, have a good range of difficulty, have high reliabilities, 

and are appropriate for the cohort of participants for whom it is targeted. This has the potential 

for significant productive measurement and results.  

The data analysed and presented here were part of a robust investigation that sought to 

explore two pedagogical practices. The person estimates, measured in logits, from the Rasch 

measurement of 157 participants were exported to the Statistical Package for Social Sciences 

(SPSS). An independent t-test was performed to test the equality of the effectiveness of the 

CLT and VHTP pedagogical interventions. Initially, there was a weak difference between the 

two groups at the pre-test, in favour of the CLT. A further analysis of the immediate and long-

term effects of the interventions yielded statistically significant differences between the two 

groups. For both the post-test and retention test, the van Hiele group significantly outperformed 

the CLT group with large effect sizes (t (138.63) = -6.15, p = 0.00, d = 1.01 and t (154) = -9.76, p = 

0.00, d = 1.57 at 95% confidence interval), as shown in Table 2. 
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Figure 1. A Wright map showing the person abilities and item difficulties. 

Table 2 

Independent t-test of Students’ Learning Outcomes Across the Three Time-points  

Tests Intervention N M SD t df Sig D 

Pre-test CLT 72 -0.75 1.15 2.72 155 0.00* 0.44 

 VHTP 85 -1.26 1.16     

Post-test CLT 72 -0.14 1.19 -6.15 138.63 0.00* 1.01 

VHTP 85 0.95 0.99     

Retention 

test 

CLT 72 -0.31 0.87 -9.76 154 0.00* 1.57 

VHTP 84 1.23 1.06     

*p < 0.05 

A summary of the mean scores of the two groups from pre-test to post-test then to retention 

test is shown in Figure 2. The data indicate that while the learning outcomes of students in both 

groups at the pre-test were relatively close, they slightly favoured the CLT group. However, 

after the intervention, post-test scores of the VHTP group were significantly better than those 

of the CLT group, and at the retention test, the difference in the sizes of the effect was larger. 

 

Figure 2. Line graph showing a summary of students’ learning outcomes at the pre, post, and retention test. 

To test the hypothesis of equal mean across the three tests for each interventional group, a 

repeated measure analysis of variance was conducted to explore the within-subject effects on 

students’ learning outcomes. The Mauchly’s test of sphericity was significant [χ2 (2) = 6.50,  
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p = 0.04] for CLT group and not significant for VHTP group [χ2 (2) = 0.24, p = 0.89]. Hence, 

the assumption on sphericity was considered differently. The results indicated that there was a 

significant medium effect of the CLT on students’ learning outcomes [F (1.84, 130.45) = 8.88, p = 

0.00, 𝜂𝑝
2 = 0.11] and a significant large effect of VHTP on student learning outcomes [F (2, 160) 

= 260.93, p = 0.00, 𝜂𝑝
2 = 0.76]. A Post hoc comparison using the Bonferroni adjustment 

revealed that for the CLT group, significant difference existed between the pre-test and post-

test but no significant difference in the means of the post-test and retention test. Similarly, there 

is significant difference between the pre-test and post of the VHTP group, however, the 

significant difference between the post-test and retention test only existed at 90% confidence 

interval. 

Table 3 

Mean, Standard Deviation and Repeated Measures Analysis of Variance of Students’ Learning 

Outcomes 

 Pre-test Post-test Retention test   

Intervention M SD M SD M SD             F  𝜂𝑝
2 

CLT -0.75 1.15 -0.14 1.19 -0.31 0.87 (1.84,130.45) = 8.88* 0.11 

VHTP -1.26 1.16 0.95 1.00 1.23 1.06 (2, 166) = 260.93* 0.76 
*p < 0.05 

An analysis of the influence of students’ ability levels on the effectiveness of the 

interventions is shown in Table 4. The result of the CLT group indicated a large significant 

difference between the learning outcomes of low and high ability students at the pre-test (t (70) 

= -11.90, p = 0.00, d = 2.86). After the intervention, the difference between low and high ability 

students was still significant but with moderate size (t (69.93) = -3.20, p = 0.00, d = 0.72). During 

the retention test, no significant difference was found between low and high students (t (70) = 

-0.09, p = 0.93, d = 0.02), suggesting that the CLT intervention favours the low ability students 

than the high ability students. For the VHTP group, the strong differences observed between 

the low and high ability students at the pre-test (t (39.55) = -7.26, p = 0.00, d = 1.92) continues at 

the post-test (t (37.65) = -3.91, p = 0.00, d = 1.05) and the retention test (t (82) = -4.94, p = 0.00,  

d = 1.12). These results suggest that the VHTP is beneficial to both the low and high ability 

students. 

Table 4 

Analysis of Students’ Learning Outcomes Based on Ability Levels Across the Three Time-points  

Groups Tests Level  N M SD t df Sig D 

 

 

CLT 

Pre-test Low 29 -1.89 0.81 -11.9 70 0.00* 2.86 

High 43 0.01 0.54     

Post-test Low 29 -0.62 0.88 -3.20 69.93 0.00* 0.72 

High 43 0.19 1.27     

Retention 

test 

Low 29 -0.32 0.81 -0.09 70 0.93 0.02 

High 43 -0.30 0.92  
 

 

 

 

VHTP 

Pre-test Low 54 -1.85 0.61 -7.26 39.55 0.00* 1.92 

High 31 -0.22 1.17     

Post-test Low 54 0.61 0.59 -3.91 37.65 0.00* 1.05 

High 31 1.55 1.26     

Retention 

test 

Low 53 0.84 0.90 -4.94 82 0.00* 1.12 

High 31 1.89 1.01     
*p < 0.05 



Example-based instruction and van Hiele teaching phases 

64 

Discussion  

As it is often claimed that pedagogical practices are essential in achieving the key goals of 

mathematics curriculum across the globe, this study examined the effectiveness of two 

pedagogical practices that have their roots in cognitivism and constructivism approaches. The 

results indicated that both the CLT and VHTP interventions were observed to have short-term 

effects on students’ learning outcomes; however, the learning outcomes of students in the 

VHTP continued to increase at the retention test, while the CLT group experienced a waning 

effect after the post-test. This pattern of the results may be attributed to many factors, including 

the nature of the instruction and forgetfulness. Specifically, CLT recommends instructional 

designs that require students to acquire schema with minimal cognitive effort (Sweller, 2011). 

The worked examples instruction utilised in this study provided a step-by-step guide to solving 

a problem, emphasising more procedural knowledge than conceptual knowledge, and students 

do not experience interference with learning. Conversely, one of the main principles underlying 

the movement of students’ thinking from one level to the next in VHTP is the crisis in thinking 

during learning (Serow et al., 2019), that is often experienced by students in the fourth teaching 

phase and allows them to investigate various thinking paths, identify correct reasoning for the 

domain of thought, and develop a strong perception of the mathematical ideas, which is 

observed to last for a long time. Therefore, the VHTP seems to offer more conceptual 

mathematical knowledge than procedural knowledge. 

Furthermore, students’ learning outcomes in the VHTP group were observed to be 

significantly better than the CLT group regardless of their ability levels. While the CLT is more 

favourable to the low ability students by bridging the gap between the low and high ability 

students, the VHTP appears to improve both the low and high ability students in similar 

magnitude. These findings seem to support and advocate that the major attributes of VHTP—

an exploration of learning materials, sequential development of students’ thinking, thinking 

crisis, students’ active participation, language development, and discourse—are essential for 

learning complex mathematics topics. Another practical implication of these findings could be 

that pedagogies that strongly focus more on conceptual knowledge tend to have more lasting 

effect than the reverse. The results of this study, which was conducted in an African context, 

are consistent with several other studies around the globe (Kalyuga et al., 2001; Machisi & 

Feza, 2021; Renkl, 2017; Walsh, 2015). However, the appropriate use of VHTP requires extra 

commitment from teachers. Lastly, the researchers acknowledge the interference of noise from 

the natural setting, where this experiment was carried out, as a limitation of this study. 

Conclusion 

The findings presented in this paper suggest that the pedagogical practices employed by 

teachers significantly affect students’ learning outcomes and long-term knowledge retention. 

This study highlights that VHTP allows students to demonstrate ownership of mathematical 

ideas, and the crisis in thinking has a significant effect on students’ achievement in 

mathematics. The VHTP students demonstrated higher achievement in the short and long term 

than their peers who learned through the CLT worked example instruction. The findings from 

this study extend existing evidence on the application of CLT and VHTP in mathematics 

learning. It also contributes to the growing evidence on effective teaching practices in 

mathematics education. Lastly, the study is significant for its methodological (SOLO model 

and Rasch model for scoring and analysis), empirical, and contextual contribution to the 

improvement of mathematics learning and retention. 
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